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Abstract
Purpose
The definition of radiotherapy target volume is a critical step in treatment planning for all
tumor sites. Conventional magnetic resonance imaging (MRI) pulse sequences are used for the
definition of the gross target volume (GTV) and the contouring of glioblastoma multiforme
(GBM) and meningioma. We propose the use of multiparametric MRI combined with radiomic
features to improve the texture-based differentiation of tumor from edema for GTV
definition and to differentiate vasogenic from tumor cell infiltration edema.

Methods
Twenty-five patients with brain tumor and peritumoral edema (PTE) were assessed. Of the
enrolled patients, 17 (63 ± 10 years old, six female and 11 male patients) were diagnosed with
GBM and eight (64 ± 14 years old, five female and three male patients) with meningioma. A 3
Tesla (3T) MRI scanner was used to scan patients using a 3D multi-echo Gradient Echo (GRE)
sequence. After the acquisition process, two experienced neuroradiologists independently used
an in-house semiautomatic algorithm to conduct a segmentation of two regions of interest
(ROI; edema and tumor) in all patients using functional MRI sequences, apparent diffusion
coefficient (ADC), and dynamic contrast-enhanced MRI (DCE-MRI), as well as anatomical MRI
sequences—T1-weighted, T2-weighted and fluid-attenuated inversion recovery
(FLAIR). Radiomic (computer-extracted texture) features were extracted from all ROIs through
different approaches, including first-, second-, and higher-order statistics, both with and
without normalization, leading to the calculation of around 300 different texture parameters
for each ROI. Based on the extracted parameters, a least absolute shrinkage and selection
operator (LASSO) analysis was used to isolate the parameters that best differentiated edema
from tumors while irrelevant parameters were discarded.

Results and conclusions
The parameters chosen by LASSO were used to perform statistical analyses which allowed
identification of the variables with the best discriminant ability in all scenarios. Receiver
operating characteristic results showcase both the best single discriminator and the
discriminant capacity of the model using all variables selected by LASSO. Excellent results were
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obtained for patients with GBM with all MRI sequences, with and without normalization; a T1-
weighted sequence postcontrast (T1W+C) with normalization offered the best tumor
classification (area under the curve, AUC > 0.97). For patients with meningioma, a good model
of tumor classification was obtained through the T1-weighted sequence (T1W) without
normalization (AUC > 0.71). However, there was no agreement between the results of both
radiologists for some MRI sequences analyzed for patients with GBM and meningioma. In
conclusion, a small subset of radiomic features showed an excellent ability to distinguish
edema from tumor tissue through its most discriminating features.

Categories: Medical Physics, Radiation Oncology, Radiology
Keywords: mri multiparametric sequences, intracranial tumors, peritumoral edema, radimic texture
features, big data

Introduction
Nearly 80,000 Americans were newly diagnosed with primary brain tumors in 2016, according
to the American Brain Tumor Association (ABTA). Of this population, more than 26,000 have
primary malignant and 53,000 non-malignant brain tumors [1].

There are essentially two types of brain tumors: primary brain tumors, which begin in the brain
and remain within it, and metastatic brain tumors, which begin as cancer in another part of the
body and spread to the brain [2-3]. Thus, brain tumors are cataloged as malignant or benign
according to their degree of malignancy and aggressiveness, according to guidelines from the
World Health Organization (WHO) [3]. However, it is not an easy task to determine if a primary
tumor is benign or malignant since various factors, such as pathological characteristics,
location, and the type of tissue involved, must be part of this assessment [2,4].

A malignant tumor, also known as brain cancer, is usually rapidly growing, invasive, and
potentially deadly. There are four different grades according to the World Health Organization's
(WHO’s) grading system [3-5]: (a) grade I tumors grow slowly; their appearance is similar to
that of a healthy region, and they are considered non-invasive because their benign tissue
composition is unlikely to spread. This grade includes less-malignant tumors associated with
long-term survival (e.g. ganglioglioma and gangliocytoma); (b) grade II tumors exhibit
relatively slow growth, do not have actively dividing cells, and present a slightly abnormal
appearance. Some of these tumors may extend into normal tissue nearby or reappear (e.g.
astrocytoma, ependymoma, or oligodendroglioma); (c) grade III tumors are malignant by
definition, although the degree of malignancy is based on the cell type since it is not always
easy to differentiate these from grade II tumors. Cells from a grade III tumor are obviously
abnormal and grow and reproduce actively around normal brain tissue (e.g. anaplastic
oligodendroglioma); (d) grade IV tumors divide rapidly, show a distinctly different cellular
appearance compared to surrounding normal tissue, have blood vessels to promote their
accelerated growth, and have areas of dead tissue in the center (e.g. glioblastoma multiforme).

The two most common types of intracranial tumor are glioblastoma multiforme (GBM) and
meningioma [5]. GBM is the most malignant (WHO grade IV) form of intracranial tumor. Its
histological characteristics are quite noticeable, with the presence of dead cells (necrotic tissue)
and increased blood vessel density around the tumor [3,5-6]. Most cases of meningioma, on the
other hand, involve benign tumors, many of which contain calcifications, cysts, or concentrated
clusters of blood vessels. However, there are also other types of meningioma such as atypical
(10%-15% of meningiomas), and anaplastic (1%-3% of meningiomas) that can also be classified
according to the WHO grades [3,7]. Table 1 shows the main characteristics of GBM and
meningioma; although both tumor types have distinctive pathophysiologies, they are grouped
here because they are considered the most common primary intracranial tumor types
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encountered in clinical practice [3,8-9].

Description
Principal Glial Tumor
GLIOBLASTOMA

Principal Meningeal Tumor
MENINGIOMA

Incidence of
occurrence

12% - 20% of all brain tumors 14% - 19% of all brain tumors

Age
propensity

45 - 65 years 35 - 70 years

Sex
propensity Almost 2:1 male preponderancea Almost 2:1 female preponderance

Expected
locations

Frontal, frontomedial, frontolateral, frontodorsal, temporal,
temporomedial including basal ganglia, temporo-parieto-occipital,
corpus callosum (butterfly glioma), occipital region, supratentorial

Parasagittal region, falx,
convexity, entire skull base,
posterior fossa, tentorium, lateral
ventricles

WHO grade
classification

IV
I, II (atypical) or III (papillary or
anaplastic)

aLouis et al. [4] report a male-to-female ratio of 1.42:1.

TABLE 1: Features of glioblastoma and meningioma, two common primary
intracranial tumors with a high incidence in adult patients
WHO: World Health Organization

The term primary brain tumor is usually reserved for an intra-axial tumor originating from
normal intracranial cells (astrocytes, oligodendrocytes, etc.). Even meningioma is often not
considered a true primary brain tumor because it originates in the extra-axial space.

Once primary brain tumors have been diagnosed, there is a range of different therapy options.
The treatment or treatments chosen depend on factors, including the tumor type, its size, its
WHO grade, its growth rate, its location in the brain, and the general health of the patient [7].
Surgery, chemotherapy, and radiation therapy (radiotherapy), alone or in combination, are the
most common treatments for primary brain tumors [10].

Target volume definition is a critical step in the radiotherapy planning process for all tumor
sites. In radiation therapy, precision is key [10-11]. Statistical and image processing techniques
may improve the ability to determine the boundaries of tumor and edema. Such improvement
will facilitate better tumor control probability (TCP) and limit collateral damage to surrounding
normal tissues during treatment. Several studies have been proposed in this regard using
different medical modalities (e.g. magnetic resonance imaging (MRI), computed tomography
(CT), positron emission tomography (PET), etc.) and diverse approaches (e.g. texture analysis,
clustering, support vector machine, machine learning, etc.) [12-13].

The objective of this study was to use MRI images to discriminate tumor from edema and,
ultimately, to differentiate different types of edema (e.g. vasogenic and tumor cell infiltration).
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These techniques involve the use of the radiomic features of multiparametric MRI images to
define gross tumor volume (GTV) for treatment purposes.

Materials And Methods
The study began with the selection of multiparametric, three-dimensional (3D) brain MRI
images of patients diagnosed with primary brain tumors. A semi-automatic segmentation
process was performed on the functional and anatomical sequences of MRI images by
experienced neuroradiologists. They contoured two regions of interest (ROI), edema and tumor,
for each enrolled patient. Next, approximately 300 different radiomic (computer-extracted
texture) features were pulled from each ROI using different approaches (first-, second-, and
higher-order statistics) through in-house MatLab (MathWorks, Inc., Massachusetts, US) codes,
with and without normalization. Then, a linear regression statistical method in R, least
absolute shrinkage and selector operator (LASSO), was used to reduce and select the
parameters that provided the highest association to distinguish tumors from edema while the
remaining and irrelevant parameters were eliminated. Finally, a statistical analysis was
performed in Stata software (StataCorp., College Station, TX, US) based on the receiver
operating characteristic (ROC) curves using the parameters selected by LASSO; relevant figures
and tables were constructed based on that analysis. Figure 1 shows a block diagram of the
modules developed and used in this study.

FIGURE 1: Flow chart with the sequence of modules used in
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this study: (a) different MRI pulse sequences from patients
diagnosed with primary intracranial tumor, (b) contouring
process of tumor and edema, (c) radiomic (computer-extracted
texture) features extraction, (d) statistical reduction and
selection of parameters with the best discriminant ability for
distinguishing tumors from edema, and (e) statistical
assessment
ADC: apparent diffusion coefficient; DCE: dynamic contrast-enhanced; FLAIR: fluid-attenuated
inversion recovery; GLCM: gray level co-occurrence matrix; GLRLM: gray-level run-length matrix;
LASSO: least absolute shrinkage and selection operator; MRI: magnetic resonance imaging; T2-W:
T2-weighted

Subjects enrolled (study population)
Two experienced neuroradiologists with more than six years of clinical experience selected
patients (N = 25) who were diagnosed with primary brain tumors between 2007 and 2016 from
among 65 patients of the University of Mississippi Medical Center (UMMC) electronic medical
records. Brain tumor and peritumoral edema (PTE) were identified in all enrolled patients.

Of this group, 17 had received diagnoses of glioblastoma (63 ± 10 years old, six female and 11
male patients) and eight had received diagnoses of meningioma (64 ± 14 years old, five female
and three male patients).

Inclusion criteria were patient age ≥ 18 years and the presence of pre-operative MRI images
with some type of primary cerebral tumor. Exclusion criteria were an incomplete sequence of
MRI images (e.g. no non-contrast images), the performance of a preoperative biopsy, and/or
patient use of corticosteroids at the time of the preoperative MRI scan. Patients whose files
contained MRI images with severe artifacts and excessive noise were also excluded.

Table 2 shows patient demographic information and some important primary characteristics of
their brain tumors.
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 Numbers (%) WHO grade I WHO grade II WHO grade III WHO grade IV

All patients enrolled 25     

GBM 17 (68) 0 0 0 17

Meningioma 8 (32) 3 3 2 0

Gender      

Male 14 (56) 0 0 0 14

Female 11 (44) 3 3 2 3

Age      

Mean ± SD 65 ± 12 50 ± 11 71 ± 7 77 ± 2 63 ± 10

Tumor Size      

Maximum Length (cm) 4.2 ± 1.2 4.7 ± 0.8 4.2 ± 0.7 3.9 ± 1.1 4.1 ± 1.4

Area (cm2) 9.8 ± 5.3 9.5 ± 6.1 12.1 ± 4.2 8.9 ± 5.1 9.5 ± 5.7

Location      

Covexity 7 (28) 0 0 0 7 (28)

Parasagittal 5 (20) 0 0 0 5 (20)

Skull base 3 (12) 0 0 0 3 (12)

Posterior fossa 2 (8) 0 0 0 2 (8)

Frontodorsal 4 (16) 1 (4) 2 (8) 1 (4) 0

Corpus callosum 2 (8) 1 (4) 0 1 (4) 0

Supratentorial 2 (8) 0 2 (8) 0 0

TABLE 2: Patient demographic information and brain tumor characteristics according
to the tumor's grade
GBM: glioblastoma multiforme; SD: standard deviation; WHO: World Health Organization

MR imaging (MRI) acquisition
All patients were scanned on a 3 Tesla (3T) scanner (Siemens, Skyra, USA) with a 16-channel
radiofrequency (RF) head coil using a T1-weighted contrast-enhanced fast spoiled gradient-
recalled acquisition in the steady state; repetition time (TR) = 900 ms, echo time (TE) = 8 ms,
matrix size = 256 x 256, slice thickness = 4 mm, bandwidth = 244.141 hertz/pixel, and a T2-
weighted (T2-W) fluid-attenuated inversion recovery (FLAIR); TR = 9002 ms, TE = 127.6 ms,
inversion time (TI) = 880 ms, matrix = 256 x 256, slice thickness = 5 mm, bandwidth = 122.109
hertz/pixel. MRI scans were acquired prior to radiation treatment.
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Different MRI sequences images were used in the study (Figure 2), including those acquired
with fluid-attenuated inversion recovery (FLAIR), apparent diffusion coefficient (ADC), T2-
weighted (T2-W), and dynamic contrast-enhanced (DCE-MRI) techniques. In the case of DCE
volumes, pre- and postcontrast images were included. Diffusion-weighted imaging (DWI) and
contrast-enhanced (CE) T1-weighted images were obtained in three orthogonal planes after an
intravenous injection of 0.1 mmol/kg gadoterate meglumine (Dotarem; Guerbet, Paris, France).
Other parameters for the CE T1-weighted image were as follows: section thickness of 3 mm,
matrix of 224 × 224, actual voxel size of 1 mm × 1 mm × 1 mm, reconstruction voxel size of 0.5
mm × 0.5 mm × 0.5 mm, number of excitation of 1, SENSE factor of 2, and total acquisition time
of 5 minutes and 56 sec. An echo-planar DWI was performed in the axial plane, including image
acquisition at b = 0 s/mm2 and diffusion-weighted acquisitions using a standard b = 1000
s/mm2. Other parameters were TR 3000 ms, TE 56 ms, section thickness 5 mm, field of view
(FOV) 250 mm, matrix 128 × 128, actual voxel size 1.95 mm × 1.95 mm × 5 mm, reconstruction
voxel size 0.98 mm × 0.98 mm × 5 mm, number of excitation = 1, SENSE factor 2.5, and total
acquisition time 36 sec. All raw data from DWI were transferred from the MR system to a
separate computer for the generation of ADC maps. ADC maps were calculated using b values of
0 s/mm2 and 1000 s/mm2 on a voxel-by-voxel basis.

FIGURE 2: The study used images acquired for each enrolled
patient using five different MRI pulse sequences: (a) FLAIR; (b)
ADC; (c) T2-W; (d) and (e) DCE pre- and postcontrast,
respectively
ADC: apparent diffusion coefficient; DCE: dynamic contrast-enhanced; FLAIR: fluid-attenuated
inversion recovery; MRI: magnetic resonance imaging; T2-W: T2-weighted

Image processing
Image processing represents the most important part of this study since the relevant
information used from the analysis is extracted from the medical images. All image processing
steps were performed using algorithms implemented in MatLab version 2016a, as explained in
the following sections. The data processing sequences used in this study allow the analysis of
two-dimensional (2D) structures.

Segmentation Process

We measured the signal of edema around GBM and the tumor region in each patient. The same
procedure was also repeated in patients with meningioma, using the MRI image sequences
described above. Two experienced neuroradiologists independently conducted a segmentation
process of the tumor and edema for each patient. The segmentation process was executed
manually by each of the neuroradiologists following the same directions at different times.

First, each neuroradiologist performed a previous visual assessment process of all slices that
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compose the volumes of the images acquired with different MRI sequences. This visual
identification allowed the selection of the slice or slices that best represented the ROIs (edema
and tumor) in the different images included. For this purpose, all MRI sequences were opened at
the same time using OsiriX Lite v.9.0 (Pixmeo, Geneva, Switzerland) [14], a multidimensional
digital imaging and communications in medicine (DICOM) visualization tool that allows
navigation through all slices of the different volumes in a collective and synchronized way in
order to select the correspondent slices to be segmented. Once the required ROIs were
contoured in only one MRI sequence, the same segmented areas were replicated in the other
sequences through an in-house algorithm implemented in MatLab version 2016a, as shown in
Figure 3.

FIGURE 3: Segmentation process applied to the five different
MRI sequences used in the study: (a) original image; (b)
FLAIR; (c) ADC; (d) T2-W and DCE; (e) precontrast and (f)
postcontrast
ADC: apparent diffusion coefficient; DCE: dynamic contrast-enhanced; FLAIR: fluid-attenuated
inversion recovery; MRI: magnetic resonance imaging; T2-W: T2-weighted

Of the five MRI sequences used in this study, the neuroradiologists reported images acquired
with a FLAIR sequence allowed for the easiest identification of both the tumor and PTE regions;
thus, the segmentation process was performed on those images in most cases. In some cases,
though, it was performed using images acquired using other MRI sequences.

Normalization Process

We performed a normalization process over all segmented ROIs before the extraction of
radiomic features. Normalization is a form of image processing that reduces the range of the
histogram of each ROI to condense the information for purposes of calculation. We used two
approaches to calculate the radiomic features: (a) original ROIs, that is, ROIs without
normalization; and (b) ROIs normalized through a method that uses the gray-scale range of the
image between 1% and 99% of the cumulated ROI histogram [15]. The 1%-99% normalization
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process compacts the intensity range of the image by considering the brightness level where the
cumulative histogram of the image is between 1% and 99% of its total. In general, the results of
normalization processes are typically different for different images; different ROIs regularly
yield different 1%-99% levels.

Radiomic Features Extraction

Radiomic allows the automated extraction of a large number of quantitative characteristics
from medical images using advanced feature assessment and data characterization algorithms
[16]. This approach allows the quantification of different forms and textures of tumors.

Our study performed the extraction of diverse characteristics through an advanced feature
analysis. Figure 4 shows three different approaches (first-, second-, and higher-order statistics)
used to extract the diverse radiomic features from each of the segmented ROIs, with and
without normalization. All approaches were implemented in MatLab version 2016a.
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FIGURE 4: Radiomic features used in this study were
distributed in three different techniques focused primarily on
statistical approaches: (a) first-order statistics, (b) second-
order statistics through the GLCM, and (c) higher-order
statistics through the GLRLM
ADC: apparent diffusion coefficient; FLAIR: fluid-attenuated inversion recovery; GLCM: gray-level
co-occurrence matrix; GLCMT: gray-level co-occurrence matrix transpose; GLRLM: gray-level run-
length matrix; L: length of homogeneous runs for each grey level; ROI: region of interest; T1W: T1-
weighted precontrast; T1W+C: T1-weighted postcontrast; T2W: T2-weighted

The simplest element constituting a digital image, called pixel or voxel for two-dimensional or

2018 Florez et al. Cureus 10(10): e3426. DOI 10.7759/cureus.3426 10 of 23

https://assets.cureus.com/uploads/figure/file/46141/lightbox_8e8ca0d0b54211e8a3023fb4b57799d1-Figure-4-300dpi.png


three-dimensional images, respectively, is defined by its gray level property, also known as its
intensity value [17]. Thus, the gray level distribution of the pixels or voxels of an image can be
described through its intensity histogram (Figure 4a). This approach is also referred to as first-
order statistics [18] and represents the simplest way of extracting statistical characteristics
directly from the digital image. The main advantage of this approach is its simplicity due to the
use of standard descriptors to characterize the data. The histogram-based parameters
calculated are mean, variance, standard deviation, skewness, kurtosis, energy, entropy,
uniformity, coarseness, directionality, contrast, percentiles (1-%, 10-%, 50-%, 90-%, and 99-
%), and absolute gradient.

In addition, a second method of extraction of radiomic features, second-order statistics, was
implemented. Second-order statistics calculate the probability of a particular relationship
between two pixels that have a similarity in a certain gray level at the same time. All
information is summarized in a matrix of co-occurrences or correspondences, called the gray
level co-occurrence matrix (GLCM), through different distances, d, and different orientations, θ
[19]. A relationship of co-occurrence between any two elements can be expressed in general
terms as P(i,j,d,θ), where i and j are two neighboring pixel elements with separation distance d
and orientation θ. This study examined five different distance values (d = 1, 2, 3, 4, 5) and four
different orientations (θ = 0°, 45°, 90°, 135°). The results of the remaining orientations were
incorporated through the symmetry property.

Regular and transpose GLCMs were summed by convention in order to obtain a resulting
symmetric matrix (Figure 4b) [20]. A set of second-order statistic features were calculated using
the symmetric matrix, including autocorrelation, contrast or inertia, correlation, cluster
prominence, cluster shade, cluster tendency, dissimilarity, angular second moment (energy or
uniformity), entropy, inverse difference moment or homogeneity, inverse variance, maximum
probability, sum of squares or variance, sum average, sum variance, sum entropy, difference
variance, difference entropy, information measures of correlation, inverse difference-
normalized, and inverse difference moment-normalized.

Finally, higher-order statistics were implemented as a third method of extraction of radiomic
features. Higher-order statistics [21], an analogous method to second-order statistics, is based
on a run-length matrix (Figure 4c) that contains information about the number of runs with
pixels of defined grey levels and run lengths in an image, the gray-level run-length matrix
(GLRLM) [22]. This matrix was calculated for different run angles (θ = 0°, 45°, 90°, 135°), and a
set of higher-order statistics features were calculated using the GLRLM, such as short-run
emphasis, long-run emphasis, gray level non-uniformity, run length non-uniformity, run
percentage, low gray level run emphasis, high gray level run emphasis, short-run low gray level
emphasis, short-run high gray level emphasis, long-run low gray level emphasis, long-run high
gray level emphasis, gray level variance, and run length variance.

Equations for the statistical characteristics mentioned in this section can be found in the
supplementary information (appendixes) of our previous study [23].

Statistical assessment
Agreement between the two neuroradiologists’ classification of tumor versus edema was
assessed by Kappa statistics. In fact, the two neuroradiologists agreed 100% of the time, even
across the five different MR imaging sequence types. The texture analysis method applied in
this study has a statistical basis [24], and its values were computed for our specific population of
ROIs: edema and intracranial tumor, both with and without normalization. The statistical
assessment was the result of an estimation process of a large database formed by all texture
parameters previously calculated using the least absolute shrinkage and selection operator
(LASSO) [25]. Binomial families, logit links, and linear regression models were used to reduce
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and select the parameters that provide the highest association for distinguishing tumors from
edema while shrinking irrelevant parameters.

Principal component analysis (PCA) and/or Fisher scoring are the standard operating
procedures for doing a variable selection on groups of variables in linear regression models [26].
However, both standard methods are unable to classify the variable of interest (edema versus
tumor, in this particular study) thus not efficiently identifying the desired ROIs.

LASSO is more consistent and allows us to construct a model specifically tailored to classify
tumor versus edema. One additional issue that arises with this particular study is that there is
no unified statistical framework to account for the variability between readers for the LASSO
selection. For example, there is not an established procedure for penalized regression
approaches to select variables across multiple readers. The set of variables (texture parameters)
selected to best classify tumor versus edema likely will vary across readers. To this end, we
independently ran LASSO procedures on each of the two neuroradiologists’ data and only
considered texture parameters selected in both. The regularization parameter λ was chosen via
cross-validation as the λ that minimized the prediction error.

While over-fitting could be a potential issue with a sample size this small, we believe nested
cross-validation is unwarranted in this situation [27]. By choosing only the parameters chosen
by LASSO from both readers, we are being more conservative than choosing a model based upon
the lowest cross-validated Brier score or highest cross-validated area under the curve (AUC).
Using these selected parameters, a receiver operating characteristic (ROC) analysis was
performed and all relevant plots were constructed. The LASSO procedure was performed in R
using the glmnet package and all other statistical procedures were performed using Stata v14.1
[28].

Results
Table 3 shows the set of variables selected for each scenario through the LASSO procedure
using both expert neuroradiologists’ readings. The number of variables chosen varied
depending only on the different scenarios (GBM and meningioma, both with and without
normalization); the maximum number of variables selected for some scenarios was four. In
some meningioma scenarios, certain thresholds were sufficient for the perfect classification of
tumor and edema. Take, for example, the non-normalized FLAIR sequence for meningioma. In
this scenario, we found that histogram percentile 90% < 520 perfectly classified tumor from
edema as shown below.

  Sequence Parameter(s) Most Useful Parameter*

Non-
normalized

ADC
GLCM Correlation, 90°, d = 1; GLCM Sum
Average, 90°, d = 1; GLCM Sum Average, 45°, d
= 1; Histogram Skewness

GLCM Sum Average,
90°, d = 1; GLCM Sum

Average, 45°, d = 1b

FLAIR Histogram Percentile 90%
Histogram Percentile

90%d

T1W
GLRLM Gray-Level Non-Uniformity 0°; Histogram
Skewness

Histogram Skewness

T1W+C
GLCM Difference Entropy, 135°, d = 4; Histogram
Percentile 99%

Histogram Percentile

99%e
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Meningioma T2W
Histogram Percentile 1%; Histogram Percentile
50%; Histogram Skewness

Histogram Percentile 1%;
Histogram Percentile

50%f

Normalized

ADC None Selectedc NAc

FLAIR None Selectedc NAc

T1W None Selectedc NAc

T1W+C Histogram Percentile 99%
Histogram Percentile

99%e

T2W
GLCM Sum Average, 135°, d = 5; GLRLM Gray-
Level Non-Uniformity 90°; Histogram Percentile
1%; Histogram Percentile 50%

Histogram Percentile 1%;
Histogram Percentile

50%f

Glioblastoma

Non-
normalized

ADC GLCM Entropy, 135°, d = 5
GLCM Entropy, 135°, d =
5

FLAIR None Selectedc NAc

T1W None Selectedc NAc

T1W+C GLCM Correlation, 135°, d = 2
GLCM Correlation, 135°,
d = 2

T2W
GLCM Entropy, 135°, d = 5; Histogram Kurtosis;
Histogram Percentile 99%

GLCM Entropy, 135°, d =
5

Normalized

ADC
GLCM Difference Entropy, 135°, d = 5; GLCM
Sum Variance, 90°, d = 3

GLCM Difference
Entropy, 135°, d = 5

FLAIR
GLCM Sum Average, 45°, d = 5; GLCM entropy,
0°, d = 1; Histogram Percentile 1%

GLCM Entropy, 0°, d = 1

T1W Absolute Gradient Skewness
Absolute Gradient
Skewness

T1W+C
Absolute Gradient Skewness; GLCM Difference
Entropy, 0°, d = 5; Histogram Percentile 99%

GLCM Difference
Entropy, 0°, d = 5

T2W GLCM Entropy, 135°, d = 5
GLCM Entropy, 135°, d =
5

aDefined as a parameter with the best ability to discriminate tumor from edema within each tumor type

bGLCM Sum Average, 90°, d = 1 or GLCM Sum Average, 45°, d = 1 < 130 perfectly classifies tumor for meningioma,
non-normalized ADC sequence

cNo agreement between readers for LASSO results

dHistogram Percentile 90% < 520 perfectly classifies tumor for meningioma, non-normalized FLAIR sequence

eHistogram Percentile 99% > 600 perfectly classifies tumor for meningioma, non-normalized, or normalized T1W+C
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sequence

fHistogram Percentile 1% < 500 or Histogram Percentile 50% < 600 perfectly classifies tumor for meningioma, non-
normalized, or normalized T2W sequence

TABLE 3: Set of parameters selected by LASSO procedure involving two expert
neuroradiologists. The selection includes the radiomic features with the best
discriminant ability to differentiate edema from tumor tissue for different MRI
sequences, different primary tumoral disease and different scenarios
ADC: apparent diffusion coefficient; d: distance between the pixel of interest and its neighbor; FLAIR: fluid-attenuated inversion
recovery; GLCM: gray-level co-occurrence matrix; GLRLM: gray-level run-length matrix; LASSO: least absolute shrinkage and selection
operator; MRI: magnetic resonance imaging; NA: no agreement; T1W: T1-weighted precontrast; T1W+C: T1-weighted postcontrast;
T2W: T2-weighted

LASSO selected the radiomic texture features with the best ability to discriminate tumor from
edema for the different scenarios, considering the different sequences of MRI images. However,
a few scenarios were also reported in which no parameters were selected (marked as None
Selected or NA in Table 3).

AUC values for the most useful parameters in discriminating tumor from edema in patients
diagnosed with GBM and meningioma are shown in Table 4 and Table 5, respectively. The AUC
results show that all univariate models had a good discriminant ability to classify tumor from
edema in patients with GMB in all scenarios and MRI sequences for which a discriminant
parameter was selected. The T1-weighted sequence postcontrast (T1W+C) with
normalization was the model with the best tumor classification (AUC > 0.97).
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Sequence Parameter With Best Discriminant Ability AUC (95% CI)

Non-normalized

ADC GLCM entropy, 135°, d = 5 0.91 (0.85-0.98)

FLAIR None Selecteda NAa

T1W None Selecteda NAa

T1W+C GLCM Correlation, 135°, d = 2 0.85 (0.75-0.94)

T2W GLCM Entropy, 135°, d = 5 0.91 (0.83-0.98)

Normalized

ADC GLCM Difference Entropy, 135°, d = 5 0.90 (0.81-0.98)

FLAIR GLCM Entropy, 0°, d = 1 0.82 (0.73-0.92)

T1W Absolute Gradient Skewness 0.69 (0.56-0.82)

T1W+C GLCM Difference Entropy, 0°, d = 5 0.99 (0.97-1.00)

T2W GLCM Entropy, 135°, d = 5 0.85 (0.75-0.94)

aNo agreement between readers for LASSO results

TABLE 4: AUCs for the most useful parameter for classifying tumors in patients
diagnosed with GBM
ADC: apparent diffusion coefficient; AUC: area under the curve; CI: confidence interval; d: distance between the pixel of interest and its
neighbor; FLAIR: fluid-attenuated inversion recovery; GBM: glioblastoma multiforme; GLCM: gray level co-occurrence matrix; NA: no
agreement; T1W: T1-weighted precontrast; T1W+C: T1-weighted postcontrast; T2W: T2-weighted
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Sequence Parameter With Best Discriminant Ability AUC (95% CI)

Non-normalized

ADC GLCM Sum Average, 0°, d = 1 & GLCM Sum Average, 45°, d = 1 < 130 PCb

FLAIR Histogram 90% < 520 PCb

T1W Histogram skewness 0.85 (0.71-0.99)

T1W+C Histogram 99% > 600 PCb

T2W Histogram 1% & Histogram 50% < 500 PCb

Normalized

ADC None Selecteda NAa

FLAIR None Selecteda NAa

T1W None Selecteda NAa

T1W+C Histogram 99% > 600 PCb

T2W Histogram 1% & Histogram 50% < 500 PCb

aNo agreement between readers for LASSO results

bPerfect classification given conditions of the third column

TABLE 5: Areas under the curve (AUCs) for the most useful parameter for classifying
tumors in patients diagnosed with meningioma
ADC: apparent diffusion coefficient; AUC: area under the curve; CI: confidence interval; d: distance between the pixel of interest and its
neighbor; FLAIR: fluid-attenuated inversion recovery; GLCM: gray level co-occurrence matrix; NA: no agreement; PC: perfect
classification; T1W: T1-weighted precontrast; T1W+C: T1-weighted postcontrast; T2W: T2-weighted

A good model of tumor classification for patients with meningioma was obtained from images
obtained with a T1-weighted sequence without normalization (AUC > 0.71). However, there was
no agreement by both neuroradiologists for meningioma when using other MRI sequences.
Consequently, it was not possible to obtain AUC results for those cases.

Additionally, AUC values for the most useful parameters for discriminating edema from tumor
in patients diagnosed with GBM can be seen in Figure 5. Some scenarios are presented without
an AUC value since no parameters were chosen by LASSO.
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FIGURE 5: AUCs for the most useful parameter for
discriminating tumors in patients diagnosed with GBM using
(a)-(c) MRI sequences without normalization and (d)-(h) MRI
sequences with normalization. Some scenarios have no AUC
value since no parameters were chosen by LASSO
ADC: apparent diffusion coefficient; AUC: area under the curve; FLAIR: fluid-attenuated inversion
recovery; GBM: glioblastoma multiforme; GLCM: gray level co-occurrence matrix; LASSO: least
absolute shrinkage and selection operator; MRI: magnetic resonance imaging; T1W: T1-weighted
precontrast; T1W+C: T1-weighted postcontrast; T2W: T2-weighted
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Finally, the discriminant capacity of differentiating both ROIs in patients diagnosed with
meningioma and GBM could be exemplified with the best parameters selected by LASSO.
Figures 6a-6b show the sorted values for the best discriminator stratified by tissue (edema and
primary brain tumors) for images acquired with different MRI sequences in patients with each
tumor type. Also, through the same MRI sequences, the sorted values for the best discriminator
stratified for specific types of edema linked to patients diagnosed with meningioma and GBM,
are shown in Figure 6c.
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FIGURE 6: Sorted values for the best discriminator stratified by
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tissue (edema and tumor) for different MRI sequences in
patients with (a) meningioma without normalization, (b) GBM
with normalization, and (c) for specific types of edema linked
to patients diagnosed with meningioma and GBM
ADC: apparent diffusion coefficient; FLAIR: fluid-attenuated inversion recovery; GBM: glioblastoma
multiforme; GLCM: gray level co-occurrence matrix; MRI: magnetic resonance imaging; T1W: T1-
weighted precontrast; T1W+C: T1-weighted postcontrast; T2W: T2-weighted

Discussion
Ten out of every 100,000 people in the United States are diagnosed with primary brain tumors:
glioblastoma multiform (GBM) or meningioma [1]. The risk of intracranial tumors can be
elevated by environmental factors, such as infections, hereditary factors, hormonal factors,
high-risk encephalo-cranial traumas, and exposure to radiation sources, among others [2,5,8].
Although there are a considerable number of anatomopathological variables, it is necessary to
have an adequate protocol through which a histological diagnosis can be established in order to
increase the odds of success of treatment. The effective differentiation and delineation of the
target volume will suggest better tumor control probability (TCP) and limit collateral damage to
surrounding normal tissues from treatment.

Fortunately, a series of significant developments have taken place in recent years, providing
better tools to treat brain tumors. However, the success of these treatments depends directly on
accuracy in estimating the location and size of the brain tumor.

In this clinical study, we assessed the ability of radiomic (computer-extracted texture) features
to distinguish edema from primary brain tumors in images acquired using a variety of
functional and anatomical MRI sequences. The texture analysis was capable of generating
relevant information that can serve radiologists in the organization, diagnosis, and
characterization of lesions or types of tumors in the brain. Well-known radiomic concepts and
different texture analysis approaches, such as first-, second-, and higher-order statistics, were
used for this purpose.

A small number of radiomic texture features was selected from a set of several hundred
parameters initially calculated through distinct scenarios, different MRI sequences, and diverse
approaches. Those selected parameters allowed the segregation of the tumor regions in the
brain and the differentiation of edema and tumor tissue.

The reduction and selection processes are commonly executed through techniques such as PCA,
Fisher scoring, and linear discriminant analysis (LDA). This study used a different selection
operator, LASSO, for the selection of the representative parameters that provide the highest
association for distinguishing tumors from edema while simultaneously shrinking irrelevant
parameters.

There is a clear differentiation not only of location, size, and shape but also of biological and
morphological characteristics between the two types of tumors analyzed in this study. For
example, GBM is considered a solitary tumor, usually located in the frontal lobes of the brain.
This study not only showed the differentiation between the two different brain pathologies
evaluated (meningioma and GBM) but also suggests a differentiation between the edema
around both intracranial tumors. Edema surrounding GBM is known to contain both vasogenic
and tumor cell infiltration while edema surrounding meningioma is a vasogenic type without
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tumor cell infiltration [6].

According to the most useful selected descriptors and their theoretical definitions, the radiomic
texture features that describe patients with meningioma are mostly first-order parameters
obtained directly from the histogram of the images acquired using different MRI sequences,
which suggests a similarity and linear dependency between the intensity values of its elements
(pixels, in our case). Analogously, the radiomic texture features that describe patients with
GBM are mostly second-order parameters obtained through a particular relationship
(probability) between two pixels that have similarity in a certain gray level at the same time.
These statements should be taken with caution since they refer only to the cases analyzed in
this study and cannot yet be generalized.

Finally, our preliminary results appear to suggest that radiomic (computer-extracted texture)
features may provide important diagnostic information based on images obtained using routine
MRI pulse sequences. This information may improve the distinction of edema from tumor for
primary brain tumors, but these results need to be validated with larger sample sizes.

Study limitations and future directions
Despite the interesting use of radiomics in a clinical application, the main limitation of this
study is the small number of patients enrolled (N = 25). While radiomic features have the
proven potential to discriminate edema from tumor tissue, and our processing structure is
well-developed and considers all the basic components of radiomic, different procedures and
tools could be incorporated and tested in future studies to potentially offer improved results.

Therefore, our future efforts will be oriented to add specific transformation mechanisms (fast
Fourier transform (FFT), S-transform, Hartley transform, etc.) on the input multiparametric
MRI images. In addition, this study examined the normalization process of the ROIs based on
1%-99% normalization, where the chosen features are shown to be dependent on the
normalization of the image. However, approaches such as the limitation of dynamics to µ ± 3σ
(where µ is the mean gray-level value and σ is the standard deviation), and gray level
compression based on the range between δ and 2δ (where δ is the number of bits per pixel),
among others, can also be tested and compared. These alternative normalization methods have
been used in recent clinical studies by Collewet and coworkers [29], among others. Likewise,
our future work in this area will be focused on the extraction of the texture characteristics of 3D
volumes of interest instead of just 2D regions of interest. We expect that this will optimize the
accuracy of tumor segmentation and maximize the results of therapeutic procedures planned
using this technique. A recent clinical study conducted by Ortiz-Ramon and collaborators [30]
shows the superiority of using 3D texture features with interesting results (AUC > 0.9). We will
also prospectively validate the radiomic texture features identified in this study in a larger and
multi-institutional cohort, both in the context of differentiating edema from brain tumor and
with other regions such as radiation necrosis, among others.

Conclusions
Radiomic (computer-extracted texture) features offer a remarkable quantitative approach that
allows the representation, differentiation, and characterization of diverse regions within the
same medical image through appropriate descriptors. Of several hundred radiomic texture
features extracted from ROIs belonging to enrolled patients, only a few parameters selected by
a statistical operator were necessary to perform a clear discrimination of edema from tumor
tissue.

Additional Information
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