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Abstract: In this study, carbon mesospheres (CMS) and iron oxide nanoparticles decorated on carbon
mesospheres (Fe2O3-CMS) were effectively synthesized by a direct and simple hydrothermal approach.
α-Fe2O3 nanoparticles have been successfully dispersed in situ on a CMS surface. The nanoparticles
obtained have been characterized by employing different analytical techniques encompassing Fourier
transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD) and scanning
electron microscopy (SEM). The produced carbon mesospheres, mostly spherical in shape, exhibited
an average size of 334.5 nm, whereas that of Fe2O3 supported on CMS is at around 80 nm. The
catalytic effect of the nanocatalyst on the thermal behavior of cellulose nitrate (NC) was investigated
by utilizing differential scanning calorimetry (DSC). The determination of kinetic parameters has
been carried out using four isoconversional kinetic methods based on DSC data obtained at various
heating rates. It is demonstrated that Fe2O3-CMS have a minor influence on the decomposition
temperature of NC, while a noticeable diminution of the activation energy is acquired. In contrast,
pure CMS have a slight stabilizing effect with an increase of apparent activation energy. Furthermore,
the decomposition reaction mechanism of NC is affected by the introduction of the nano-catalyst.
Lastly, we can infer that Fe2O3-CMS may be securely employed as an effective catalyst for the thermal
decomposition of NC.

Keywords: carbon mesosphere; Fe2O3; supported nanoparticles; nitrocellulose; thermal
decomposition; kinetics

1. Introduction

Cellulose nitrate, known as nitrocellulose (NC), is one of a main components of gun powder and
solid propellants [1–3]. It has been widely investigated owing its thermal decomposition features, such
as the decomposition temperature, activation energy, and reaction decomposition mechanism, notably
influence the combustion behavior and/or performance characteristics of NC-based formulations [4,5].
It is recognized that the burning efficacy of solid propellants is closely dependent in the decomposition
behavior of NC as well. Hence, tailoring the thermal decomposition of NC allows tuning the combustion
properties of propellants containing NC. On the other hand, NC-based formulations can exhibit a low
thermal stability because of the rupture of O–NO2 of NC even at ordinary conditions, which can cause
the deterioration of their prominent characteristics and subsequently restrain their performance and
safe and reliable service-life [6,7]. This situation can be prevented by incorporating either stabilizers or
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other additives. Thus, the investigation of the safety characteristics, namely the thermal stability, of
energetic materials such as NC are indispensable for practical applications.

A few years ago, it was revealed that the incorporation of nanomaterials to NC is an efficient
approach to enhance its thermal decomposition by tailoring the decomposition process and/or the
activation energy without altering the safety and thermal compatibility [8,9]. Such nanomaterials may
comprise metal oxides, metal nanoparticles (NPs), organometallic compounds, metallic composites,
energetic nano-catalysts, and carbon nanomaterials [10–12]. Various metal oxide NPs have been tested
as NC additives. The effect of CuO [13], Fe2O3 [14,15] nanoboron [16], bismuth oxide [17] on the
thermal decomposition of nitrocellulose has been assessed and prominent results have been reported.

Hematite (α-Fe2O3) nanoparticles, one of the most stable phases of iron oxide which is an
n-type semiconductor [18], have received a particular attention owing to their interesting properties
and their wide range of application fields in various industrial reactions such as catalysis and
biotechnology [19], lithium-ion batteries [20], gas sensing, magnetic memory, biological uses and
degradation of organic contaminants [18]. α-Fe2O3 nanoparticles can be synthesized with various
shapes like nano-platelets, nano-belts, nano-rods, nano-cubes, and nanotubes utilizing miscellaneous
physicochemical methodologies [20–24]. For energetic materials applications, α-Fe2O3 nanoparticles
have been used to increase the ammonium perchlorate thermal decomposition [21,25]. Zhao et al.
have confirmed that Fe2O3 nanoparticles may be used safely with NC without affecting the kinetic
thermal decomposition model [14,15]. Nevertheless, Fe2O3 reduces the activation energy and critical
temperature of thermal explosion of NC and has a good catalytic effect by promoting the O-NO2

bond cleavage.
However, the catalytic performance of metal oxide nanoparticles such as Fe2O3 depends closely

not only on the particles’ size and shape, but also on their distribution and dispersion. Particles with
nanoscale size range are prone to aggregate because of the importance of surface energy, which will
generate lowed available surface areas and reduce the catalytic efficiencies [26]. Therefore, a good
dispersion of these nanomaterials using catalytic supports has drawn more attention from the scientific
community. Such an efficient approach may reduce the self-aggregation drawbacks of nanoparticles
and allows exploring and fully benefiting from the unique physicochemical properties of nanoparticles
compared to bulk materials. To produce well-dispersed nanoparticles, numerous substances have been
employed to resolve the intractable issues. Recently, carbon-based catalytic supports with outstanding
features such as large surface area, chemical stability and tailorable electrical and thermal conductivity,
have been revealed as useful supporting material for metal and metal oxides nanoparticles [27]. It was
revealed that various metal oxide nanoparticles attached on carbon-based supports not only avoided
aggregation but also improved catalytic, thermal, magnetic, and optoelectronic characteristics [28].

Several carbon catalytic supports have been reported such as graphene, graphene oxide, carbon
nanotubes, fullerene and carbon mesospheres (CMS), and have been comprehensively employed in
various fields [29–33]. CMS are a kind of carbon material, which have some specific characteristics
owing to their spherical shape, such as excellent mechanical strength, high packing density, and large
specific surface area [34]. Commonly, they can be readily produced by a hydrothermal carbonization
procedure of organic materials like glucose [35]. CMS have attracted much interest as a catalytic support
owing to the uniformity and homogeneity of their nanoparticles [36]. Their porous nanostructure and
high specific area allow a large loading of metal oxide nanoparticles [37]. Nanoparticles supported
on carbon mesospheres have been widely used in various field. For instance, CuO NPs supported
on CMS have been used for sensing application and super capacitors [36,38], whereas ZnO NPs find
utilization as photocatalysts [22], catalysis [39], and other applications [40].

To the best of the authors’ knowledge, a research gap still exists in investigation the effect of
Fe2O3 nanoparticles supported on carbon mesospheres as a catalyst for the thermal decomposition of
nitrocellulose. Thus, this work deals with the synthesis of carbon mesosphere CMS as catalytic support
and α-Fe2O3 nanoparticles decorated on carbon mesospheres, respectively. Then, the catalytic effect of
the synthesized materials has been evaluated using differential scanning calorimetry (DSC). The kinetic
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parameters, i.e., the activation energy (Ea), the pre-exponential factor (A) and reaction model were
computed through the isoconversional analysis using four kinetic methods, explicitly, it-FWO (iterative
Flynn–Wall–Ozawa), it-KAS (iterative Kissinger–Akahira–Sunose), TAS (Trache–Abdelaziz–Siwani),
and Vyazovkin’s equation.

2. Experiment and Methods

2.1. Materials

Nitrocellulose with nitrogen content of 12.56% was produced using the methodology mentioned
in our recent works [2,41,42]. Different analytical chemicals comprising glucose (C6H12O6) for CMS
preparation, iron chloride (FeCl3·6H2O), as iron precursor, and ammonia NH4OH as reducing agent
for iron oxide synthesis, were provided by VWR chemicals (100 Matsonford Road, Radnor, PA, USA)
and used without further purification. Absolute ethanol and distilled water have been used to purify
the obtained catalyst.

2.2. Carbon Mesospheres (CMS) and Fe2O3-CMS Preparation

CMS were prepared using a simple hydrothermal treatment of glucose as precursor as reported
elsewhere [43], with slight modifications. Typically, a 0.5 M solution of glucose was kept in an autoclave
introduced in an oven at 180 ◦C for 6 h and then cooled at room temperature. A black residue was
recovered by centrifugation and washed three times with absolute ethanol and distilled water. Finally,
the product obtained was dried at 60 ◦C in an oven for 8 h.

Fe2O3-CMS composite was prepared by a hydrothermal method as follows. First, 1 g of the
prepared CMS was dispersed with vigorous stirring in 80 mL of distilled water. An iron solution
was simultaneously prepared using iron chloride as precursor in distilled water (5 g, 100 mL). The
two solutions were then mixed under stirring for 45 min. After that, 34% ammonia solution was
dropwise added to a stirred mixture until a pH of 8. The obtained solution was then incorporated in
Teflon-sealed autoclave and heated at 180 ◦C for 24 h. After being cooled at room temperature, the
dispersion was centrifuged, washed several times using distilled water and absolute ethanol, and
dried in oven at 60 ◦C for 8 h, and stored for further characterizations.

2.3. Preparation of CMS-Nitrocellulose (NC) and α-Fe2O3-CMS-NC Composites

In order to obtain a good dispersion of the prepared nano-catalysts within the NC matrix,
NC-catalyst films were prepared via a dissolution method. In a typical experiment, after being dried
in an oven at 60 ◦C for 24 h, 0.5 g of nitrocellulose was dissolved in 30 mL of acetone under stirring.
Then, 25 mg of catalyst, with mass ratio NC:catalyst of (95%:5%), was gradually added under stirring.
After a sonication for 20 min, the obtained colloidal mixtures were consistently spread in glass Petri
dishes at room temperature until the total elimination of acetone, forming thin films of NC-CMS and
NC-Fe2O3-CMS, respectively. A pure NC film was also produced with similar method without the
addition of catalyst. The experimental procedure was schematized in Figure 1.
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Figure 1. Schematic illustration of preparation and characterization of carbon mesosphere (CMS) and
Fe2O3-CMS composites.

2.4. Samples Characterization

2.4.1. Raman Spectroscopy and Fourier Transform Infrared Spectroscopy Analyses

As an imperative nondestructive analytical tool to investigate the chemical composition and the
structure of a variety of materials, Raman spectroscopy has been proved as an appropriate technique
for the characterization of nanomaterials since it allows detecting characteristic vibrations with low
intensities [44,45]. These vibrational features of the produced nanoparticles were determined by
employing Raman spectroscopy (Thermo Scientific DXR, Waltham, MA, USA). The chemical functions
of the prepared catalysts were investigated using Fast Fourier infrared transform (Bruker-Vertex 70,
Rudolf-Plank-Str., Ettlingen, Germany) in attenuated total reflectance (ATR) mode in the wavenumber
range 400–4000 cm−1.

2.4.2. Structural and Morphological Investigations

The phase purity of CMS and Fe2O3-CMS was assessed by using PANalytical X’Pert PRO X-ray
diffractometer (XRD, Westborough, MA, USA) at 40 mA and 45 kV with Cu anode Kα radiation
(λ = 1.54 Å) from 20 to 70◦ (2θ) at a Step Size of 0.0170. A FEG JSM 7100F TTLS scanning electron
microscope (SEM) (JEOL, Leuvensesteenweg, Zaventem, Belgium) was employed to determine the
morphology and the particles size of the obtained nanoparticles. The micrographs were acquired with
an accelerating voltage of 2 kV. To guarantee reproducible data, more than 50 nanoparticles were used.
The particle size of the catalysts was estimated by Image J software (National Institutes of Health by an
employee of the Federal Government, MD, USA).

2.4.3. Thermal Analysis

The influence of the incorporated nanocatalysts on the thermal decomposition of NC was assessed
by a Perkin Elmer differential scanning calorimeter (DSC, Waltham, MA, USA). For each measurement,
0.8–1 mg of fine cut film is place in a closed aluminum pan. The DSC experiments were realized within
the temperature range of 50–300 ◦C at various heating rates (5, 10, 15 and 20 ◦C/min) under nitrogen
atmosphere (20 cm−3/min). Analysis uncertainties are lower than 0.2 ◦C for the temperature.
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2.5. Kinetic Parameters Determination

A few years ago, the International Confederation for Thermal Analysis and Calorimetry (ICTAC)
kinetics committee has claimed that the isoconversional methodology is the utmost appropriate
methodology to study the kinetic of thermally stimulated reactions [46]. Based on the use of multiple
heating rates rather than isothermal methods, this allows consistent kinetic triplets to be obtained,
encompassing, the activation energy, the pre-exponential factor and the most suitable reaction
model [47,48].

The reaction rate of solid-state thermal decomposition can be written in terms of T and α as [46,49]:

dα
dt

= k(T) f (α) (1)

where α, t, T, k(T) and f (α) refer, respectively, to the extent of conversion (0 < α <1), the time,
temperature, the rate constant, and the reaction mathematical function model that denotes the reaction
mechanism. The values of α are experimentally determined from the DSC data as the ratio of the
current physical feature change to the total change of this property in the process. Using DSC analysis,
α is given as:

α =

∫ t
t0

dH
dt dt∫ t∞

t0
dH
dt dt

=
∆H

∆Htot
(2)

where dH
dt is the heat flow, ∆H is the current heat change and ∆Htot is the total heat change determined

by DSC.
The substitution of k(t) by its expression from Arrhenius equation leads to:

dα
dt

= A exp
(
−

Ea
RT

)
f (α) (3)

where A is the pre-exponential factor, Ea is the apparent activation energy of the decomposition reaction
and R is the universal gas constant.

In the case of multiple heating rate programs, the introduction of heating rate β (β = dT
dt ) transforms

Equation (3) to:
dα
dT

=
A
β

exp
(
−

Ea
RT

)
f (α) (4)

By integration, one obtains the integral form of the reaction model g(α), and the 41 forms are
reported by Trache et al. [50]:

g(α) =

α∫
0

dα
f (α)

=
A
β

T∫
0

exp
(
−

Ea
RT

)
dT (5)

As the integral of the temperature dependence part of Equation (5) does not have an analytical
solution for an arbitrary temperature program, different approximate equations have been suggested
in the literature in order to carry out the kinetic analysis leading to approximate integral methods such
as Doyle [51], Coats–Redfern [52] and Senum and Yang [53].

In the present work, to evaluate the kinetics parameters, we have employed four isoconversional
methods, i.e., it-KAS [54], it-FWO [54], TAS [50] and Vyazovkin’s equation (VYA/CE) [55]. The details
of these methods were given in our previous works [42,50].
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3. Results and Discussion

3.1. Characterization of CMS and Fe2O3-CMS

Figure 2A shows the FTIR spectra of the prepared carbon mesospheres and iron oxide nanoparticles
decorated on carbon mesospheres, as well as that of the commercial hematite (α-Fe2O3). For the CMS
spectrum, the peak absorption at 1703 and 1613 cm−1 could be attributed to C=O and C=C vibrations,
respectively. The broad absorption peak around 3400 cm−1 and the band in the range of 1000–1300 cm−1

are attributed to the stretching vibrational modes of C–OH bond and O–H bending [43], indicating the
existence of large amount of hydroxyl groups on the surface of CMS.
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After being decorated with iron oxide nanoparticles, the band at 1703 cm−1 has disappeared
demonstrating the cleavage of C=C bonds. Furthermore, the absorption peak intensities of the band
at 3400 cm−1 and the band in the range of 1000–1300 cm−1 are significantly decreased, revealing the
formation of metal-oxygen (Fe–O) bonds [56–58]. This finding can be confirmed by the appearance
of an absorption peak at around 523 cm−1, which is attributed to stretching vibrational modes of
metal-oxygen (Fe–O) bonds. Similar absorption bands have been also found in the pure commercial
hematite at 523 cm−1. An absorption peak at 2358 cm−1 for the three curves corresponded to the
asymmetric stretching of the adsorbed CO2 during sample synthesis [23]. These results indicate the
existence of α-Fe2O3 nanoparticles on the surface of carbon mesosphere as well. On the other hand,
Raman spectra of the prepared catalyst as well as the commercial hematite specimen are displayed
in Figure 2B. The spectra of CMS and Fe2O3-CMS displayed two characteristic bands. The first at
1357 cm−1, assigned to the D band, is related to structural defects, whereas the second at 1574 cm−1

corresponded to the G band, representing the graphitic structure in carbon materials [38,59]. It has
been reported that the D/G ratio of band intensities represents the graphitic structure with respect to
the structure disorder [60,61]. These structural defects are mainly due to surface groups containing
oxygen [62]. In addition, the bands at 213 and 480 cm−1 (218 and 482 cm−1 for the commercial hematite)
belonged to two A1g symmetry species. However, the peaks at 280 and 391 cm−1 (286 and 399 cm−1

for the commercial hematite) were assigned to Eg symmetry as a characteristic Raman phonon bands
for Fe2O3 These bands were observed with a slight attenuation for Fe2O3-CMS [24,63]. A red shift
for Fe2O3-CMS Raman peaks, in comparison with the commercial sample, is detected which is due
to the nanoparticles size reduction. Furthermore, these results indicate the production of -Fe2O3

nanoparticles on the surface of CMS.
Figure 3 shows the diffraction peaks of the synthesized catalyst. The XRD pattern of carbon

mesospheres indicates the amorphous character of the synthesized mesospheres with one large
diffraction peak at 2θ = 24◦ [36]. The peaks at 24.13, 33.15, 35.62, 40.87, 49.40, 53.98, 57.53, 62.41, 64.04
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and 71.92◦, corresponding to (012), (104), (110), (113), (024), (116), (122), (214) and (300) planes of
Fe2O3, respectively, match well the rhombohedral Fe2O3 hematite with a space group R3c and unit cell
parameters a = 5.038 Å and c = 13.772 Å (JCPDS Card No. 33-664) [24]. These peaks are found for
both Fe2O3 nanoparticles and Fe2O3-MSC. Besides, the XRD spectra reveal that the peaks of Fe2O3

nanoparticles are more intense and sharper compared to those of Fe2O3-MSC, indicating the high
crystallinity of iron oxide [64], and show a strong preferential orientation of (104) and (110) planes [23].
The average crystallite size diameter D for the prepared Fe2O3 nanoparticles, is determined from the
diffraction peak widths, employing Debye–Scherrer’s equation:

D =
k.λ
β cos θ

(6)

with D: crystallite size diameter, k shape factor (k = 0.94), λ: Cu-Kα anode radiation wavelength (λ
= 1.54 Å), βhkl: full width at half maxima value (FWHM) in radians, and θ the scattering angle. The
computed average crystallite size diameter D is indicated to be in the range of 33 nm.
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The XRD result of Fe2O3-MSC indicates also the presence of both iron oxide nanoparticles and
carbon mesospheres.

Figure 4 and Figure S1 show the morphology of the prepared CMS and Fe2O3-CMS. The SEM
images of CMS (a and b) indicate a uniform and homogenous spherical shape with a particle size of
about 334.5 nm (Figure S2 and Table S1). From micrographs c, d, and e, the Fe2O3 nanoparticles could
easily be observed on the surface of carbon mesospheres with a relatively uniform distribution. The
particle size of the supported Fe2O3 nanoparticles is around 80 nm (Figure S3 and Table S2). These
results further indicate that the extern surface of carbon mesospheres act as a template for growing the
iron oxide nanoparticles.
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Figure 4. Scanning electron microscope (SEM) images of (a,b) CMS and (c–e) Fe2O3-CMS.

3.2. Thermal Analysis

To evaluate different material combinations and ensure the safety during production and storage
of energetic materials, compatibly is an important parameter that should be taken into account [65].
Among the various techniques used to evaluate compatibility, DSC thermal analysis is widely employed
owing its outstanding features [6,7,42,66]. In order to investigate the compatibility and the effect
of the prepared catalysts on the thermal decomposition of nitrocellulose, DSC analyses have been
performed at different heating rate and the obtained thermograms are given in Figure 5. The three
systems (Pure NC, NC-CMS, NC-Fe2O3-CMS) present the same trend, indeed, one exothermic peak is
observed and corresponded to the decomposition of NC [67,68]. With the increase of the heating rate,
the peak temperature shifts to higher values. Such results are in good agreement with other works [69].
According to the values of the onset and peak temperatures, given in Table 1, one can observe that
the introduction of catalyst has slightly increased the peak temperature. Indeed, for β = 10 ◦C/min
(Figure 5), pure NC decomposes 1.1 ◦C earlier than NC-CMS and 1.2 ◦C earlier than NC-Fe2O3-CMS.
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Considering the NC system with and without CMS/CMS-Fe2O3, the peak temperatures of DSC curves
increase with the addition of CMS and CMS-Fe2O3, respectively. As the heating rate increases, the
exothermic peak becomes sharper indicating a faster chemical reaction [70].
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Table 1. The decomposition temperatures and heat release at various heating rates for the
different samples.

Samples β (◦C/min) Tonset (◦C) (b) Tpeak (◦C) (a) ∆H (J/g)

NC

5 193.3 202.3 −1214
10 198.8 208.6 −1324
15 202.9 213.7 −1427
20 205.5 216.3 −1769

NC-CMS

5 192.4 202.5 −1284
10 196.8 209.8 −1465
15 201.4 213.8 −1479
20 204.5 216.9 −1784

NC-Fe2O3-CMS

5 194.2 202.7 −1595
10 196.8 209.8 −1900
15 200.7 213.6 −2707
20 203.6 216.9 −3092

(a) Uncertainty u associated with the onset decomposition temperature is u(Tonset) = ±0.4 K. (b) Uncertainty u
associated with the top decomposition temperature is u(Tpeak) = ±0.2 K.
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Moreover, From Table 1, it can be inferred that the shifts in the decomposition temperature
(β = 5 ◦C/min) for NC + MCS and NC+ Fe2O3-MCS are 0.3 K and 0.5 K, respectively. These shift
values are small enough to conclude that the two additives are compatible with NC, even though
the STANAG 4147 [71] standard recommends DSC experiments performed on mixtures prepared in
1:1 (w/w) at β = 2 ◦C/min. These results indicate the high compatibility of CMS and Fe2O3-CMS with
NC [72], and accordingly Fe2O3-CMS may be employed as nanocatalyst in the production of NC-based
propellant formulations [14].

3.3. Kinetic Parameters

Exploring the DSC values obtained at various heating rates, it-KAS, TAS, it-FWO and VYA/CE have
been used to investigate the thermal decomposition kinetics and thus, evaluate the kinetic parameters,
i.e., the activation energy Ea, the pre-exponential factor A and the most probable decomposition model
g(α). Numeric calculations were carried out using a MATLAB interface.

The kinetic parameters as well as their corresponding confidence intervals evolution determined
by the different isoconversional methods for NC and NC-Fe2O3-CMS are depicted in Figures 6 and 7,
respectively. Likewise, the mean values of activation energy, pre-exponential factor and the most
probable reaction mechanism g(α) for the three studied systems are given in Table 2.
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The accuracy of the obtained activation energy and the pre-exponential factor values for it-KAS,
TAS and it-FWO is confirmed with the linear correlation coefficient (R2), which is found to be in the range
(0.95626 to 0.99993). Furthermore, the obtained values of the activation energy and pre-exponential
factor allowed us to check that the used isoconversional methods provided close values of Ea and A
with a relative deviation of 15.85% and 23.35% for NC, 8.09% and 11.54% for NC-CMS and 7.88 and
11.60% for NC-Fe2O3-CMS, respectively.

The error bars obtained for both Ea and log(A) are very close, indicating the accuracy of
implemented computations [69]. The differences that appeared are undoubtedly caused by the different
approximations used by the employed kinetic methods.

Moreover, Figures 8 and 9, show respectively, the evolution of a Ea and log(A) against α using the
four isoconversional methods for NC, NC-CMS and NC-Fe2O3-CMS. The results obtained show the
same trends for Ea and log(A) evolution with a slight difference between models. Indeed, for the four
employed isoconversional models, the values obtained seem to be close to each other with slight inferior
values for it-FWO kinetic method. On the other hand, for the extent of conversion between 0 and 0.01,
Ea and log(A) turn out to be more important what is attributed to the cleavage of O-NO2 linkages in
nitrocellulose and the liberation of NO2 chemical groups. Then, the two parameters decrease until the
end of the reaction. This behavior could be attributed to the autocatalytic parallel reactions, which
can generate reactive species that may accelerate the thermolysis and hydrolysis processes [67,68]. As
a very strong oxidizing agent, NO2 stagnates in the polymer skeleton and then reacts with the RO•

radicals or their degradation products, causing the opening of the NC anhydroglucopyranose rings to
generate other released gases [15,73]. Moreover, the values of Ea and log(A) obtained are within the
range of 158.278–176.137 kJ/mol for Ea and 15.2281–17.2619 (s−1) for log(A) which correspond to the
common rage values of energetic materials [14].
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Table 2. The kinetic parameters of the investigated samples.

System Isoconversional Method Kinetic Parameters

Ea (kJ/mol) Log(A(S-1)) Reaction Model: g(α)

NC

it-KAS 170 ± 2 16 ± 3 D4 = 1−
(

2
3

)
α− (1−α)

2
3

it-FWO 170 ± 2 16 ± 3 D4 = 1−
(

2
3

)
α− (1−α)

2
3

TAS 170 ± 2 16 ± 2 G7 =
[
1− (1−α)2

1
2

]1/2

VYA/CE β = 5 ◦C/min 170 ± 4 16 ± 5
β = 10 ◦C/min 16 ± 5
β = 15 ◦C/min 17 ± 5
β = 20 ◦C/min 17 ± 5

NC-CMS

it-KAS 180 ± 1 17 ± 2 A2 = − ln (1−α)
1
2

it-FWO 170 ±1 17 ± 1 A2 = − ln (1−α)
1
2

TAS 180 ± 1 16 ± 1
F3/4 = 1− (1−α)

1
4 ,

R3 = F2/3 = 1− (1−α)
1
3

VYA/CE β = 5 ◦C/min 180 ± 2 17 ± 3
β = 10 ◦C/min 17 ± 3
β = 15 ◦C/min 17 ± 3
β = 20 ◦C/min 17 ± 3

NC-Fe2O3-CMS

it-KAS 160 ± 1 15 ± 1 P2 = α2

it-FWO 160 ± 1 15 ± 1 P2 = α2

TAS 160 ± 1 16 ± 1 P1/3 = α
1
3 , P1/4 = α

1
4

VYA/CE β = 5 ◦C/min 160 ± 2 15 ± 2
β = 10 ◦C/min 16 ± 2
β = 15 ◦C/min 16 ± 2
β = 20 ◦C/min 16 ± 2

D4, Three-dimensional diffusion (Ginstling–Brounshtein); F3/4, Chemical reaction; A2, Random nucleation
(Avrami–Erofeev); P1/3 and P1/4, nucleation (Power low); G7, Other kinetic equations with unjustified mechanism
(TAS); P2, nucleation (parabolic low).
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Regarding the catalytic activity of the incorporated nanocatalyst, one can observe that the addition
of carbon mesospheres, acting as catalytic support, has slightly increased the activation energy based
on the four used kinetic models, and thus may have a stabilizing effect on the thermal decomposition
of NC. Other carbon nanomaterials such as carbon nanotubes, nanodiamond, and graphene oxide (GO)
have been revealed to play stabilizing effect on some organic energetic materials owing to their great
thermal conductivity [28]. In our case, CMS facilitates the heat transfer from the reaction zone to the
unburned portion of NC, which sustains the propagation of the exothermic reaction. The improvement
in heat conductivity would result in less heat accumulation and low hotspots formation, which are
important factors determining the sensitivity and stability of energetic materials [74]. Moreover, as
shown in Table 1, CMS increases slightly the energy release of NC (∆H (J/g)) through the improvement
of the contact between fuel/oxidizer species of NC due to the better dispersion of CMS within NC
matrix. Thiruvengadathan et al. have demonstrated a similar effect for nanothermites supplemented
with GO [75].

After the decoration of CMS with Fe2O3 nanoparticles, this trend has changed and the
activation energy decreases by 12.9 kJ/mol, indicating the good catalytic activity of this
additive on the decomposition behavior of nitrocellulose. It was reported that the presence of
GO-based catalyst slightly improved the thermal stability (higher decomposition temperature) of
1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and decreased the activation energy [76]. In another work,
Chen et al. have evaluated the effect of GO-Ni on the thermal decomposition of triaminoguanidine
nitrate and found a similar trend, where an increase of thermostability but lower energy barrier for the
thermal decomposition have been mentioned [70]. On the other hand, the agglomeration problem of
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nano-sized catalysts is excluded in the presence of CMS as the supported dispersion media, resulting
in better contact of Fe2O3 nanoparticles with NC fibers. The Fe2O3-CMS would show strong catalytic
effect only in gas-phase reaction after initial decomposition of the NC at higher temperature (increased
Tpeak), resulting in lowering activation energy of decomposition. The catalytic effect of Fe2O3-CMS on
the NC themolysis reaction occurs mostly in the gas phase, where the reaction could be accelerated
upon initial decomposition of the NC fibers. The presence of CMS would, however, prevent the initial
decomposition of NC due to its high thermal conductivity. Similar trend has been recently reported
by He et al., who investigated the thermal decomposition of the 1,3,5-trinitro-1,3,5-trizocane (RDX)
supplemented with GO-based catalyst [77]. Furthermore, as displayed in Table 1, Fe2O3-CMS increases
sensibly the energy release of NC through the improvement of the contact between fuel/oxidizer species
of NC due to the better dispersion of Fe2O3-CMS within NC matrix.

On the other hand, the same trend of both activation energy and pre-exponential factor with
respect to α is well represented by the compensation effect. Therefore, in our work, the compensation
effect has been investigated using TAS and VYA/CE models for different heating rates of by plotting
Log(A) as a function of Ea allowing us to compute the compensation parameters as displayed in Table 3.
The obtained values of linear correlation coefficient (R2) confirm the good compensation effect between
Log(A) and Ea.

Table 3. Compensation parameters obtained by the Trache–Abdelaziz–Siwani (TAS) method and
Vyazovkin’s equation (VYA/CE’s).

System Log A = a Ea + b

a (mol/J) b R2

NC

TAS 0.2653 ± 5 × 10−4 −7.959 ± 0.088 0.99991
VYA/CE β = 5 ◦C/min 0.2518 ± 2 × 10−5 −6.225 ± 0.008 0.99936

β = 10 ◦C/min 0.2518 ± 2 × 10−5 −5.532 ± 0.008 0.99936
β = 15 ◦C/min 0.2518 ± 2 × 10−5 −5.126 ± 0.007 0.99936
β = 20 ◦C/min 0.2518 ± 3 × 10−5 −4.839 ± 0.011 0.99936

NC-CMS

TAS 0.2202 ± 1 × 10−5 −1.164 ± 0.020 0.99816
VYA/CE β = 5 ◦C/min 0.2522 ± 3 × 10−5 −6.062 ± 0.013 0.999515

β = 10 ◦C/min 0.2522 ± 2 × 10−5 −5.371 ± 0.006 0.999515
β = 15 ◦C/min 0.2522 ± 3 × 10−5 −4.965 ± 0.013 0.999515
β = 20 ◦C/min 0.2522 ± 3 × 10−5 −4.677 ± 0.011 0.999515

NC-Fe2O3-CMS

TAS 0.3024 ± 2 × 10−5 13.128 ± 0.026 0.99956
VYA/CE β = 5 ◦C/min 0.2528 ± 2 × 10−5 −6.073 ± 0.076 0.999541

β = 10 ◦C/min 0.2528 ± 2 × 10−5 −5.380 ± 0.071 0.999541
β = 15 ◦C/min 0.2528 ± 2 × 10−5 −4.975 ± 0.065 0.999541
β = 20 ◦C/min 0.2528 ± 2 × 10−5 −4.687 ± 0.061 0.999541

Regarding the reaction model, among the 41 available, the evolution of the integral reaction
mechanism values vis α displayed in Figure 10 and the most probable models g(α) are reported in
Table 3. Various models can be attributed to NC decomposition either pure or with catalyst, which is

dependent on the chosen kinetic method. NC decomposes according to G7 =
[
1− (1−α)

1
2

]1/2
with

the TAS model and the three-dimensional diffusion using it-KAS and it-FWO. The incorporation of
carbon mesospheres could stabilize NC through the decrease of the heat accumulation and preventing
the hotspots formation during the decomposition. Therefore, CMS could change the decomposition
mechanism from G7 model to others. With it-KAS and it-FWO, NC-CMS decomposes according to a

random nucleation mechanism (Avrami–Erofeev) A2 = − ln (1−α)
1
2 and a chemical reaction for the

TAS model. Similar behavior has been reported by Sánchez-Jiménez, showing that the addition of
clay nano-flakes produced a change of the thermal degradation mechanism towards a nucleation and
growth model [78]. The authors indicated that such mechanism change is likely to be responsible for
the increased stability.
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For NC-Fe2O3-CMS, it decomposes according to a nucleation power and parabolic low (P2 =

α2P1/3 = α
1
3 ) for the three isoconversional models, revealing that Fe2O3 behaves as the catalytic center

for which the decomposition depends considerably on the nucleation sites of Fe2O3. Similar result has
been reported by Shen et al., who determined the decomposition mechanism of triaminoguanidine
nitrate supplemented with GO-Ni [70].

Recently, our research group revealed that NC containing Fe2O3 nanoparticles using iron chloride
as precursor decomposes following the random nucleation mechanism (Avrami–Erofeev) [4]. In other

works, chemical reaction mechanism F3/4 = 1− (1−α)
1
4 has been assumed for pure NC and NC-Fe2O3

composite utilizing iron chloride as precursor [14], and for NC-Al/Fe2O3 mixture [15]. More recently,
Chellouche et al. [42] attributed a nucleation (parabolic law) for nitrocellulose. Such differences in
the kinetic could be assigned to the difference in the composition that influence the NC stability and
its decomposition behavior [79] as well as the difference in the employed analytical tool and the
kinetic methodologies.

4. Conclusions

From the foregoing experiments and modeling, the following conclusions regarding preparation
of the nano-catalyst as well as its catalytic effect on NC decomposition may be drawn:

(1) Carbon mesospheres CMS and iron oxide nanoparticles decorated on carbon mesosphere
(Fe2O3-CMS) have been effectively produced by a hydrothermal method, and easily mixed with
nitrocellulose to obtain NC-catalyst composites. The DSC analyses proved a high compatibility of
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the as prepared Fe2O3-CMS with a slight increase of the temperature of decomposition, suggesting
the safety use of such NC-Fe2O3-CMS composite.

(2) The kinetic methods employed to determine the kinetics parameters revealed that the activation
energy decreased by 12.9 kJ/mol with the presence of supported Fe2O3 nanoparticles, whereas
the addition of CMS alone has no catalytic activity on the decomposition behavior of NC.
Furthermore, the non-isothermal decomposition of nitrocellulose has been modeled. While TAS

allowed the same kinetic reaction model (G7 =
[
1− (1−α)

1
2

]1/2
for pure NC, the it-KAS and

it-FWO models provided the same decomposition model D4 of three-dimensional diffusion
(Ginstling–Brounshtein). It is demonstrated that NC-Fe2O3-CMS decomposes according to the
nucleation power and parabolic low (P2 = α2, P1/3 = α

1
3 ) for the three isoconversional models. The

addition of carbon mesospheres, which does not significantly change the activation energy, affects
the reaction model, where for it-KAS and it-FWO isoconversional models, NC-CMS decomposes

according to the random nucleation mechanism (Avrami–Erofeev) A2 = − ln (1−α)
1
2 , whereas a

chemical reaction is obtained by the TAS model.
(3) The Fe2O3-CMS catalyst presents interesting features due to the stabilization effect before the

decomposition point of energetic ingredient (NC), which is of great importance for the safety of
energetic materials for long-term storage. Once the decomposition occurs, Fe2O3-CMS would
accelerate the reactions and result in faster decomposition and higher energy releases.
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