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Accurate evaluation of the effect of point mutations on protein
function is essential to assessing the genesis and prognosis of many
inherited diseases and cancer types. Currently, a wealth of computa-
tional tools has been developed for pathogenicity prediction. Two
major types of data are used to this aim: sequence conservation/
evolution and structural properties. Here, we demonstrate in a system-
atic way that another determinant of the functional impact ofmissense
variants is the protein’s structural dynamics. Measurable improvement
is shown in pathogenicity prediction by taking into consideration the
dynamical context and implications of themutation. Our study suggests
that the class of dynamics descriptors introduced here may be used in
conjunction with existing features to not only increase the prediction
accuracy of the impact of variants on biological function, but also gain
insight into the physical basis of the effect of missense variants.

structural dynamics | missense variants | elastic network models |
machine learning

Significant advances have been made in recent years in col-
lecting data on single-nucleotide polymorphisms (SNPs) and

developing computational strategies for identifying disease-causing
variants among sequence alterations induced by nonsynonymous
SNPs (1–11). Such investigations greatly benefited from the crea-
tion of publicly available databases of mutations found in humans
and computational tools developed for pathogenicity prediction (2,
11–14). Sequence conservation/evolution analyses using machine
learning methods is a common approach in those tools. Mainly, the
relative frequencies of wild-type (WT) and mutated amino acids at
the given mutation site are evaluated from multiple sequence
alignments (MSAs) of homologous proteins. While this approach
has proved effective, it suffers from the usual shortcomings asso-
ciated with the creation of sufficiently populated and variegated
MSAs. Besides, the intuitive correlation between sequence con-
servation and low tolerance to mutations does not depict the whole
scenario: In many cases, variants at nonconserved positions exhibit
a complex pattern of functional modifications, stemming from the
very fact that the lack of conservation may be a source of variability
allowing for the functional specialization of proteins belonging to
the same family. Functional/dysfunctional effects induced by mu-
tations at nonconserved positions often do not correlate with the
evolutionary frequencies of the amino acids (15).
In view of these limitations, the need for devising prediction

tools that take account of the physical properties of the protein,
complementing those implied by evolutionary statistics, has be-
come clear. Currently (February 2018), there are more than
6,300 UniProt Knowledgbase entries out of 71,772 proteins
reported in the Homo sapiens proteome that have structural data
in the Protein Data Bank (PDB). Several studies demonstrated
the benefits of considering structural features in the evaluation
of the impact of single amino acid variants (SAVs) on function-
ality and in the identification of disease-causing mutations (16–
19). Among them, PolyPhen-2 (2) is a broadly used tool that
showed significant success by including various structural prop-
erties as parameters in the evaluation of a variant’s pathogenicity.
However, there is a need to further improve our ability to dis-
criminate between disease-causing and neutral mutations, given

the discrepancy that still exists between predicted and actual
consequences of many missense mutations (20).
The present study shows the utility of considering the equilib-

rium dynamics of the protein as a means of improving the pre-
dictive ability of current pathogenicity predictors. The underlying
assumption is that the mutations that interfere with structural flex-
ibility or conformational mechanics are likely to cause dysfunction.
Efficient screening of protein dynamics at the structural proteome
scale requires the adoption of simple but robust methods. To this
aim, we evaluated a set of features uniquely defined by 3D topology,
generated by elastic network models (ENMs) for proteins (21),
using the application programming interface ProDy (22). Earlier
work demonstrated the relevance of ENM-predicted motions to
biomolecular mechanisms of function and interactions (23, 24).
ProDy outputs include the identity of sites implicated in medi-

ating collective motions, conveying allosteric signals, or ensuring
adaptability to promiscuous functionality (25). To evaluate the
contributions of such dynamic features, we used as a benchmarking
set an updated collection of labeled variants previously employed
for comparing other prediction methods (26). Our study shows that
a measurable improvement can be achieved in the classification of
variants upon considering their impact on the structural dynamics.
Furthermore, the approach provides a framework for gaining in-
sight into the possible origins of the observed effects of mutations,
beyond those inferred by sequence or structure analyses alone.

Results and Discussion
Datasets of Variants and Pathogenicity Prediction Tools. We used five
datasets, including HumVar (2), ExoVar (11), VariBenchSelected,
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predictSNPSelected, and SwissVarSelected, which have been
manually curated to minimize possible overlaps and proposed to
serve as a benchmarking set (26). The latter three, indicated by the
suffix “Selected”, are subsets of VariBench (12), predictSNP (13),
and SwissVar (14), respectively, obtained upon clearing entries
already represented in the former two most populated datasets
(i.e., HumVar and ExoVar). Such preliminary filtering has been
performed to allow for a fair comparison of the performances of
pathogenicity predictors and to remove “training bias”—that is, any
bias that might originate from partial overlap between the corre-
sponding training and testing datasets. The five datasets differ
considerably in their size and proportion of deleterious vs. neutral
variants (SI Appendix, Table S1). They also use different criteria for
assigning the deleterious/neutral label to a given variant (26). The
construction of the datasets, their main differences, the peculiari-
ties of the prediction tools, and methods for accurate comparison
of their performance are described in previous work (26).
In addition, we generated an Integrated Dataset using the

content of these five datasets, composed of all 20,413 non-
overlapping SAVs that have been structurally characterized. This
dataset is proposed to serve as a benchmark dataset for structure-
based evaluations of the functional consequences of mutations.
The binary classification of variants into deleterious or neutral

might be an oversimplification, being inadequate for capturing
the variegate spectrum of effects induced by a mutation [see, for
instance, the distinction between “rheostat” and “toggles” in an
earlier study (15)]. However, our aim is to demonstrate in a
quantitative way the utility of adopting new features based on
structure-encoded dynamics and providing a classifier that permits
the assessment of the pathogenicity of SAVs in light of protein
dynamics. This type of binary measure allows us to have access to
a sufficiently large source of data as input. The outputs, on the
other hand, help shed light on possible structural and dynamic
origins of the impact of mutations at the molecular level.

Dynamics-Derived Features and DYN/SEQ-Based Predictors. To ex-
plore whether features derived from structural dynamics, re-
ferred to as dynamical (DYN) features, can help improve the
overall accuracy of variant classification, we considered the fol-
lowing features: (i) gaussian network model (GNM)-based mean-
square fluctuations (MSF) of residues, where minima indicate the
sites that potentially act as hinges for supporting the protein’s
mechanics; (ii) the propensity of residues to act as sensors or as
effectors of allosteric signals (27) based on perturbation-response
scanning (PRS) analysis (28) of their ability to sense or transmit
local perturbations; (iii) the mechanical bridging score (MBS)
(29), which quantifies the role of each residue in maintaining the
stability of the protein modeled as an anisotropic network model
(ANM); and (iv) the mechanical stiffness associated with each
residue, as computed by MechStiff (30). In addition to these
features, we included a structural property that is a major deter-
minant of conformational flexibility, the solvent-accessible surface
area (SASA), computed using the DSSP program (31). See SI
Appendix, Supplementary Methods for more details on the physical
meaning and origin of these features.
DYN features capture the global properties of the protein—

that is, those originating from the overall 3D topology of inter-
residue contacts. As such, they provide a metric for assessing the
effect of mutation on the overall (global) dynamics, as opposed
to physicochemical features such as SASA, which depend on the
local geometry.
DYN features are purely position dependent: They do not

depend on the identity of the amino acid at that position. To
distinguish between variants that occur at the same site but in-
volve different amino acid mutations, we used two sequence-
dependent (SEQ) features extracted from PolyPhen-2 (2, 32): (i)
the conservation score of the WT amino acid represented by the
position-specific independent counts (PSIC) score (WT PSIC);
and (ii) the difference between the PSIC scores of the WT and
mutant amino acids (ΔPSIC). The classification of SAVs into
deleterious or neutral was performed using a Random Forest

(RF) metaestimator, implemented in the open-source machine
learning Python library Scikit-learn (33). The method is robust to
overfitting and requires minimal parameter optimization (see SI
Appendix, Supplementary Methods and Fig. S1 for details).

Comparative Analysis Highlights the Utility of DYN Features for
Accurate Assessment of the Effect of Mutations. For assessing the
importance of including protein dynamics in pathogenicity prediction,
we compared the output from the DYN/SEQ-based predictors to
those obtained with 11 pathogenicity prediction tools: (i) Mutation
Taster-2; (ii) PolyPhen-2; (iii) Mutation Assessor; (iv) Combined
Annotation Dependent Depletion; (v) SIFT; (vi) likelihood ratio
test; (vii) FatHMM-U; (viii) GERP++ and (ix) phyloP, which have
been developed independently; and (x) Condel and (xi) Logit, which
are metapredictors that combine the predictions from PolyPhen-2,
SIFT, and Mutation Assessor. Three of these tools (Mutation
Taster-2, PolyPhen-2, and Mutation Assessor) have been partially
trained on some of the benchmark datasets. Thus, their predic-
tions, and those of the two metapredictors that utilize them, are
affected by training bias (26). Each tool returns a pathogenicity
score (accessible in the supplementary data of ref. 26) for each
variant, which represents the expected probability of having a
deleterious effect on function. In addition to these 11 predictors,
we also considered three predictors—FatHMM-W, Condel+,
and Logit+—that have been reported to suffer from the so-called
type 2 bias (26): in these three cases, the classifier is biased toward
assigning one dominant class of SAVs, deleterious or neutral, to all
mutations in a given protein. These predictors benefit from the
fact that many proteins in the available datasets contain almost
exclusively one class of variants (either neutral or deleterious). The
set of 14 tools, including these additional three, is called the ex-
tended set of predictors.
Results are presented in Fig. 1 A–E. For each dataset, shown

on a separate panel, we report the results from testing our pre-
dictor based on SEQ or DYN features exclusively and on their
combination (SEQ+DYN). Two sets of results are presented:
one for the RF classifiers trained/tested through cross-validation
on the same dataset (red bars in Fig. 1 A–E) and the other for a
classifier trained on the four other datasets (green bars). The
results from the 11 predictors listed above are shown in solid
blue bars in Fig. 1 A–E, and those benefiting from training bias in
dashed blue bars. SI Appendix, Fig. S2 displays the counterpart of
Fig. 1 A–E for the extended set of predictors, with the results
from the three additional predictors shown in gray bars. The
prediction accuracy is measured by the area under the curve
(AUC) evaluated for the receiver operating characteristic (ROC)
curve. The AUC is 0.5 for random classification (main diagonal),
and 1.0 for perfect classification. SI Appendix, Fig. S3 illustrates
the ROC curves [i.e., true-positive (TP) rate (sensitivity) against
false-positive (FP) rate (specificity)] obtained using our classifiers
(SI Appendix, Fig. S3A) and the extended set of classifiers (SI
Appendix, Fig. S3B) on the Integrated Dataset.
Several observations are made in Fig. 1 A–E and SI Appendix,

Fig. S2. First, despite its simplicity [e.g., being trained on a re-
duced set of structurally known proteins (about 25% of the
complete set); SI Appendix, Table S1] and the use of a small
number of easily computed features, SEQ+DYN predictions
exhibit accuracy levels comparable to, and in some cases better
than, those obtained by the other advanced methods. The AUCs
for SEQ+DYN rank always among the top when excluding the
cases affected by training bias. Second, SEQ+DYN performance
shows little dependency on the training procedure (red vs. green
bars), whereas other methods generally show a pronounced de-
crease in AUC when tested against datasets other than their
training datasets (compare the dashed and solid blue bars for the
same method across different panels in Fig. 1 A–E). An outlier is
the VariBenchSelected dataset in Fig. 1C, which will be discussed
later.
Closer examination shows that the SEQ-only classifier out-

performs DYN-only in the cases of the HumVar dataset (red and
green bars in Fig. 1 A–E), the ExoVar dataset (red bars), and the
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specialized SwissVarSelected dataset (green bars), distinguished
by a low population of deleterious SAVs. This dominant role of
SEQ features is also supported by the analysis of the relative
contributions (weights) of features, presented in Fig. 1F. A
plausible explanation is the consideration of the specific type of
amino acid substitution by SEQ features, whereas DYN features
are solely based on the position of the mutated residue. On the
other hand, the usefulness of SEQ features depends crucially on
the quality of the MSA used for computing them, which explains
why their contribution is particularly strong in the two datasets
(HumVar and ExoVar) specifically designed for training PolyPhen-
2. In contrast, the DYN classifier outperforms the SEQ classifier
when tested against VariBenchSelected and predictSNPSelected.
As previously mentioned, VariBenchSelected exhibits a unique

behavior: the AUC plot in Fig. 1C shows an unusually high ac-
curacy in the SEQ+DYN cross-validation analysis. The disparity
between the red and green bars in Fig. 1C suggests that this be-
havior originates from the nature of the dataset itself. A closer
investigation shows that a considerable fraction of SAVs (∼40%;
see SI Appendix, Table S1) in this dataset are in the form of
multiple mutations at the same site in a given protein—that is,
there is a preponderance of variants with different types of amino
acid substitutions at the same position. In addition, nearly all such
same-site variants are assigned the same pathogenicity class (see
SI Appendix, Table S1, column 6). This leads to a situation where
the classifier is trained to assign less weight to amino acid identity
and more to its position; hence, the success of DYN features (red
bars in Fig. 1F), which are agnostic to amino acid identity but take
account of the position in the 3D structure. This also explains the
high AUC values in SEQ+DYN cross-validation.

RF Classifier Trained on the Integrated Dataset Outperforms Existing
Unbiased Predictors. We also evaluated the level of accuracy
obtained by the RF classifiers applied to the Integrated Dataset,
using a 10-fold cross-validation procedure. Fig. 2A presents the
results in comparison with other prediction tools. The SEQ+DYN
classifier outperforms all others in this case. The accuracy (AUC)
obtained by SEQ+DYN (first red bar in Fig. 2A) is 0.83, the
highest among all the considered tools, except for those benefiting
from type 2 bias (SI Appendix, Fig. S4A). Since same-site SAVs
amount to a significant fraction in some datasets (SI Appendix,
Table S1), we repeated the analysis by making sure that same-site
variants were not simultaneously present in both the training and
test sets. The results (orange bars in Fig. 2A), show a slight decrease
in the AUC (0.79) for the SEQ+DYN classification. The method’s
accuracy remains higher, however, than all other unbiased methods.
It is interesting to note in Fig. 2A that the DYN-based clas-

sifier slightly outperformed the SEQ-based classifier; this may be
attributed to limitations in MSA quality and the inclusion of only
two SEQ features, as opposed to six DYN features. Indeed, the

individual SEQ features make larger contributions to decision
making (Fig. 2B, tan bars) than individual DYN features. Ex-
clusion of same-site SAVs had a minimal effect on the contri-
bution of features (Fig. 2B, blue bars). Fig. 2C depicts in a more
comprehensible manner the discriminatory power of the three
classifiers, displaying the histograms of predictions (scores) col-
lected during cross-validation. The SEQ+DYN histogram is used
to evaluate pathogenicity probabilities (SI Appendix, Fig. S5).
We further compared the performance of the different tools

using an expanded list of metrics, listed in SI Appendix, Table S2.
Since the class imbalance might skew a few specific metrics, like
the AUC of the precision-recall curve (SI Appendix, Fig. S6), we
also provide as a reference the comparison with random classi-
fications, artificially biased toward either deleterious or neutral
classes. Results in SI Appendix, Table S3 show that the SEQ+DYN
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Fig. 1. Comparison of the performance of the introduced Random Forest (RF) classifiers (SEQ+DYN, SEQ, and DYN) and existing tools for pathogenicity pre-
diction. (A–E) AUC values derived from ROC plots (SI Appendix, Fig. S3) are presented for five datasets as indicated. The red bars refer to a 10-fold cross-validated
classification on the dataset used for learning the RF classifiers; green bars refer to the RF classifiers trained on the other four datasets combined and tested on
the given dataset. Solid blue bars show the AUC values from existing tools, obtained from ref. 26; dashed blue bars refer to those predictors potentially trained
on the testing dataset (training bias). See SI Appendix, Fig. S2 for the results from an extended set of tools. (F) Relative contribution of eight features used in RF
classifiers to pathogenicity assessment. Results for each dataset are shown in a different color. The first two features (SEQ) are residue specific, based on
conservation (WT PSIC) score and its change upon mutation (ΔPSIC); the last six (DYN) are nonspecific. They account for flexibility and accessibility (SASA and
MSF), allosteric properties (effector and sensor), and mechanical properties (MBS and stiffness) of sites on the 3D structure, regardless of amino acid identity.
CADD, Combined Annotation Dependent Depletion; LRT, likelihood ratio test; MASS, Mutation Assessor; MT2, Mutation Taster-2.
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Fig. 2. Performance of pathogenicity prediction tools tested against the
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metrics. (B) Feature importance plot for the SEQ+DYN classification (tan
bars). Blue bars correspond to orange bars in A. (C) Distribution of predicted
scores for neutral (shown in blue) and deleterious (shown in red) variants in
the Integrated Dataset, for the three classifiers. The dashed vertical line
represents the cutoff based on Youden’s index. CADD, Combined Annota-
tion Dependent Depletion; LRT, likelihood ratio test; MASS, Mutation As-
sessor; MT2, Mutation Taster-2.
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classifier ranks among the top performers across all metrics, even
when considering those quantities centered on predictions of
neutrals [e.g., specificity = TN/(FP+TN) and negative predictive
value = TN/(TN+FN), where TN is true negative and FN is false
negative].
Additional comparison reveals the decrease in the performance

of the three tools benefiting from type 2 bias when datasets of
proteins with more balanced distributions of deleterious and
neutral mutations are used as benchmark. SI Appendix, Fig. S4B
displays the results for the complete set of “mixed” proteins, which
have both neutral and deleterious mutations. The performances of
our RF classifiers and the 11 prediction tools are only moderately
lowered, if any, compared with those observed for the original
(Integrated) dataset, whereas there is a drop in the AUC values of
the three tools (gray bars in SI Appendix, Fig. S4B) that no longer
benefit from type 2 bias. This effect is further pronounced when
considering increasingly smaller subsets of proteins, with the
deleterious-to-neutral ratio progressively approaching 1 (SI Ap-
pendix, Fig. S7). These results demonstrate that our classifiers are
robust against the changes in the dataset composition.

Examination of Significance of DYN Features Reveals the Competing
Roles of Allosteric Signaling Sites. Our analysis provides insight into
the role of structural dynamics in general, and individual dynamic
features in particular, in shaping the effect of missense variants.
Fig. 3 provides a visual assessment of the ability of each of the SEQ
and DYN features to discriminate between deleterious and neutral
SAVs. In each case, we display two histograms, representing the
values (or rank orders) observed for deleterious (shown in red) or
neutral (shown in blue) variants. These data reveal several fea-
tures. First, the strong discriminatory power of SEQ features (WT
PSIC and ΔPSIC) is confirmed. Second, neutral SAVs exhibit
relatively higher SASA and MSF values, consistent with the
adaptability of the structure to accommodate spatial changes with
increasing conformational flexibility. Conversely, the distribution
of deleterious SAVs is skewed toward lower MSFs. Similarly, the
sites distinguished by a high mechanical stiffness are likely to give
rise to deleterious SAVs, and top-ranking residues involved in
mechanical bridging tend to induce deleterious effects if mutated.
The effect of sensors and effectors is more complex. As de-

scribed earlier, these play a role in substrate recognition and/or
allosteric regulation. One might expect them to impair func-
tionality if mutated. Top-ranking effectors indeed show such an
effect. On the other hand, sensors exhibit the opposite behavior
(i.e., mutations at those sites are instead correlated with non-
pathogenic effects), and this effect is quite pronounced at the

top-ranking sensors. A careful consideration of the role of sen-
sors can explain this somewhat surprising result. A previous ap-
plication to molecular chaperones (27) showed that sensors are
frequently found close to substrate or cochaperone recognition
sites and are characterized by strong coevolutionary propensities,
which has been attributed to the necessity of adapting to binding
different substrates. Based on current data, we can also deduce
that such variability is a symptom of an intrinsic ability to ac-
commodate diverse interactions, especially in promiscuous pro-
teins. Therefore, mutations at those sites do not necessarily cause
a loss of function; on the contrary, they may be essential to gain of
function. This is in stark contrast to the behavior of effectors (28),
which are presumed to play a central role in mediating allosteric
signals (27) and are sensitive to mutations.
The DYN-based classifier can detect a new class of deleterious

sites while assisting in improving pathogenicity predictions. To
illustrate the type of information one can obtain from DYN-
based predictors, we present a few applications. For a critical
assessment, we focus on mixed proteins that contain at least six
neutral and six deleterious mutations. The Integrated Dataset
contains 20 such cases (SI Appendix, Table S4). We classified the
variants in each case using a RF classifier trained on the SAVs
belonging to all other proteins in the Integrated Dataset. The
results are presented in Fig. 4. The figure also shows the AUC
values obtained with PolyPhen-2, selected as a reference. Note
that the PolyPhen-2 dataset benefits from training bias, as its
training datasets (HumVar and ExoVar) contain data for most of
the variants of these 20 proteins. Despite the large variability in
accuracy levels between these 20 proteins, SEQ+DYN (red bars
in Fig. 4) and PolyPhen-2 (blue bars) share comparable AUC
values. Specifically, the pathogenicity of SAVs in certain proteins
cannot be accurately predicted using either approach (the
rightmost three cases in Fig. 4, where results are poorer than
random); whereas others (on the left) lend themselves to accu-
rate prediction. Of the 17 cases where the results are better than
random, 11 yielded more accurate results when the SEQ+DYN
classifier was adopted as opposed to SEQ-only, consistent with
the overall improvement in pathogenicity prediction upon in-
corporation of DYN features.
A closer examination of the lower performance observed in the

other six cases suggests that the degree of collectivity of global
modes, as well as environmental effects, affects the accuracy of
DYN predictions. SI Appendix, Fig. S8 presents a careful analysis
of the performance of the DYN classifier as a function of the
collectivity of the most probable (soft) motions accessible to the
20 proteins. A preference for higher AUC values is discernable
with increasing collectivity, suggesting that proteins whose soft
modes are dominated by localized fluctuations (e.g., isolated loop
motions rather than cooperative domain rearrangements) may
lead to misinterpretations of DYN features. We furthermore an-
alyzed two striking cases: (i) the human complement component
C3 (PDB ID code 2a73, chain B), where SEQ+DYN outperforms
PolyPhen-2, although the DYN classifier alone shows a very poor
performance (Fig. 4); and (ii) the human sterol transporter (PDB
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Fig. 3. Histograms of SEQ and DYN features for neutral and deleterious
variants. Each panel refers to a distinctive feature (see abscissa). The two
histograms refer to the subgroups of deleterious (shown in red) and neutral
(shown in blue) mutations. Sharper differences indicate higher discrimina-
tion power of the feature.

Fig. 4. Comparative analysis of prediction accuracy of DYN- and/or SEQ-
based RF classifiers and PolyPhen-2 applied to 20 mixed proteins. The pro-
teins (listed in SI Appendix, Table S4) are organized along the abscissa in the
order of decreasing AUC obtained by the SEQ+DYN classifier.
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ID code 5do7, chain B), which yields a lower AUC using the SEQ+
DYN classifier compared with that obtained by SEQ-only. In both
cases, the biological assembly comprises multiple chains. Reeval-
uation of DYN features by considering the intact structures of the
assemblies instead of the single chains leads to improved AUC
values (SI Appendix, Fig. S8). This analysis highlights the impor-
tance of considering the biological assembly for improved evalua-
tion of DYN features.
In Fig. 5 and SI Appendix, Fig. S9, we examine more closely

two other cases. The confusion matrices in Fig. 5 A–C and SI
Appendix, Fig. S9 A–C display the predicted pathogenicity score
as a function of residue index, organized in two classes: neutral
and deleterious residues. Each class is further divided into two
subgroups, depending on predicted pathogenicity scores: TPs
and FNs (for deleterious sites) and FPs and TNs (for neutral
sites). The threshold scores that separate these subgroups are
optimized to maximize the differentiation between the sub-
groups. A “perfect” classifier would populate the TP block (Fig.
5 A–C and SI Appendix, Fig. S9 A–C, Upper Right, red dots) and
TN block (Lower Left, blue dots) of the confusion matrix, and
exclude the FP block (Upper Left, cyan x’s) and FN block (Lower
Right, orange x’s). It is interesting to note that among SEQ+
DYN misclassifications, FNs are much more common than FPs—
that is, the classifier misses a few deleterious SAVs, while it cor-
rectly predicts almost all neutral SAVs.
For a closer examination of the outcomes, we generated color-

coded diagrams (Fig. 5 D–F and SI Appendix, Fig. S9 D–F) that
enable the comparative visualization of the accurate predictions
(TP shown in red and TN shown in blue) and inaccurate pre-
dictions (FP shown in cyan and FN shown in orange). Delete-
rious SAVs (red and orange) are usually located in the protein’s
interior, and those incorrectly predicted to be neutral (orange)
are usually on the surface, signaling that more discriminative
classifiers are needed to detect those deleterious sites. We note
in this respect that the DYN classifier assists in such cases. An
example is M133I in the hydrolase illustrated in Fig. 5. The latter

is misclassified as neutral by SEQ-based predictor because
M133 is not evolutionarily conserved. On the other hand, it is
correctly recognized to be potentially deleterious, if mutated, by
the DYN classifier, as it satisfies many DYN criteria: high pro-
pensity to act as effector, low propensity to act as a sensor, low
conformational flexibility (probed by SASA and MSF), and high
stiffness and mechanical bridging ability (Fig. 5G); and the DYN
features dominate the outcome in the DYN+SEQ classifier. SI
Appendix, Fig. S9 illustrates a case where a mutation (R589H in
an anion transport protein) inaccurately assessed to be neutral by
either the SEQ or DYN classifier is correctly predicted to be
deleterious using SEQ+DYN. These examples suggest that the
SEQ+DYN classifier can synergistically predict the actual effects
of the missense variants when SEQ and/or DYN classifiers fail to
do so.

A Test Case: CFTR Variants. A recent study of cystic fibrosis trans-
membrane conductance regulator (CFTR) variants (34) presents
a list of variants organized into three categories: (i) those com-
monly associated with cystic fibrosis (CF); (ii) those associated
with a bicarbonate defect in channel function, leading to disor-
ders like pancreatitis but not cystic fibrosis (BD); and (iii) those
reported in previous chronic pancreatitis genetic studies, but
without strong evidence of pathogenicity (“others”); see SI Ap-
pendix, Fig. S10A. Results from our evaluation of these variants
are presented in SI Appendix, Table S5 and Fig. S10B. The most
striking observation is that 9 of 13 “other” variants are classified
as neutral, in contrast to most of the assignments listed in the
Integrated Dataset (SI Appendix, Table S5, column 11) and most
of the predictions from PolyPhen-2. Moreover, 6 of 10 CF/BD
variants are classified as deleterious, in line with the results of
the pancreatitis study (34). It is remarkable that most of dele-
terious variants predicted by our classifier fall in the CF/BD
categories. The remaining variants, whose functional impact is
still debated, mostly predicted to be neutral, will need future
studies for possible verification.
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Fig. 5. Illustration of detailed analysis for human α-L-iduronidase (PDB ID code 3w81, chain A). (A–C) Confusion matrices for the three RF classifiers—that is,
the predicted pathogenicity score for the two subgroups of variants, ordered by residue index along the abscissa. Lower Left and Upper Right submatrices
represent the accurately predicted neutral variants (TN, blue dots) and deleterious variants (TP, red dots). The off-diagonal entries are the FPs (cyan x’s) and
FNs (orange x’s). The threshold value (horizontal dashed line) for pathogenicity is chosen according to the Youden’s index (39) (SI Appendix, Supplementary
Methods). (D–F) Corresponding ribbon diagrams, where mutation sites (spheres) are color-coded by the dots in the confusion plots (i.e., blue or red refers to
correctly predicted neutral or deleterious residues, respectively). A number of FNs (shown in orange) in E occur on the surface of the protein, where amino
acid-specific features presumably weigh more than structural/dynamical ones in defining functionality (e.g., recognition). The prediction for variant R105Q,
on the other hand, estimated to be an FP (shown in cyan) based on sequence only, is now corrected upon inclusion of DYN features. (G) DYN feature profiles
as a function of residue index. The dashed vertical line indicates the position of M133, recognized as a TP by the DYN classifier and misclassified by the SEQ
classifier. The asterisks indicate those features for which low values give rise to deleterious mutations.
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Conclusion
With the steady increase in genome-scale data made available in
recent years, it has become essential to develop tools that can
extract useful information in a systematic, efficient, and robust
way. In this study, we built on past research in the field of
pathogenicity prediction of SAVs, as well as recent advances in
genome-scale characterization of protein dynamics (35), to test
and demonstrate the validity of our hypothesis: that structural
dynamics, not only sequence or structure, might be considered a
determinant of the effect of missense variants on biological
function. Our analysis showed that a measurable improvement is
achieved when DYN and SEQ features are combined.
Our study also provided insight into the interpretation of the

functional impact of variants in the light of the intrinsic dynamics
of the mutated site. We could confirm the current understanding
of such quantities with regard to the localization of dynamically
important residue positions that are more likely to incur detri-
mental mutations. In the specific case of the sensitivity mea-
surements obtained from PRS analysis, however, we produced
evidence in support of the concept that residues identified as
sensors are usually associated with neutral variants (i.e., they are
able to accommodate amino acid substitutions despite their role
in allosteric signaling). This behavior contrasts that of effectors
of signaling, whose mutations were predominantly deleterious.
While the current DYN features have been evaluated for indi-
vidual proteins/subunits, detailed examination suggests that the
DYN predictions may be further refined upon consideration of
environmental effects (SI Appendix, Fig. S8).
Lastly, we focused on a few case studies that highlighted the

tendency of deleterious mutations to localize in the core of a
protein. A corollary would be that variants at exposed regions
would be neutral, but this is not the case. The frequent occurrence

of FNs at those regions indicates that accurate prediction of (dys)
functional regions remains a challenge. This is mainly due to a
competition between adaptability to promiscuous interactions
(which are functional in a given organism/pathway and need to
be retained) and the inherent conformational malleability (which
can tolerate substitutions without affecting other regions). The
combination of DYN- and SEQ-based features emerges as a
useful tool for improving the accuracy of predictions at such
challenging sites.

Materials and Methods
SAV datasets for training and testing of the RF classifiers and evaluating
pathogenicity scores and labels for the 14 prediction tools were extracted
from previous work (26) and summarized in SI Appendix, Table S1. The
variants used in this work are those SAVs for which an associated PDB
structure exists. We mapped between SAV sequences and PDB structures
using the UniProt database (36). GNM- and ANM-predicted DYN properties
were calculated using the ProDy application programming interface (22).
MBS (29) was computed with code adapted from ref. 37, and SASAs were
computed using the DSSP program (31). The SEQ features based on the PSIC
score (38) were extracted from PolyPhen-2 (2, 32). The details on the DYN/
SEQ features and the RF algorithm are presented in SI Appendix, Supple-
mentary Methods. The method presented in this paper has been imple-
mented on the web server RAPSODY (Re-Assessment of Pathogenicity of
SAVs based On Dynamics; rapsody.csb.pitt.edu/). The integrated dataset
used for training and the source code are available at rapsody.csb.pitt.edu/
download.html.
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