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Observers can discriminate between blurry and
low-contrast images (Morgan, 2017). Wang and
Simoncelli (2004) demonstrated that a code for blur is
inherent to the phase relationships between localized
pattern detectors of different scales. To test whether
human observers actually use local phase coherence
when discriminating between image blur and loss of
contrast, we compared phase-scrambled chessboards
with unscrambled chessboards. Although both stimuli
had identical amplitude spectra, local phase coherence
was disrupted by phase-scrambling. Human observers
were required to concurrently detect and identify (as
contrast or blur) image manipulations in the 2 × 2
forced-choice paradigm (Nachmias & Weber, 1975;
Watson & Robson, 1981) traditionally considered to be a
litmus test for “labelled lines” (i.e. detection
mechanisms that can be distinguished on the basis of
their preferred stimuli). Phase scrambling reduced some
observers’ ability to discriminate between blur and a
reduction in contrast. However, none of our observers
produced data consistent with Watson and Robson’s
most stringent test for labeled lines, regardless whether
phases were scrambled or not. Models of performance
fit significantly better when (a) the blur detector also
responded to contrast modulations, (b) the contrast
detector also responded to blur modulations, or (c)
noise in the two detectors was anticorrelated.

Introduction

When an image is blurred, its higher spatial
frequencies become disproportionately attenuated
relative to lower frequencies. The visual system is less
sensitive to high than to medium spatial frequencies,
so it can be relatively difficult to detect blur. However,
as the amount of blur increases, lower and lower
spatial frequencies become affected, including those
near the peak of the contrast sensitivity function
(CSF; Campbell & Robson, 1968), which describes
how just-detectable image contrast varies with spatial
frequency. Ordinary observers without optical training

can easily discriminate between blurry and sharp
images. Of course, they can also discriminate between
low-contrast images and high-contrast images. Are
these two visual tasks really different? Reviewing
the literature on blur discrimination, Watson and
Ahumada (2011) found that, to a first approximation,
just-detectable changes in image blur could be predicted
from the CSF. Consequently, they suggested that the
visual system might have no mechanism capable of
detecting blur per se. What it does have is a mechanism
capable of discriminating among different levels
of image contrast, and it uses that mechanism to
discriminate between different levels of image blur.

To avoid any misunderstanding, please note that
this paper is concerned with blurry images in normal
viewing conditions. Although the best-fitting Gaussian
blur kernel has become one of the standard metrics
for quantifying all forms of blur (e.g. Levi & Klein,
1990; Watson & Ahumada, 2011), optical blur, such as
that caused by retinal defocus, cannot be described as
“Gaussian” with 100% accuracy (Cholewiak, Love, &
Banks, 2018).

Morgan (2017) found that human observers can
not only discriminate between different levels of
contrast and blur, they can also discriminate between
these two image manipulations, possibly by using a
computation of edge blur that makes it independent of
contrast (Watt & Morgan, 1983). Wang and Simoncelli
(2004) also suggested that blur perception might be
influenced by local computations of spatial phase near
image contours (such as the edges between the black
squares and white squares in Morgan’s chessboard-like
stimuli). We present a test of this hypothesis below,
using phase-scrambled and unscrambled chessboards.
Although both types of stimulus have identical
amplitude spectra, phase-scrambled chessboards do not
have well-defined edges (see Figure 1).

In the experiment we report here, observers were
required to concurrently detect and identify (as contrast
or blur) image manipulations in the two-by-two
forced-choice (2 × 2 FC) paradigm (Nachmias &
Weber, 1975; Watson & Robson, 1981), traditionally
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Figure 1. Example baseline stimuli (i.e. without modulation).
Three levels of blur are fully crossed with three levels of
contrast in each nine-panel array. Left array: Unscrambled
chessboards; right array: phase-scrambled chessboards.

considered to be a litmus test for “labeled lines” (i.e.
detection mechanisms that can be distinguished on the
basis of their preferred stimuli).

According to one review article (Rose, 1999),
different philosophers meant different things when they
invoked labeled lines, but the reader might imagine
tiny signs attached to each neural fiber, describing the
stimuli that match its receptive field. Of course, no
contemporary scientists actually believe our brains
contain homunculi capable of reading tiny signs like
that. Instead, information regarding stimulus identity
is thought to be inherent in the cerebral positions of
active neurons. That is why stimulus preferences vary
systematically in the cortex, forming multidimensional
“maps” of retinal position, spatial orientation, and
possibly other stimulus attributes, such as spatial
frequency, binocular disparity, and chromaticity.

This paper is concerned with selectivity and labeling.
Our methodology is psychophysical rather than
physiological. Accordingly, we will discuss our findings
in terms of channels rather than sensory neurons,
but—other than the latter’s restriction to (or selectivity
for) a relatively small region in the visual field—the
two ideas are virtually interchangeable. Like sensory
neurons, channels transform sensory information. That
is, they both perform a kind of computation. Input to
the computation varies with the similarity between the
preferred stimulus and the actual stimulus, and output
increases monotonically with input.

For non-zero channel input, some aspect of the
stimulus must be modulated. Spatial-frequency
channels (Campbell & Robson, 1968), for example,
obtain non-zero input from modulations in stimulus
luminance. Although, by definition, these channels
are selective for certain periodicities of luminance
modulation, spatial-frequency channels do not have
infinitely narrow bandwidth. Thus, if we were to
increase the modulation depth (i.e. the contrast) of a
sinusoidal luminance grating, we would excite more
and more channels whose preferred stimuli are less
and less similar. If it were possible to isolate a channel
with psychophysics, it would require a stimulus with

very little contrast. In the limit (i.e. if the stimulus
were just detectable), it is conceivable that it would
excite only one channel. Consequently, it would not be
unreasonable to describe that channel as a labeled line
if the brain could successfully identify a just-detectable
stimulus.

At least, that’s the logic used by Nachmias and
Weber (1975), when they introduced what later became
known as the 2 × 2 FC paradigm, a variant on the
more popular, two-alternative forced-choice (2AFC)
paradigm. In addition to deciding whether a small patch
of grating was presented within the first or second of
two temporal intervals (a “detection” task), Nachmias
andWeber’s observers had to decide whether the grating
contained relatively high or low spatial frequencies.
This latter task can be considered “discrimination” or
“identification” or “classification” or “categorization.”
We will use all the latter terms interchangeably.

Rather than present data from Nachmias and
Weber’s original paper, we shall present data from a
follow-up study by Watson and Robson (1981). The
task was virtually identical, except Watson and Robson
manipulated temporal frequency rather than spatial
frequency. Their chief innovation was to establish two
quantitative criteria for psychophysical channels to
qualify as differently labeled lines. The first criterion
is that the identification thresholds must not be
significantly higher than the detection thresholds. The
second criterion will be discussed below.

Among the channels that satisfied the first of Watson
and Robson’s criteria were those responsible for
discriminating between 0 Hz (or static) Gabor patterns
and otherwise identical Gabor patterns flickering at
8 Hz. Blue points in Figure 2a show the relationship
between the contrast (i.e. the modulation depth) of the
static Gabor pattern and observer ABW’s ability to
determine whether it was in the first or second temporal
interval. Blue points in Figure 2b show the analogous
relationship for the flickering Gabor pattern. Black
points in these two panels show how frequently the
Gabor patterns were correctly identified as “static”
or “flickering.” We have fit these psychometric data
with four smooth (Weibull) functions, all of which
were constrained to have the same basic shape and
upper asymptote. (Pattern detection was a well-studied
task, and there was ample empirical support for fixing
the Weibull shape parameter at κ = 3.5; Robson &
Graham, 1981. Note also that whereas logic dictates
the blue curves must share a lower asymptote of 0.5,
the lower asymptotes of the black curves need only
sum to 1.) Although the black curve in Figure 2a has a
slight rightward shift with respect to the blue curve, a
likelihood-ratio test (Mood, Graybill, & Boes, 1973)
reveals this shift to be insignificant [χ2 (1) = 0.05, p =
0.825]. Thus, these data were not inconsistent with
Watson and Robson’s (1981) first criterion for detection
by differently labeled lines.
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Figure 2. The 2 × 2 FC results fromWatson and Robson (1981). Panels (a) and (b) illustrate results in which observer ABW had to
detect a Gabor pattern and identify its temporal frequency as either 0 Hz or 8 Hz. Panels (c) and (d) illustrate analogous results with
Gabor patterns having temporal frequencies of either 0 Hz or 2 Hz. Blue symbols indicate detection performance and black symbols
indicate identification. Smooth curves are maximum-likelihood Weibull distributions (all having shape κ = 3.5). All symbols have been
shifted laterally by the Weibull scale parameter (λ), which can be considered the observer’s 81% correct detection threshold.
Consequently, all blue curves are identical and contain the point (0, 0.81). Note that 0.5 is the minimum probability correct in the
detection task. We further assume that the maximum is somewhat less than 1, due to attentional lapses and/or “finger errors.” Thus,
the blue curves have been scaled to span the interval (0.5, 0.99). There is no corresponding minimum for the discrimination task, thus
the black curves in (a) and (b) have been scaled to span the intervals (γ , 0.99) and (1 – γ , 0.99), respectively; where the guess-rate γ

was fit simultaneously with the Weibull scale parameters. Black curves in (c) and (d) were obtained in the analogous fashion.

Data illustrated in Figure 2c,d were collected in
an analogous experiment, where the flicker was only
2 Hz. In this case, the black curves have a significant
rightward shift with respect to the blue curves, and thus
these data do not satisfy Watson and Robson’s first
criterion for detection by differently labeled lines. One
possibility is that both stimuli were (at least sometimes)
detected by the same channel. Other possibilities are
discussed below.

Whereas Watson and Robson examined selectivity
and labelling in channels stimulated by different
frequencies of luminance modulation, our goal was to
examine selectivity and labeling in channels stimulated
by modulations of stimulus contrast and stimulus blur.
Both types of modulation are illustrated in Figure 3.
Given sufficient time for inspection, all readers should
be able to discriminate between the two dimensions of
modulation.

General methods

The methods for this study were reviewed and
approved by The School of Health Science (Reference
no. ETH1819-1850) City, University of London.
The observer’s head was placed on a chinrest with
an adjustable forehead rest. Viewing was binocular,
through the observer’s natural pupils. Steady fixation
was neither encouraged nor discouraged. An Apple
computer controlled stimulus presentations and
response collection. The experimental protocol was
implemented using the PsychToolbox (Brainard,
1997; Pelli, 1997). (Software will be made available
upon request.) Maximum and minimum luminances
were 149.8 and 0.277 cd/m2, respectively. The screen’s
background luminance was set to the midpoint of these
values, and the rest of the room was dark.
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Figure 3. Unscrambled (top) and scrambled (bottom) chessboards with heavily modulated blur (left) and contrast (right). All panels
have intermediate levels of baseline blur and contrast.

All stimuli were based on simple, 4 × 4 chessboards,
like those in Figure 1. Each chessboard had random
polarity; the lower right square could be white or black,
with equal probability. The amplitude spectrum of
each phase-scrambled chessboard was equal to that
of an unscrambled chessboard. In all other respects,
the methods for phase-scrambled chessboards were
identical to those for unscrambled chessboards.

In an attempt to foil “context-coding” (Durlach
& Braida, 1969) detection strategies based on a
chessboard’s (or one of its arbitrarily chosen square’s)
average or total blur – or average or total contrast –
we randomly interleaved baseline levels along these
stimulus dimensions. On each trial, we exposed
one modulated chessboard and one unmodulated
chessboard for 1.43 seconds, with a 1.43 second gap
between the two successive exposures. Each chessboard
had a one of three randomly and independently selected
levels of “baseline” Gaussian blur, and each had one
of three randomly and independently selected levels
of baseline Michelson contrast. Gaussian blur kernels

had spatial extents (σ ) equal to 1/16th, 1/8th, or 1/4th
the length of one of the chessboard’s 16 squares; these
spatial extents correspond to 5.6, 11.2, and 22.4 arcmin
of visual angle. Baseline contrasts (before blurring and
phase-scrambling) were 1, 0.5, and 0.25. Intermediate
levels of baseline blur and contrast were comparable to
those in Morgan’s (2017) “standard” stimuli.

The modulated chessboard was a composite of
two chessboards: alternate one-square-wide columns
(starting at either the left-hand side or the right-hand
side) came from the baseline chessboard, the other
columns came from an otherwise identical chessboard
with either more blur or less contrast (see Figure 3).

Observers indicated which of the two chessboards
was modulated by pressing the o key (for “one”) or
the t key (for “two”) on the Apple’s keypad. They then
indicated whether the modulation was in the dimension
of blur (by pressing the b key) or contrast (by pressing
the c key). Immediately after this classification, two
tones were played in quick succession. The frequency
of each tone indicated whether the corresponding
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response had been correct (low tone) or incorrect (high
tone). Feedback of this nature may facilitate perceptual
learning and/or help to stabilize response criteria
(Tanner, Rauk, & Atkinson, 1970).

For each combination of modulation identity (blur
or contrast) and baseline level (low, intermediate,
or high) we used two randomly interleaved Quest+
(Watson, 2017) staircases to obtain estimates of the
thresholds and psychometric slopes for detection and
identification, as well as the guess rate and lapse rate
for identification. (Guess rate – i.e. accuracy in the
limit, as the modulation amplitude approaches zero – is
necessarily 0.5 for the detection task. Lapse rates are not
necessarily 0.01, nonetheless, we feel secure in adopting
an estimate of 99% correct for the upper asymptote of
our very experienced observers’ psychometric functions
for detection.)

Each of our four observers completed 1728 trials
with unscrambled chessboards (JAS completed an extra
22 trials in a session that had to be discontinued due
to a fire alarm) divided into (18) 96-trial sessions. In
separate sessions, each observer completed another
1728 trials with scrambled chessboards. “U” sessions
with unscrambled chessboards and “S” sessions with
scrambled chessboards were run in the following
sequence: USSUUSSUUSUUSSUUSS. Quest+
staircases were initialized at the beginning of session 1,
and again at the beginning of session 10.

Methods specific to experiment 1

Both authors served as observers. Visual stimuli were
presented on a gamma-linearized LCD display screen,
placed at 0.845 m of viewing distance. There were
21.4 screen pixels per degree of visual angle.

Each chessboard occupied the screen’s central
128 × 128 pixels. The phase spectrum of each
phase-scrambled chessboard set equal to that of a
64-pixel × 64-pixel “noise image,” each pixel of which
had a Weber contrast that was selected independently
from a zero-mean Gaussian distribution.

Methods specific to experiment 2

At a referee’s request, retinal resolution was
increased for observers ST and AC, who were naïve
to the purposes of this experiment. These 20-year-old
university students had no previous experience with
psychophysics. They practiced the 2 × 2 FC task
with both scrambled and unscrambled chessboards
for one hour before any data were collected. (A third
naïve observer practiced for two hours but proved
incapable of attaining 81% correct performance in
the detection task. Her data are not reported here.)
For these observers, the display screen was placed at

2.112 m of viewing distance. There were 53.5 screen
pixels per degree of visual angle.

Each chessboard occupied the screen’s central
320 × 320 pixels. The phase spectrum of each
phase-scrambled chessboard set equal to that of a
160-pixel × 160-pixel “noise image,” each pixel of which
had a Weber contrast that was selected independently
from a zero-mean Gaussian distribution.

Results
Detection

As with Watson and Robson’s (1981) data
(see Figure 2), we obtained separate, maximum-
likelihood fits of the Weibull distribution to each
observer’s probability of correctly detecting a blur
modulation in scrambled and unscrambled chessboards
with each level of baseline blur. Similarly, we obtained
fits to each observer’s probability of correctly detecting
a contrast modulation with each level of baseline
contrast. Unlike Watson and Robson, who could
appeal to a relatively large literature on the detection
of luminance modulations, we have decided to make
no assumptions regarding the shape parameters of the
best-fitting Weibull distributions. Consequently, it was
free to vary in all our fits.

With the exception of contrast modulations in
phase-scrambled chessboards, 81% correct detection
thresholds (i.e. the scale parameters of the best fitting
Weibull distributions) increased disproportionately (i.e.
more slowly than would be predicted on the basis of
Weber’s Law) with baseline levels of blur and contrast.
In this paper, we will not offer any firm conclusions
regarding why Weber’s Law fails for these stimuli.
Nonetheless, a variety of potential explanations are
offered here.

For one thing, our task requires the detection
of modulation away from a baseline, rather than
discrimination between increments of different
magnitude. Whereas the latter task can reliably produce
thresholds consistent with Weber’s Law (e.g. when
the dimension is luminance), the former task does
not (Cornsweet & Pinsker, 1965). Furthermore, not
even the discrimination between different contrast
increments will reliably produce thresholds consistent
with Weber’s Law (Nachmias & Sansbury, 1974).
Finally, it must be noted that, whereas detection with
the intermediate baselines almost certainly requires a
visual mechanism that responds to the modulation,
context-coding strategies may be used with the other
baselines. For example, an observer who selected the
chessboard with the greatest average blur would be
relatively successful when the baseline blur was high.
Consequently, with high baseline blur, the observer’s
81% correct threshold for blur modulation would be
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Figure 4. Just-noticeable Weber fractions for detecting contrast and blur modulations away from the intermediate baselines
illustrated in Figure 3. Error bars contain 95% credible intervals.

Figure 5. The 2 × 2 FC detection (blue) and identification (black) of modulations away from the intermediate baseline levels. Panels
(a) and (b) illustrate results in which observer MJM had to detect the modulation in an unscrambled chessboard and identify its
dimension either blur or contrast. Panels (c) and (d) illustrate analogous results with phase-scrambled chessboards. Symbol diameter
is proportional to the number of trials. Smooth curves are maximum-likelihood Weibull distributions with unconstrained shape
parameters. All other formatting conventions identical to those in Figure 2.

relatively low, even though the observer never really
detected that modulation per se.

As we were particularly keen to determine
whether the visual system contained labeled lines for
modulations of contrast and modulations of blur, we
focused the remainder of our analyses on performance
with modulations away from the intermediate baselines
(a Gaussian blur kernel with σ = 11.2 arcmin and a
contrast of 0.5), where context-coding strategies were
unlikely to facilitate performance.

Just-noticeable Weber fractions (JNWFs; Solomon,
2010) are shown in Figure 4. Each JNWF is the ratio

between the 81% correct detection threshold and the
baseline (a.k.a. “pedestal”) level of blur or contrast.
The younger, naïve observers were significantlty more
sensitive (they had smaller JNWFs) to blur modulations
on scrambled chessboards than the authors. This may
be related to their use of relatively high-resolution
stimuli (see Methods Specific to Experiment 2, above).

For the purposes of illustration, we have provided
detailed results from one observer in Figure 5. Results
for the other observers appear in Appendix A. The
format of Figure 5 is analogous to that of Figure 2.
Specifically, the blue points in Figure 5a show the



Journal of Vision (2020) 20(6):19, 1–14 Solomon & Morgan 7

relationship between the modulation depth of blur in
an unscrambled chessboard andMJM’s ability to detect
whether it was in the first or second temporal interval.
Blue points in Figure 5b show the relationship between
detection and the modulation depth of contrast.
Smooth curves show the maximum-likelihood Weibull
fits. Figure 5c,d illustrate corresponding results that
were collected using phase-scrambled chessboards.

Identification

In some cases (MJM scrambled contrast, and ST
unscrambled blur), it proved impossible to measure
a threshold modulation depth for identification: the
psychometric functions were flat (see Figure 5d, A1e). In
12 of the remaining 14 cases, threshold for identification
was greater than threshold for detection (exceptions
were JAS unscrambled contrast and AC unscrambled
contrast). Likelihood-ratio tests indicate a significant
[χ2(1) > 3.84, p < 0.05] difference between thresholds
in 9 of the aforementioned 12 cases. It is noteworthy
that all three exceptions occurred with unscrambled
chessboards (MJM contrast, MJM blur, and JAS blur).
Consequently, it seems safe to conclude that the removal
of edge information (via phase scrambling) decreased
our observers’ ability to identify the dimension of
modulation as “blur” or “contrast.” In other words,
this rather superficial summary of our results is broadly
consistent with the hypothesis that edges are important
for the visual discrimination between blur and loss
of contrast. Observers were capable of detecting a
modulation in stimulus contrast or blur, but their ability
to identify that modulation as such seems to have been
compromised, even when that modulation was several
decibels above the threshold for detection1.

Models

High threshold theory

The model
Figure 5a,b reveal that, when edges were present,

MJM was not significantly worse at identifying the
dimension of modulation (i.e. blur or contrast) than
he was at determining whether that modulation
occurred in the first or second temporal interval.
What Figure 5a,b do not reveal is whether or not MJM
got the dimension and the interval correct on the same
trials. Of course, there is no reason that an error in one
task must accompany an error in the other task, but to
quantify the conditional probabilities we need a model.
One such model was offered by Watson and Robson
(1981). Its basis is High Threshold Theory, which can
be stated quite succinctly: a stimulus modulation might

or might not excite any channel, but channels are never
excited in the absence of stimulus modulation.

Within the framework of High Threshold Theory, a
channel can be considered a labeled line if its excitation
ensures correct identification. Obviously, this cannot be
possible if the same channel can be excited by different
types of modulation. Accordingly, when establishing
their second and more stringent criterion for detection
by differently labelled lines, Watson and Robson (1981)
assumed “no overlap” between channel sensitivities.
Given this assumption, only two parameters are
required to calculate the likelihoods of all four possible
outcomes in any trial:

O1 = Correct interval, correct identity.
O2 = Correct interval, incorrect identity.
O3 = Incorrect interval, correct identity.
O4 = Inorrect interval, incorrect identity.

If, on the other hand, the joint likelihood of trial
outcomes is significantly better fit by a more saturated
model (i.e. with three free parameters per modulation
depth), then we must reject the idea that excitation
ensures correct identification. Accordingly, Watson and
Robson’s second criterion for detection by channels
with labelled lines is that the saturated model does not
provide a significantly better fit. Note that if we are to
maintain the assumption of no overlap between channel
sensitivities, then the saturated model’s third free
parameter can be considered a “fudge factor,” allowing
observers to mis-identify an arbitrary proportion
of stimuli that nonetheless do succeed in exciting a
channel. Instead, we prefer to relax the assumption of
no overlap.

The full high-threshold model can be described as
follows. Let pijk denote the probability that stimulus i
excites channel k when it has a modulation amplitude
of j. Channels are “labeled,” such that i, k ∈ {1, 2}. On
each trial there are four mutually exclusive possibilities:
channel k is excited, channel l is excited (l = 3 − k), both
are excited, and neither is excited. The corresponding
probabilities are:

q1 = pi jk
(
1 − pi jl

)
, (1)

q2 = pi jl
(
1 − pi jk

)
, (2)

q3 = pi jk pi jl , (3)

and

q4 = (
1 − pi jk

) (
1 − pi jl

)
. (4)

Let r1 and r2 denote the probabilities of selecting
interval 1 and interval 2, respectively, in the absence
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Figure 6. Conditional probabilities fit with High Threshold Theory. As in Figure 5, here, the blue and black symbols indicate MJM’s
detection and identification performances, respectively. Red and amber symbols indicate the conditional probabilities
P(Identification|Detection) and P(Identification|∼Detection), respectively. The relative paucity of amber symbols is due to the small
number of trials in which identification was successful, even though detection was not. Solid curves illustrate maximum-likelihood fits,
allowing for overlap in the two channels’ sensitivities (see text). Dashed curves illustrate maximum-likelihood fits without overlap.

of any excitation, such that r2 = 1 – r1. For stimuli in
interval m, the outcome probabilities are:

P (O1) = q1 + b1q3 + nirmq4, (5)

P (O2) = q2 + (1 − bi) q3 + (1 − ni) rmq4, (6)

P (O3) = nir3−mq4, (7)

and

P (O4) = (1 − ni) r3−mq4, (8)

where bi and ni are the probabilites that stimulus i is
selected when both channels are excited and neither
channel is excited, respectively. (NB: b3 − i = 1 − bi and
n3 − i = 1 − ni.) An observer can be considered unbiased
when: r1 = r2 = b1 = b2 = n1 = n2 = 1/2.

The results were fit assuming that the probability of
channel excitation increased as a Weibull function of
the stimulus modulation. The formula is:

pi jk = (1 − δ) (1 − exp [−( j/λik)κk ]) . (9)

Note that there are three free parameters in
Equation 9. The Weibull function’s scale parameter λik
can be considered channel k’s sensitivity to modulations

in stimulus dimension i. The Weibull function’s shape
parameter κk, on the other hand, is independent of
stimulus dimension i. It describes the relationship
between input and output within channel k. Attentional
lapses and finger errors can be accommodated by
allowing the remaining parameter to exceed zero (i.e. δ
> 0). This parameter was not allowed to vary across the
dimension of modulation, as different dimensions were
randomly interleaved in our procedure.

Model fits
Although it is conceivable that observers used

the same computations (i.e. the same channels) for
scrambled and unscrambled chessboards, nothing in
our methods encouraged them to do so. Consequently,
we decided that the data collected with scrambled
chessboards should be fit separately from the data
collected with unscrambled chessboards.

Two fits of the high-threshold model to MJM’s data
with unscrambled chessboards are shown in Figure 6a,b.
(Analogous fits to the other observers’ data appear in
Appendix A.) Solid curves illustrate fits of the most
general version of the model, without the restriction on
overlapping sensitivities. Dashed curves illustrate fits
of a nested model, in which overlap was prohibited by
setting λ12 = λ21 = ∞. Examination of the right-hand
sides of the dashed curves reveals that, on trials in
which observers selected the correct temporal interval,
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the nested model’s predictions for the probability of a
correct identification [i.e. P (Identification|Detection)]
tend to be a little too high. Nonetheless, overall, this
version of High Threshold Theory seems to fit the data
obtained with unscrambled chessboards fairly well.

The nested model cannot achieve anywhere near as
good a fit to results obtained with phase-scrambled
chessboards. It radically underestimates the difference
between (unconditional) probabilities of detection
and identification (note the similarity between dashed
blue and black curves in Figure 6d, they are virtually
identical and almost flat; compared with the blue and
black curves in Figure 5d). It should be apparent that
the model fits significantly better when channels are
allowed overlapping sensitivities. Indeed, a generalized
likelihood-ratio test indicated a significant improvement
[χ2(2) > 6, p < 0.05] for each observer with each type
of chessboards (i.e. even the unscrambled ones). Thus,
none of our results satisfy Watson and Robson’s (1981)
second criterion for detection of blur and contrast
modulations by differently labeled lines.

Signal detection theory

The model
Signal Detection Theory (Green & Swets, 1966) was

developed as an alternative to High Threshold Theory,
which proved to be inconsistent with several empirical
results (e.g. better-than-chance second responses in
mAFC detection experiments, when m > 2, Swets,
Tanner, & Birdsall, 1961; Solomon, 2007). In this
section, we use Signal Detection Theory to describe the
detection of modulations along any arbitrary stimulus
dimensions A and B. Output from channels in this
model can be used for both detection and identification
within the 2 × 2 FC paradigm.

Although the stimulus dimensions A and B are
arbitrary, in this paper, they can be understood as
blur and contrast, respectively. Consider a sinusoidal
modulation along dimension A. Its amplitude and
phase are a and θA, respectively. A general formula
for the expected output of a linear mechanism is
aαcos (θA − θ0), where α is the mechanism’s sensitivity
(or “gain”) and θ0 is its preferred phase.

Phase-independence (and square-law transduction)
can be achieved using a nonlinear transformation of the
output from a quadrature pair of linear mechanisms:

[aα cos (θA − θ0)]2 + [
aα cos

(
θA − θ0 − π

2

)]2

= a2α2
[
cos2 (θ0 − θA) + sin2 (θ0 − θA)

]

= a2α2

(10)

Arbitrary power-law transduction can be achieved
without sacrificing phase-independence by raising this
expression to the arbitrary power p/22.

Now consider two sinusoidal modulations having the
same frequency, one along dimension A and one along
dimension B. Amplitudes and phases are a and b and θA
and θB, respectively. A general formula for the expected
output of a linear mechanism is aαcos (θA − θ0) +
bβcos (θB − θ0) where α and β are the mechanism’s
sensitivities and θ0 is its preferred phase. Again, phase
independence (and square-law transduction) with
respect to θ0 can be achieved using a quadrature pair:

[aα cos (θA − θ0) + bβ cos (θB − θ0)]2

+[aα sin (θA − θ0) + bβ sin (θB − θ0)]2
= a2α2 + b2β2 + 2aαbβ cos�θ

, (11)

where �θ = θA − θB. This too can be raised to the
arbitrary power p/2, if necessary.

Putting it all together, we can write

μX = (
a2α2 + b2β2 + 2aαbβ cos�θ

) p
2 (12)

for the expected output from a quadrature pair, given
two sinusoidal inputs with amplitudes a and b and
phase angle �θ .

Detection in the 2 × 2 FC and 2AFC paradigms
is determined on the basis of the difference between
outputs to the first and second interval. In this paper, we
use the random variable X to represent this differential
output. Without loss of generality, we may assume that
the variance is σ 2

x = 1.
Now consider another mechanism, with expected

output μY = [a2α′2 + b2β ′2 + 2aα′bβ ′ cos�θ ]
p′
2 ,

variance σ 2
Y = 1, and covariance cov(X,Y ) = ρ.

This mechanism is identical to the first, except for
different gains and a possibly different power-function
transducer.

Both mechanisms may be used for the task of
detection. The simplest decision rule is linear. Imagine
the plane of all possible outputs (X, Y) and divide
it into two regions with the line y = mθx + bθ .
The observer should select interval 1 if and only
if output (x, y) lies in the region below the line.
Detection will be unbiased only if mθ = −1 and
bo = 0.

These same two mechanisms can be used for
discrimination. Again, the simplest decision rule
is a line y = mφx + bφ separating each of the
aforementioned two regions into quadrants (see
Figure 7 for an illustration). For the unbiased observer,
mφ = −1 and bφ = 0.

As illustrated in Figure 7, each trial can be considered
one sample from a joint density function on the plane of
all possible channel outputs. If there were no attentional
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Figure 7. Graphical interpretation of the signal-detection model’s fit to one observer’s results with unscrambled (a) and
phase-scrambled (b) chessboards. Each piechart represents one combination of modulation interval (1 or 2), dimension of
modulation (blur or contrast), and modulation depth. Larger piecharts indicate more trials. Red, green, blue, and yellow sectors
illustrate the frequencies with which observer MJM selected each of the four possible responses, as indicated in panel a. The
horizontal position of each piechart shows the X channel’s expected output, and the vertical position shows the Y channel’s expected
output. Not shown are Gaussian blobs centred on each one of these piecharts. Each blob describes the density of the joint likelihood
for the two channels’ responses. That likelihood has unitary standard deviation in each dimension (X and Y) but its covariance was left
as a free parameter. MJM’s data were best fit with a negative covariance; perhaps there was some competition between channels.
Covariance is illustrated by the ellipses, which describe four standard deviations in every direction around the origin in panel a and
the point (−2.91, −0.93) in panel b, whose coordinates correspond to the expected channel outputs for a first-interval contrast
modulation having a depth that is 10 dB greater than MJM’s detection threshold. We have assumed that observers divide the space
of all possible channel outputs into the four types of response. The simplest possible decision rule uses two linear discriminants.
These are represented by the lines in each panel. Sample outputs in the right quadrant are classified as “Blur, interval 1,” sample
outputs in the top quadrant are classified as “Contrast, interval 1,” and so on (as indicated in panel a).

lapses or finger errors, the probability of any specific
response (e.g. “blur, interval 1”) would correspond to
the fraction of that density function that lies within
the quadrant associated with that specific response.
However, when fitting the model, we allowed for the
possibility of a non-zero lapse rate, i.e. a proportion of
trials (denoted δ′) on which the observer selects one of
the four possible responses at random (regardless of the
modulation depth, with probability 1/4).

Model fits
We used Mathematica’s implementation of Brent’s

(2002) principal-axis method to find maxima (with 2
digits of accuracy) in the function mapping parameter
values to log likelihood. The full signal-detection model
has 12 free parameters: four (mθ , bθ ,mφ, and bφ ) for the
discriminant lines, plus one (δ′) for the lapse rate, plus
one (ρ ) for the channel covariance, plus two (p and p′)
for the power-function transducers, plus four channel
gains (α, β, α′, and β ′). In addition to this full model,
we fit a version constrained to exclude overlap between
channel sensitivities (called “leakage” by Raphael &
Morgan, 2016; and Morgan, 2017). Specifically, both
channels were prohibited from responding to more than

one dimension of modulation, i.e. β = 0 and α′ = 0.
This constraint significantly reduced the model’s
maximum likelihood [χ2(2) > 6, p < 0.05] only for
JAS’s data with the unscrambled chessboards (see
Figure 9). We also fit a version constrained to exclude
any correlation between channel outputs (by forcing
ρ = 0). This constraint did not significantly reduce the
model’s maximum likelihood for any of the data sets [in
all cases, χ2(1) < 2.2, p > 0.18; see Figure 9]. Finally,
we fit a version constrained to exclude both overlap and
correlation. This constraint did significantly reduce the
model’s maximum likelihood for each of the data sets
[in all cases, χ2(3) > 8, p < 0.05; see Figure 9].

Psychometric functions illustrating fits of the full
model appear in Figure 8. Perhaps the most salient
feature of this figure is the downward trend of some
amber curves, illustrating P(Identification|∼Detection).
Whereas High Threshold Theory predicts that this
conditional probability should be independent of
modulation depth; in the absence of attentional lapses
and finger errors (i.e. when δ′ = 0), Signal Detection
Theory predicts that this conditional probability should
mirror P(Identification|Detection), as modulation
depth increases. Some of the amber curves have a kink
on the right side, where the curve suddenly shoots back
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Figure 8. Conditional probabilities fit with Signal Detection Theory. As in Figure 5, here, the blue, black, red, and amber symbols
indicate MJM’s P(Detection), P(Identification), P(Identification|Detection), and P(Identification|∼Detection), respectively. Curves
illustrate maximum-likelihood fits of the full, 12-parameter model.

Figure 9. Negative log likelihoods for the fit of six models to four separate data sets; all data collected with modulations away from the
intermediate baseline levels.

up toward a probability of 0.5. This is due to non-zero
lapse rates, which are the only explanation for the
failure to detect massively suprathreshold modulations.

A visual comparison of the amber curves with the
amber points suggests little compelling evidence for
P(Identification|∼Detection) dropping to zero. With
few exceptions, the amber symbols tend to congregate
around 0.5, consistent with High Threshold Theory.
However, we cannot form any firm conclusions in this
regard. For each of the conditions summarised by one
panel in Figure 8, the adaptive staircases produced
just 16 (out of a total 189) trials above threshold, on
which MJM failed to detect the modulation. One
fairly strong conclusion that can be drawn from these

results is this: despite their potential value toward
selecting between Signal Detection and High Threshold
Theories, suprathreshold detection errors are too rare
pursue with any vigor.

Perhaps surprisingly, the full signal-detection model
has no trouble accounting for MJM’s decline in
P(Identification|Detection) with increasingly large
modulations of stimulus contrast in scrambled
chessboards (as illustrated by the red curve
in Figure 8d)3. Examine Figure 7b to see how this arises.
Notice that the “X” channel has non-zero gain to both
blur modulations and contrast modulations. (Contrast
signals “leak” into the channel that responds to blur
modulations.) Consequently, pie charts are not confined
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to the vertical axis. Unlike the ellipse in Figure 7a, which
was centered on the origin, the ellipse in Figure 7b
is centered on the coordinates (−2.91, −0.93), which
correspond to the expected channel outputs for a
first-interval contrast modulation having a depth that
is 10 dB greater than MJM’s detection threshold. On
trials such as these, P(Identification|Detection) can be
visualized as ratio between two areas: the intersection
between the ellipse and the bottom quadrant and
the intersection between the ellipse and the union
of bottom and left quadrants. This ratio is 0.47.
P(Identification|∼Detection) varies with the ratio
between two different areas: the intersection between
the ellipse and the top quadrant and the intersection
between the ellipse and the union of top and right
quadrants. This ratio is 0.87. Figure 9 summarizes how
well the various models fit each set of data.

Discussion

Some observers (e.g. the authors JAS andMJM) seem
to be capable of discriminating between a reduction in
contrast that is limited to the high spatial frequencies
(i.e. blur) and a reduction in contrast that is uniform
across the spatial frequency spectrum. However,
none of our observers were capable of consistently
identifying the dimension of modulation when edges
were removed via phase-scrambling. When asked to do
so, they adopted idiosyncratic and ineffective strategies.
For example, MJM’s data suggest a slight preference
for labeling large modulations as “blur,” but his ability
to report contrast modulations as “contrast” never rose
beyond a baseline frequency of about 68%, regardless
of modulation depth (see Figure 5c,d).

Our methodology, with its interleaved, adaptive
staircases, effectively decorrelated modulation depth
from modulation identity (i.e. blur versus contrast).
Consequently, decisions based on the output of a single
channel could not attain an identification accuracy
better than 50% correct overall (i.e. when blur and
contrast trials are combined). Some observers may
not have attained 81% correct with modulations in
stimulus blur or stimulus contrast, but all observers’
identification accuracies were well in excess of 50%
correct overall. Accordingly, we can reject the idea
that there is just one channel. Better-than-chance
identifications imply at least two.

Given the logical necessity of two channels, we must
turn to theory for why identification performance
with scrambled chessboards is so bad. One potential
explanation is overlap between the two channels’
sensitivities: at least one channel responds both to
blur modulations and contrast modulations. Thus,
a single modulation can excite both channels. The
high-threshold model of Watson and Robson (1981)

does not allow for this possibility. In our elaboration of
that model, observers make an arbitrary (but possibly
biased) decision regarding stimulus identity, when both
channels are excited.

Sensitivity overlap can produce identity confusions
within the context of Signal Detection Theory as well.
When the expected response of both channels to a
contrast modulation is not very different from their
expected response to a blur modulation, observers will
often err in their attempt to identify the modulation.
Moreover, because Signal Detection Theory’s channels
are never quiescent, identity confusions can arise when
the channels’ noises are negatively correlated. Random
activity in the “blur channel” favoring interval 1 could
increase the probability of random activity in the
“contrast channel” favoring interval 2, and vice versa.

Our modeling addresses the relationships between
modulation amplitude and decision. We have
intentionally remained agnostic regarding how the
visual system represents the quantities that serve as
input to the blur and contrast channels. Nonetheless,
it seems reasonable to assume those quantities
are computed from the output of visual pattern
analyzers (Graham, 1989) conjointly selective for
retinal position and spatial frequency. Analyzer
outputs could be weighted (or unweighted), forming
an input to the contrast channel that correlates with
spatial modulations in stimulus visibility. This idea
is similar to the Visible Contrast Energy (ViCE)
model of Watson and Ahumada (2011). Alternatively,
observers may adopt a bespoke weighting of analyzers
(ignoring those with preferred frequencies that are
far from our chessboards’ 2 cycles/image, say). We
are even less certain how the visual system represents
image blur. Although blur can be computed from
an arithmetic combination of analyzer outputs (e.g.
the difference between outputs from low-frequency
and high-frequency analyzers, perhaps divided by
their sum), it can also be computed from the spatial
separation between maximally stimulated analyzers
(Watt & Morgan, 1983; Georgeson, May, Freeman, &
Hesse, 2007) or the coherence of spatial phase across
different scales of analyzer, as demonstrated by Wang
and Simoncelli (2004).

Although unequivocally successful identification at
the detection threshold can be considered evidence in
favor of labeled lines, identification errors need not
imply the absence of labeled lines. Indeed, these sorts
of errors are sometimes taken as evidence for labeled
lines (e.g. Ramachandran & Hubbard, 2001; Periera &
Alves, 2011). Consequently, we conclude that it would
be best to compare detection and identification with
regard to their implications for interactions between
channels. Specifically, we can assert that channel-based
models of detection are unable to satisfactorily fit our
results without sensitivity overlap or anticorrelated
noise. Morgan (2017) arrived at a similar conclusion
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(i.e. in support of signal leakage between channels)
using unscrambled, black-and-white chessboards.

Whereas black-and-white chessboards can be
considered relatively naturalistic stimuli, our phase-
scrambled chessboards cannot; they lack well-defined
edges. There is no reason to think that observers
perform the same computations when making decisions
about these two classes of stimulus. Indeed, the larger
JNWFs unambiguously indicate lower sensitivity
in the channels responsible for detecting blur in the
phase-scrambled stimuli. However, for both phase-
scrambled and unscrambled stimuli, the conditional
probabilities indicate that successful detection does not
imply successful identification. Within the context of
Signal Detection Theory, these probabilities demand
either sensitivity overlap or anticorrelation between the
outputs from the channels responsible for detecting
modulations of blur and those responsible for detecting
modulations of contrast.

Keywords: detection, modeling, psychophysics
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Footnotes
1We have adopted the decibel scale for comparing arbitrary modulation
depths with the detection threshold. Thus, if λ represents the detection
threshold, then the depth of any arbitrary modulation m can be described
as 20 log 10(m/λ) dB.
2Nonlinear transduction is a component common to most psychophysical
models within the framework of Signal Detection Theory. Power-law
transducers are particularly popular, because psychometric slope is
directly proportional to the exponent. Whereas the shape of a sinusoidal
signal will change following nonlinear transduction, the shape of a
square-wave signal will not. In our experiment, we utilized square-wave
modulations (see Figure 3) to ensure observers could not use the
apparent shape of the modulation as a cue to its identity (i.e. blur versus
contrast). When fitting the signal-detection model to our data, we used the
square-wave amplitudes in place of the sinusoidal amplitudes a and b.
3P(Identification) also declines. This is not immediately apparent
from Figure 7d because the black curve is identical to (and hidden
by) the red curve. Regardless of their parameters’ values, both
Signal Detection Theory and the High Threshold Theory predict
P(Identification|Detection) ≥ P(Identification).
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Appendix A: Illustrating the
performances of observers JAS, ST,
and AC

Whereas figures in the main text illustrate the
performance of observer MJM, Figures A1–A4
illustrate the performances of observers JAS, ST, and
AC.

Figure A1. The 2 × 2 FC detection (blue) and identification
(black) of modulations away from the intermediate baseline
levels. Panels (a–d) Observer JAS; panels (e–h): observer ST;
panels (i–l): observer AC. All formatting conventions identical to
those in Figure 5.
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Figure A2. Conditional probabilities fit with the High Threshold
Theory. As in Figure A1, here, the blue and black symbols
indicate detection and identification performances,
respectively. Panels (a–d): Observer JAS; panels (e–h): observer
ST; panels (i–l): observer AC. All formatting conventions
identical to those in Figure 6.

Figure A3. Graphical interpretation of the signal-detection
model’s fit to JAS’s results (panels a and b), ST’s results (panels c
and d), and AC’s results (panels e and f) with unscrambled (a, c,
and e) and phase-scrambled (b, d, and f) chessboards. The
ellipses describe four standard deviations in every direction
around the origin in panels (a, c, and e), In panels (b), (d), and
(f), the ellipses are centred around the points (−1.99, −4.26),
(−0.19, −4.02), and (−1.26, −2.80), respectively. These
coordinates correspond to the expected channel outputs for a
first-interval contrast modulation having a depth that is 10 dB
greater than the observer’s detection threshold. All formatting
conventions identical to those in Figure 7.
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Figure A4. Conditional probabilities fit with Signal Detection
Theory. As in Figure A3, here, the blue, black, red, and amber
symbols indicate P(Detection), P(Identification),
P(Identification|Detection), and P(Identification|∼Detection),
respectively. All formatting conventions identical to those
in Figure 8.


