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Deep learning enables structured illumination
microscopy with low light levels and
enhanced speed

Luhong Jin"2, Bei Liu® "™, Fengiang Zhao'?, Stephen Hahn', Bowei Dong', Ruiyan Song', Timothy C. Elston'?3,
Yingke Xu® 24™ & Klaus M. Hahn® 1™

Structured illumination microscopy (SIM) surpasses the optical diffraction limit and offers a
two-fold enhancement in resolution over diffraction limited microscopy. However, it requires
both intense illumination and multiple acquisitions to produce a single high-resolution image.
Using deep learning to augment SIM, we obtain a five-fold reduction in the number of raw
images required for super-resolution SIM, and generate images under extreme low light
conditions (at least 100x fewer photons). We validate the performance of deep neural
networks on different cellular structures and achieve multi-color, live-cell super-resolution
imaging with greatly reduced photobleaching.
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tructured illumination microscopy (SIM) is a widely used
super-resolution technique that has had substantial impact
because of its ability to double resolution beyond the light
diffraction limit while using wide field illumination and main-
taining compatibility with a wide range of fluorophores. SIM
applies varying, nonuniform illumination on samples and then
uses dedicated computational algorithms to derive super-
resolution information from nine or fifteen sequentially
acquired images, for 2D or 3D imaging, respectively. Since it was
first introduced by the laboratories of Heintzmannl! and Gus-
tafsson? two decades ago, SIM has been evolving constantly to
improve speed, resolution, and to decrease the required light
dosages. Reconstruction algorithms have been developed to esti-
mate microscope parameters robustly?, minimize reconstruction
artifacts®>, reduce the required number of raw images®, and
check the quality of the raw data and reconstruction’. The pri-
mary limitation of SIM is the need to obtain a series of high-
quality images for each reconstructed high-resolution SIM image;
this decreases temporal resolution and increases photobleaching.
Recently, there has been an explosion of deep-learning appli-
cations in many aspects of biological research. For microscopy,
deep learning has demonstrated impressive capabilities in cell
segmentation/tracking, morphology analysis, denoising, single
molecule detection/tracking, and super-resolution imaging8-10,
The use of deep learning for content-aware image restoration has
shown great promise in denoising, enhancing signal-to-noise
ratio, and isotropic imaging!!. Deep neural networks have also
been trained to increase the apparent magnification and resolu-
tion of images!2. However, the potential of deep learning to
increase the speed of SIM or to boost SIM’s performance under
low-light conditions has not been explored. We apply deep
learning to increase the speed of SIM by reducing the number of
raw images, and to retrieve super-resolution information from
low-light samples. We accomplish this by reconstructing images
using deep neural networks that have been trained on real images,
enabling us to visualize specific complex cellular structures
(mitochondria, actin networks etc.) and address complicated
cellular or instrument-dependent backgrounds (e.g. out of focus
light). The approach was named DL-SIM (deep learning
assisted SIM).

Results

SIM reconstruction with fewer images. U-Net is one of the most
popular convolutional neural network architectures!3!4, We
show that U-Net can be trained to directly reconstruct super-
resolution images from SIM raw data using fewer raw images.
While conventional SIM typically requires nine or fifteen images
for reconstruction, U-Net achieved comparable resolution with
only three images. Also, using stacked U-Nets, we could restore
high quality, high-resolution images from image sequences
acquired using greatly reduced light dosages. We demonstrated
the capabilities of DL-SIM in multi-color super-resolution ima-
ging of living cells.

We first tested the ability of U-Net to reconstruct super-
resolution images from SIM raw sequences. Conventional SIM
excites specimens with sinusoidal waves at different angles and
phases. Typically, it requires 9-images (3 angles, 3 phases) for
two-beam SIM and 15 images (3 angles, 5 phases) for three-beam
SIM!>. We trained a single U-Net (U-Net-SIM15) by taking 15
SIM raw images as the input and the corresponding conventional
SIM reconstruction results as the ground truth (Fig. 1la,
Supplementary Fig. 1, Methods). U-Net-SIM15 was trained on
four different subcellular structures: microtubules, adhesions,
mitochondria and F-actin. Each dataset was randomly separated
into subsets for training, validation, and testing respectively

(Supplementary Table 1). We tested performance on cells that
had not been seen by the networks during the training step. U-
Net-SIM15 consistently produced images with fidelity compar-
able to that of the conventional SIM algorithm (Fig. 1b, column
U-Net-SIM15). We next tested whether we could accelerate SIM
imaging by reducing the number of raw images for SIM
reconstruction. We trained another U-Net (U-Net-SIM3) using
only three SIM raw images (the first phase at each angle) as input,
and again used the SIM reconstruction results from fifteen images
as the ground truth. Surprisingly, U-Net-SIM3 could produce
restored images (Fig. 1b, column U-Net-SIM3) with the quality of
those produced using U-Net-SIM15 and the ground truth. We
estimated the restoration error maps using SQUIRREL!® for both
conventional SIM reconstruction and U-Net output images
against the average projection of the SIM raw data, and used
both resolution-scaled error (RSE) and resolution-scaled Pearson
coefficient (RSP) to quantify the quality of the restoration
(Supplementary Fig. 2, Methods). Line profiles along micro-
tubules, adhesions, mitochondria, and F-actin showed that U-Net
reached a lateral resolution comparable to conventional SIM
reconstruction (Fig. 1b). We also quantified the resolution of each
approach using a recently reported approach based on decorrela-
tion analysis!”(Fig. 1c), peak signal-to-noise ratio (PSNR), the
normalized root-mean-square error (NRMSE), and the structural
similarity index (SSIM) (Supplementary Table 2, Methods).
Furthermore, we applied the pre-trained model to visualize the
dynamics of microtubules in living cells with high resolution
(Supplementary Movie 1).

SIM reconstruction from noisy input. Next, we sought to
increase acquisition speed and reduce photobleaching by using
low laser power and reducing the exposure time (Supplementary
Table 3). Reducing light levels degrades conventional SIM
reconstruction because there is less information in the raw data.
U-Net and other machine learning methods have been success-
fully adopted to recover information from low-light samples!!.
We therefore trained another U-Net (U-Net-SNR) to recover
signals from poor-quality images, and fed the output from this to
the pre-trained U-Net-SIM15. U-Net-SNR alone could recover
information from low-light samples (e.g., periodic illumination
patterns, Supplementary Fig. 3a, b). Combining the two networks
produced good resolution throughout much of the images, but
failed in some specific areas (Supplementary Fig. 3c). We hypo-
thesized that training a deeper network by connecting two U-Nets
could improve performance!l>18, so we constructed a new
architecture (scU-Net) by chaining two U-Nets through skip-
layer connections (Fig. 2a, Supplementary Fig. 4). The networks
(both U-Net-SIM15 and scU-Net) were trained using an input of
15 SIM raw images obtained under low-light conditions, and
using SIM reconstruction from normal light dosages as the
ground truth. We found that both U-Net-SIM15 and scU-Net
produced better restoration quality than conventional SIM
reconstruction of low-light samples (Fig. 2b). We quantified
network performance by calculating PSNR, NRMSE, and SSIM
for the different reconstruction approaches relative to the ground
truth (Supplementary Table 4). Our results showed that scU-Net
provides the least restoration error (Supplementary Fig. 5, Row
RSP and RSE in Supplementary Table 4). Both U-Net-SIM15 and
scU-Net achieved higher resolution than conventional SIM
reconstruction under low-light conditions, but scU-Net per-
formed better on three out of four tested structures (Supple-
mentary Table 5). We further tested the pre-trained scU-Net to
visualize the dynamics of microtubules in living cells under
extreme low-light conditions (Fig. 3a, Methods). The quality of
the input and conventional SIM reconstruction was poor under
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Fig. 1 Super-resolution imaging with U-Net. a Fifteen or three SIM raw data images were used as input and the corresponding SIM reconstructions from
15 images were used as the ground truth to train the U-Net. ©: the angle of the sinusoidal patterned illumination; y: the phase of the patterned illumination.
b Reconstruction results for different subcellular structures. Shown are average projections of 15 SIM raw data images (first column), the reconstruction
results from a conventional SIM reconstruction algorithm (second column), U-Net-SIM15 output (third column), U-Net-SIM3 output (fourth column) and
line profiles along the dashed line in each image (fifth column). In the line profile plot, the average is shown on the right y-axis and all others share the left
y-axis. r indicates the resolution. Shown are representative images randomly selected form the testing dataset indicated in Supplementary Table 1. The
training datasets were collected from at least three independent experiments. ¢ The achieved resolution of different approaches was estimated (Source
data are provided as a Source Data file). MT microtubules (n =204); Adh. adhesions (n = 32); Mito. mitochondria (n = 61); Act. F-actin (n=285). A

average; S SIM reconstruction; UT5 U-Net-SIM15; U3 U-Net-SIM3. Tukey box-and-whisker plot shown with outliers displayed as dots (Methods). Scale

bar: 1 pm.

these conditions (Fig. 3a, column 1 and 2). U-Net-SIM15
improved the reconstruction but missed some details (Fig. 3a,
column 3). The scU-Net retrieved the missing structures from U-
Net-SIM15 (Fig. 3a, column 4, white arrows), enabling us to track
the dynamics of single microtubules (Fig. 3b, Supplementary
Movie 2) with substantially reduced photobleaching (Supple-
mentary Fig. 6). We used the pre-trained scU-Net to examine
microtubule/mitochondrial interactions with short exposure time
and low laser intensity (Fig. 3¢, Supplementary Movie 3, Meth-
ods), but with no discernable compromise to image quality.
Using networks trained on synthetic tubular and point-like
data, previous studies showed that U-Net could resolve sub-
diffraction structures with at least 20x faster speed than super-
resolution radial fluctuations (SRRF)!L19, We investigated the
performance of U-Net trained on real biological samples. With a

single U-Net (U-Net-SRRF5), we achieved comparable quality by
taking as few as five total internal reflection fluorescence (TIRF)
microscopy images, 40x fewer images than SRRF (Supplementary
Fig. 7a-c). In general, 50-70 single cells were needed for the
training step to obtain a working model (Supplementary Table 1).
A model trained from a given intracellular structure produced
significant artifacts when used to examine other structures
(Supplementary Fig. 8). We applied transfer learning?® to
minimize the effort when adapting our pre-trained networks to
other structures (Methods). U-Net-SIM15 pre-trained on micro-
tubules was used to initialize a new U-Net retrained with other
structures (adhesions, mitochondria and F-actin) (Methods). This
achieved considerable improvement in the output quality even
with only 200 training samples for each structure and 1/10 the
training effort (Supplementary Fig. 9). Although we could achieve
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Fig. 2 Super-resolution imaging under extreme low-light conditions. a Two U-Nets were stacked through skip-layer connections. Fifteen SIM raw data
images taken under low-light conditions were used as the input and the corresponding SIM reconstructions under normal-light conditions were used as the
ground truth to train the scU-Net. b Reconstruction results for different subcellular structures (first row: microtubules; second row: adhesions; third row:
mitochondria; fourth row: F-actin). Shown are average projections of 15 SIM raw data (first column), the reconstruction results from a conventional SIM
reconstruction algorithm (second column), U-Net-SIM15 output (third column), scU-Net output (fourth column), and the ground truth from SIM
reconstruction under normal-light conditions (fifth column). Shown are representative images randomly selected form the testing dataset indicated in
Supplementary Table 1. The training datasets were collected from at least three independent experiments. The local enlargements show the restoration

quality. Scale bar: 1 pm.

ultra-short exposure times (< 5ms) for single frames, the
minimum time interval between each processed image (1) was
limited by our commercial SIM system, due to the time required
to change the hardware between each image acquisition. Our data
show that deep learning can substantially push this speed limit
using home-built SIM systems>?! or faster commercial systems.

Discussion

Here we use deep learning to produce high-quality SIM images
with fewer input images and with lower intensity and/or shorter
exposure. Importantly, we quantitatively showed that deep
learning can achieve resolution comparable to that of conven-
tional SIM reconstruction algorithms (Fig. 1¢c). We demonstrated
that by taking SIM raw data as input, we could preserve patterned
illumination information when recovering signals from low-light
samples (Supplementary Fig. 3). This could be useful for other
advanced imaging techniques that utilize structured illumination,
such as repetitive optical selective exposure (ROSE)?% and SIM-
FLUX?23, These techniques use structured illumination to boost
precision of single molecule imaging, requiring the precise esti-
mation of the illumination phase. This would be impossible using
a single TIRF image or average SIM raw data as input. Finally,
previous studies by the Ozcan lab!2 used Generative Adversarial
Nets (GANs), to convert TIRF images into SIM-quality images.

We are using U-Net, a convolutional neural network. GANSs is a
competitive process between the generator (G) and discriminator
(D). Therefore, two networks have to be trained and the loss
between G and D has to be balanced carefully. GANs perform
well in image-to-image translation, but are generally difficult to
train?4-26, requiring more input images and more training
epochs!2. Our method only required 50-70 samples per structure
and training for 2000 epochs. The U-Nets based approach is
therefore more user friendly, especially for biologists and users
who are inexperienced with deep learning.

Methods
Microscopes. SIM imaging was performed on the Nikon N-SIM system equipped
with 488 nm (70 mW), 561 nm (70 mW), and 647 nm (125 mW) laser lines, two
EMCCD cameras (Andor iXon3) and a 100x, NA 1.45 objective (Nikon, CFI
Apochromat TIRF 100XC Oil). For the training datasets, we used 10% intensity of
488/561/647 nm lasers and 200 ms exposure time to acquire SIM images with high
quality, and 1% intensity of 488/561/647 nm lasers and 20 ms exposure time to
acquire SIM images under low-light conditions. For the live-cell microtubule
imaging experiments, we used 10% intensity of the 561 nm laser with 100 ms
exposure for normal light conditions, and used 1% intensity of the 561 nm laser
and 5 ms exposure for low-light conditions. For the dual-color experiments, we
used the 488 nm laser at 2% power and the 561 nm laser at 1% power with 50 ms
exposure time to visualize microtubule-mitochondria interactions.

The SRRF imaging was performed on a home-built TIRF microscope equipped
with 488, 561, and 647 nm laser lines, two sCMOS cameras (Photometrics, Prime
95B) and a 100x, NA 1.49 TIRF objective (Olympus, UAPON100XOTIRF). For
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Fig. 3 scU-Net for live-cell imaging. a Reconstruction results for microtubules in living cells. A representative time point is shown. The missing structures
from U-Net-SIM15 were recovered by scU-Net (white arrows). First panel shows the average projections of 15 SIM raw images; second panel shows the
SIM reconstruction; third panel shows the U-Net-SIM15 output; fourth panel shows the scU-Net output. n =3, from three independent experiments. b
Enlarged views of areas indicated by the white-dashed box in a are shown. The dynamics of a single microtubule (white triangle) was well restored by scU-
Net. ¢ scU-Net reveals the dynamics of microtubule-mitochondria interactions. First row: average projections of 15 SIM raw images; second row: SIM
reconstruction; third row: scU-Net output. n =3, from three independent experiments. Scale bar: T pm.

imaging microtubules, we used 0.6 mW from a 647 nm laser and 100 ms
exposure time.

Cell culture and preparation. For the training step, fixed cell samples were used.
We prepared four training datasets from various subcellular structures, including
microtubules, adhesions, mitochondria, and F-actin. For imaging mitochondria
and F-actin, fluorescently prelabeled commercial slides (Molecular Probes, F36924)
were used. Microtubule and adhesion samples were prepared as follows:

Microtubules: Mouse embryonic fibroblast (MEF) cells were fixed with —20 °C
100% methanol for 3 min. The cells were washed for five times with 0.1% Triton-
X100 in phosphate-buffered saline (PBS), and then permeabilized with 0.5%
Triton-X100 in PBS for 10 min. Next, the cells were washed three times again and
blocked for 15 min with blocking buffer (5% BSA in the wash buffer). The cells
were incubated with beta-tubulin antibody (Developmental Studies Hybridoma
Bank, E7) (1:500 dilution into blocking buffer), followed by the Anti-rabbit IgG (H
+ L) F(ab’)2 Fragment conjugated with Alexa-647 dye (CST, 4414S).

Adhesions: MEF cells were fixed with 37 °C 4% paraformaldehyde for 10 min at
room temperature. The cells were washed with PBS three times and blocked with
3% BSA, 0.2%Triton-X100 in PBS for 30 min. The cells were incubated with 1:100
diluted primary antibody (Santa Cruz Biotechnology, sc-365379) for 30 min and
washed (0.2% BSA, 0.1% Triton-X100) five times, followed by the staining of the
anti-rabbit IgG (H + L), F(ab’)2 fragment conjugated with Alexa-647 dye (CST,
4414S).

Live cells labeling: COS-7 cells were cultured in Dulbecco’s modified Eagle’s
medium (Fisher Scientific, 15-013-CV) supplemented with 10% fetal bovine serum
(Gemini, 100-106) and 5% GlutaMax (Thermo Fisher, 35050061). To visualize
microtubules, COS-7 cells were transfected with a microtubule-associated protein
(EMTB-3xmCherry or EMTB-3xEGFP), using Viromer Red transfection reagent
(OriGene Technologies, TT1003102). Mitochondria were stained with MitoTracker
Green FM (Thermo Fisher, M7514) according to the manufacturer’s instructions.

Data preprocessing. For deep learning, the size of the training dataset should be
as large as possible to cover the distribution of images in the task domain. How-
ever, collecting huge amount of single cell data can be time consuming and
expensive. We therefore cropped the original image stacks into smaller patches to
generate more training samples for all the experiments. In SIM experiments, the
size of the raw image stack was 512 x 512 x 15 (width x height x frame). To prepare
the input for U-Net-SIM15, the raw stack was cropped into 128 x 128 x 15 patches.
For U-Net-SIM3, only the first phase of three illumination angles were selected,
producing 128 x 128 x 3 patches. After that, we manually discarded the patches,
which contained only background information. We then located the same areas on
the SIM reconstruction images to produce the corresponding ground-truth images.
In total, we obtained 800-1500 samples for different structures, which were then
randomly divided into training, validation, and testing subsets. Detailed informa-
tion about each dataset is in Supplementary Table 1.

Normalization is also important to the efficiency and robustness of the network.
We normalized the input images to the maximum intensity of the whole input
dataset and the ground truth images to the maximum intensity of the SIM
reconstruction dataset.

Since U-Net requires the width and height of the input images to match the
ground truth images, we resized the input dataset to 256 x 256 x C (C means the
number of channels for the input data; it differs among different experiments)
using bicubic interpolation.

Network architectures and training details. U-Net-SIM15 and U-Net-SIM3, U-
Net-SNR, and U-Net-SRRF share similar network architectures (Supplementary

Fig. 1) and they only differ in the numbers of channels of either input or output
(ground truth) dataset (U-Net-SIM15: C;, = 15, Cyy¢ = 1; U-Net-SIM3: C, = 3,

Cout = 1; U-Net-SNR: Cj, = 15, Cyye = 15; U-Net-SRRF: Cy,, =5, Co = 1; Gy, and
Cout are the numbers of channels of the input and output, respectively). For the U-
Net-SNR, we took 15 SIM raw data images acquired under low-light conditions as
the input and the same sample under normal light conditions as the ground truth.
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For the U-Net-SRRF, we used five TIRF frames as the input and the SRRF
reconstruction from 200 frames as the ground truth. For the SIM experiment under
low-light conditions, the scU-Net was used (Supplementary Fig. 4). The training
details for each experiment are listed in Supplementary Table 1. The loss function
for all experiments is defined as:

W H w

H
loss = 21— ¢ (Z S (UG) = Vi) +5% 3D (U)) - V(z;j))z)-

i=1 j=1 i=1 j=1
ey

Here W and H represent the width and height of the ground truth image in the
training step (W = 256, H = 256 across all networks related to SIM and W = 320,
H = 320 for the SRRF experiment). U and V represent the ground truth image and
the output from the network, respectively. The codes for training and testing were
written using Python with PyTorch framework. All the source codes will be
available online (https://github.com/drbeiliu/DeepLearning).

Quantification of performance for each network. For the testing part, we used
four metrics to evaluate the performance of our networks, including image reso-
lution, PSNR, NRMSE, and SSIM. The resolution of each cropped image was
estimated using the ImageDecorrleationAnalysis plugin in Fiji/Image] with the
default parameter settings!”. Note that for low-light images, the image quality was
so poor that the plugin failed to report a reasonable value. In that case, we used the
whole-cell image, instead of the cropped patches to estimate the resolution. As for
PSNR, NRMSE, and SSIM, we used the SIM reconstruction results under normal-
light conditions as the ground truth. Each metric was calculated as below:

255
VIR S UG ) = VG, )/ (W H)

@)

PSNR = 20x log,,

VL S UG )~ VG ) (W H) )
NRMSE = 5 .

ssm:( 20V +C, 200y + G, ) @

UZ+V2+C1>X <o§,+a2v+cz

Here W and H represent the width and height of the ground truth image in the
training step (W =256, H = 256 across all networks). U and V represent the
ground truth image and the output of the network, respectively. U and V represent
the averages of U and V. gy, and o, represent the variances of U and V. gy, is the
covariance of U and V. The items C, and C, are small positive constants that
stabilize each term (C, = (k,L)*, C, = (k,L)*, L is the dynamic range of the pixel-
values, k; = 0.01 and k, = 0.03 by default). The code for calculating the
performance was written with Python.

We then computed the performance of each metric for each architecture based
on the output of the networks and the ground truth images (Supplementary
Table 2, Supplementary Table 4). RSP and RSE were introduced before to assess the
quality of super-resolution datal® and were calculated using NanoJ-SQUIRREL
(https://bitbucket.org/rhenriqueslab/nanoj-squirrel/wiki/Home).

Transfer learning. Directly applying a model trained on one specific structure to
other structures may produce significant artifacts (Supplementary Fig. 8), which
means that each target needs a unique model. In theory, we need to prepare ~1000
training samples and train the network for 2-3 days (~2000 epochs) on a
consumer-level graphics card (NVIDIA GTX-1080 GPU) to get a working model
for each structure we tested. We adopted transfer learning?” to reduce the effort of
imaging new structures. Briefly, we took the parameters obtained from a pre-
trained network to initialize a new network and started retraining on a different
structure with smaller training samples size (200 of cropped patches). We validated
the effectiveness of transfer learning in restoring different structures. Even with
reduced training efforts (200 epochs), the new model produced results comparable
to the model trained with a much larger dataset and greater training effort (Sup-
plementary Fig. 9).

SRRF experiment. In the SRRF experiment, the original input images were
cropped into 64 x 64 x 5 (width x height x frame), and the original ground truth
images, which were computed from 200 TIRF images, were cropped into 320 x
320 x 1. Note that the first 5 TIRF images were used from the total of 200 TIRF
images. Since the size of the SRRF super-resolution image is larger than the input,
we resized the cropped input image (64 x 64 x 5) into 320 x 320 X 5 using bicubic
interpolation to match the size of the ground truth.

Statistical analysis. In Fig. 1c, we used a Tukey box-and-whisker plot generated
by GraphPad Prism 8.0. The box extends from the 25th and 75th percentiles and
the line in the middle of the box indicates the median. To define whiskers and
outliers, the inter-quartile distance (IQR) is firstly calculated as the difference
between the 25th and 75th percentiles. The upper whisker represents the larger

value between the largest data point and the 75% percentile plus 1.5 times the IQR;
the lower whisker represents the smaller value between the smallest data point and
the 25th percentile minus 1.5 times the IQR. Outliers (any value larger than the

upper whisker or smaller than the lower whisker) are displayed as dots. P values
provided in Source Data are obtained from a Student’s paired ¢ test, with a two-

tailed distribution.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All relevant data are available within the article and the Source Data. The training
datasets are available from the corresponding author upon request, due to size
limitations. The code and the pre-trained networks are available on GitHub: https://
github.com/drbeiliu/DeepLearning and on http://hahnlab.com/tools/. The source data
underlying Fig. 1c, Supplementary Tables 2, 4 and 5 are provided as a Source Data File.
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