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Abstract 
Migratory connectivity describes the linkage between breeding and nonbreeding sites, having major ecological implications in birds: 1 season 
influence the success of an individual or a population in the following season. Most studies on migratory connectivity have used large-scale 
approaches, often considering regional populations, but fine-scale studies are also necessary to understand colony connectivity. The lesser 
kestrel Falco naumanni, an insectivorous migratory raptor which form colonies during the breeding period, was considered to have strong 
connectivity based on regional populations. However, no small-scale studies on migratory connectivity have been conducted. Therefore, we 
GPS (Global Positioning System)-tracked 40 adult lesser kestrels from 15 different Spanish breeding colonies, estimating the overlap index 
between home ranges and the distance between their centroids. It was found that lesser kestrels from the same breeding colony placed 
their nonbreeding areas at 347 ± 281 km (mean ± standard deviation) away from each other (range = 23–990), and their home ranges over-
lapped by 38.4 ± 23.6%. No differences between intra-colony and inter-colony metrics were found, which suggests that lesser kestrels from 
the same breeding cluster do not overwinter together, but they spread out and mixed independently of the colony belonging throughout 
the nonbreeding range of the species. Ultimately, this study highlights the importance of performing connectivity studies using fine-scale 
approaches.
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Migratory birds divide the annual cycle between 2 areas sep-
arated by hundreds or thousands of kilometers (breeding and 
nonbreeding grounds), usually under different environmen-
tal conditions and selective pressures, with respect to food 
distribution and abundance, rearing constraints, competition, 
etc. (Urios et al. 2017; López-López et al. 2021; Urios and 
García-Macía 2022). The movements of migratory birds are 
determined by a complex set of environmental drivers which 
often differs between breeding and nonbreeding areas. This 
entails several ecological implications regarding foraging hab-
its, aggregation patterns, home range sizes, etc.

In this context, migratory connectivity is defined as the 
degree of linkage between breeding and nonbreeding sites via 
the trajectories of individual migrants (Webster et al. 2002; 
Boulet and Norris 2006; Bauer et al. 2016). On the one hand, 
“low connectivity” occurs when individuals from the same 
breeding population are widely spread throughout the non-
breeding range of the species, mixing with individuals from 
other breeding populations (Webster et al. 2002; Dias et al. 
2012). On the other hand, “strong connectivity” occurs when 
most individuals from 1 breeding population migrate to the 
same nonbreeding ground (Webster et al. 2002; Guilherme 
et al. 2022). Migratory connectivity follows a continuum, so 
populations usually lie between those 2 ends. Therefore, both 

“low” and “strong” connectivity have been reported in sev-
eral taxa, including raptors and Passeriformes (Lemke et al.  
2013; Finch et al. 2017). Advances in the last decades in 
remote tracking, analysis of molecular genetic markers, and 
chemical isotopes have offered new insights in the study of 
migratory connectivity.

Connectivity patterns have ecological and evolutionary 
consequences in birds. Populations with low connectivity may 
contain more variation for migratory behavior (i.e., timing 
and direction). Furthermore, birds widely spreading through-
out the nonbreeding range must face different selective pres-
sures due to the variety of winter locations. On the other 
hand, populations with strong connectivity will face similar 
selective pressures and may contain less behavioral variation, 
leading populations to acquire more local and specific adap-
tions. Ultimately, on an evolutionary scale, connectivity pat-
terns could lead to speciation processes (Webster et al. 2002). 
Although low connectivity may facilitate rapid range shifts in 
response to climate change, populations with wide spreading 
may not find optimal wintering habitats (Finch et al. 2017). 
Studying connectivity patterns is fundamental to understand-
ing population dynamics and providing good management 
keys to species conservation. Processes in 1 season influence 
the success of an individual in the following season, that is, 
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seasonal carry-over effects may affect population dynamics 
(Harrison et al. 2010). For example, winter survival may 
determine breeding densities and reproductive success, and 
winter survival is influenced, in part, by events that occurred 
in the previous breeding season (Fretwell 1972).

The scale approach may be important in migratory con-
nectivity studies because it may lead to different results. 
Most studies on migratory connectivity have used large-scale 
approaches (Finch et al., 2017; Sarà et al. 2019; Studds et al.  
2021; Guilherme et al. 2022), often considering regional 
populations as sample unit. However, fine-scale approaches 
using colonies are also necessary (Finch et al. 2017; Bracey 
et al. 2018). For example, it has been reported that the lesser 
kestrel Falco naumanni, an insectivorous raptor widely dis-
tributed among the Paleartic, shows a strong migratory con-
nectivity: Iberian birds migrate to western Sahel, Balkan birds 
chiefly to central-eastern Sahel, and Italian ones to eastern 
Sahel (Sarà et al. 2019). This was expected because this spe-
cies forms colonies and individuals highly aggregate during 
the breeding season, even respecting the boundaries of the 
neighboring colonies (Di Maggio et al. 2013; Cecere et al. 
2018). However, this large-scale approach may not respond 
to several questions: no flocking behavior has been reported 
in the species during post-breeding migration and the com-
position of communal roosts in the Sahel are larger (often 
hundreds of individuals; BirdLife International 2023) than 
breeding colonies in Europe (often a few tens; Bustamante 
et al. 2020). Therefore, communal roosts are probably the 
result of mixed aggregations between individuals from differ-
ent colonies. Fine-scale approaches are necessary to study the 
destinations and nonbreeding areas of colony members and 
the selective pressures they face, which may ultimately lead 
to a better understanding of the population dynamics of the 
colonies, differences in the number of individuals returning to 
their colonies, or the reproductive success of the colonies in 
the following season.

We GPS-tracked 40 adult lesser kestrels from 15 Spanish 
breeding colonies in order to study the migratory connectivity 
and aggregation patterns of individuals from the same breed-
ing colony during the nonbreeding period in West Africa. The 
main objective of this study was to analyze the migratory con-
nectivity of the lesser kestrels, a long-distance migrant raptor, 
using a colony-scale approach. To do this, we explored differ-
ences between colonies in phenology metrics and home range 
sizes and estimated the intra- and inter-colony overlap index 
and distances. Based on previous large-scale studies (Sarà et al.  
2019), it was expected high connectivity in the species, but 
we hypothesize that this connectivity will change on a smaller 
scale.

Materials and Methods
Study species
The lesser kestrel (Falco naumanni Fleischer, 1818; 
Falconidae) is a small migratory raptor with a large geo-
graphical range in Eurasia and Africa. Their breeding popula-
tions extend from Central Asia to the Mediterranean region 
(Bijleveld 1974; Cramp and Simmons 1980; Ortego 2016; 
GBIF 2022). Individuals from the Eastern Palearctic usually 
use a longer eastern migratory route to spend the winter in 
East and South Africa (Ferguson-Lees and Christie 2001), 
while birds from the Western Palearctic follow a shorter west-
ern migratory route across the Mediterranean Sea (Sarà et 

al. 2019), to reach their nonbreeding grounds in sub-Saharan 
Africa. The lesser kestrel is essentially insectivorous and some-
times feeds on small mammals and reptiles (Rodríguez et al. 
2006, Rodríguez et al. 2010). This species prefers open areas 
like steppes (Atienza and Tella 2004), but it is also linked to 
urban environments and human constructions, where they 
often nest (Ortego 2016). It is a gregarious bird that usually 
forms colonies of dozens of pairs during the breeding season 
(Bustamante et al. 2021).

Globally, the lesser kestrel is considered as “Least 
Concern” because their entire population is currently 
“stable,” with 80,000–134,000 mature individuals (IUCN 
2021). However, it has been considered “vulnerable” in 
Spain since the 1990s (Bustamante et al. 2021). In this 
country, around 10,000 breeding pairs have been estimated, 
distributed throughout more than 2,000 colonies and iso-
lated breeding areas (Arroyo and García 2007, Bustamante 
et al. 2020).

Tagging and sample size
Forty adult lesser kestrels (21 females and 19 males) tagged at 
15 different colonies in Spain provided data on nonbreeding 
movements after returning to their breeding colony (Table 1 
and Figure 1). We obtained data for 55 nonbreeding seasons 
between 2016 and 2021 (Supplementary Table S1).

The 15 colonies included 2.7 ± 1.4 individuals tagged on 
average (range = 1–5): Pinto (5), Perales del Río (4), T0rrejón 
de Velasco (4), Navalcarnero (4), Villalpando (4), Palma 
del Condado (4), Doñana National Park (3), Baena (2), 
Castelló de Empuries (2), Tarancón (2), Villares del Saz (2), 
La Almarcha (1), Can Viure (1), Fraga (1), and Arganda del 
Rey (1).

Lesser kestrels were captured at the breeding colony, usu-
ally during courtship while roosting near the nest. After cap-
ture, individuals were ringed, weighed (mean = 146 g; n = 
40), and measured. The sex was determined by morphologi-
cal characteristics, given the sexual dimorphism of the species 
(Cade and Digby 1982). A GPS-biologger transmitter was 
attached to the back of each individual by a back-pack har-
ness tied with Teflon ribbon, designed to allow its release after 
a few years of monitoring. All the transmitters were Nano-
GPS from PathTrack (Leeds, UK) model NanoFix GEO+RF 
(weigh = ~ 4g, less than 5% of birds’ weight), thus complying 
with the recommended standard (Kenward 2001).

Biologgers provided GPS fixes every 15 min to 1 h from 
dawn to dusk during the nonbreeding season and downloaded 
data to a base located at the breeding colony. Some biologgers 
provided locations 24 h a day from February to October, but 
night locations were excluded. Only kestrels that migrated 
back to the breeding colony provided data on nonbreeding 
movements. Locations were filtered at a homogeneous 1-h 
frequency to avoid bias in subsequent calculations, allowing 
deviations up to 20 min. Locations were transformed to UTM 
(Universal Transverse Mercator) coordinates.

Analysis of movement-related variables
We determined arrival to and departure from the nonbreed-
ing grounds based on marked shifts in daily distances and 
interruptions in migration latitudinal displacements (Lopez-
Ricaurte et al. 2021). Therefore, arrival to the nonbreeding 
ground was established when the individual abruptly stopped 
the latitudinal displacement and reduced daily traveled dis-
tances, and vice versa.

http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad028#supplementary-data
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We estimated home ranges (95% Kernel Density Estimator, 
KDE) and core areas (50% KDE) using all GPS fixes of each 
individual and year using adeHabitat R library (Calenge 
2006). We used the ad hoc method to estimate the smoothing 
parameter (Schuler et al. 2014). The centroids of 95% KDE 
were estimated using QGIS 3.16.6.

In order to explore the influence of sex and colony in the 
movement metrics, a series of generalized linear mixed mod-
els were performed using the lme4 package in R (Bates et al.  
2015). Onset and end of nonbreeding period (day of the 
year), home ranges (95% KDE) and core areas (50% KDE) 

were fitted as response variables, while the sex (male/female) 
and the breeding colony identification were fitted as explana-
tory variables. All models were run including individual iden-
tification as a random effect. AIC model selections were also 
performed to determine the distribution of the response var-
iables (Gamma, Poisson, or Gaussian). Gamma distributions 
were selected for home ranges and core areas, while Gaussian 
distributions were selected for the onset and end of the non-
breeding period. To evaluate the significance in linear mixed 
effects, ANOVA tests with Kenward-Roger approximations 
were performed.

Table 1 Metadata of the 40 lesser kestrels tagged with Solar GPS biologgers. Sex, age, colony (province), and beginning/end of tracking of each 
individual are shown

ID Age Sex Colony (Spanish province) Beginning of tracking End of tracking

16639 Adult Male Baena (Córdoba) 2017 2018

16643 Adult Female Baena (Córdoba) 2017 2019

16687 Adult Female Castelló de Empuries (Gerona) 2017 2018

16688 Adult Male Castelló de Empuries (Gerona) 2017 2019

17281 Adult Female Tarancón (Cuenca) 2018 2019

17292 Adult Female Tarancón (Cuenca) 2018 2019

17240 Adult Male Villares del Saz (Cuenca) 2018 2019

17245 Adult Female Villares del Saz (Cuenca) 2018 2019

17288 Adult Female La Almarcha (Cuenca) 2017 2019

16690 Adult Male Can Viure (Barcelona) 2017 2019

16611 Adult Male Fraga (Huesca) 2016 2019

17235 Adult Male Arganda del Rey (Madrid) 2018 2019

16127 Adult Male Perales del Río (Madrid) 2017 2019

16137 Adult Male Perales del Río (Madrid) 2017 2020

17256 Adult Female Perales del Río (Madrid) 2018 2019

17261 Adult Male Perales del Río (Madrid) 2018 2019

16275 Adult Female Pinto (Madrid) 2017 2018

16212 Adult Male Pinto (Madrid) 2016 2017

17239 Adult Female Pinto (Madrid) 2018 2019

17237 Adult Male Pinto (Madrid) 2018 2020

17241 Adult Female Pinto (Madrid) 2019 2020

17250 Adult Male Torrejón de Velasco (Madrid) 2018 2020

17251 Adult Male Torrejón de Velasco (Madrid) 2018 2019

17253 Adult Male Torrejón de Velasco (Madrid) 2018 2019

17254 Adult Male Torrejón de Velasco (Madrid) 2018 2020

17278 Adult Female Navalcarnero (Madrid) 2018 2020

17280 Adult Female Navalcarnero (Madrid) 2018 2019

17282 Adult Female Navalcarnero (Madrid) 2018 2019

17262 Adult Female Navalcarnero (Madrid) 2018 2019

16679 Adult Female Villalpando (Zamora) 2017 2019

16661 Adult Female Villalpando (Zamora) 2017 2018

16584 Adult Female Villalpando (Zamora) 2017 2018

16616 Adult Female Villalpando (Zamora) 2017 2017

17195 Adult Male Espacio Natural de Doñana (Sevilla) 2018 2019

17199 Adult Female Espacio Natural de Doñana (Sevilla) 2018 2019

17218 Adult Male Espacio Natural de Doñana (Sevilla) 2018 2019

17210 Adult Male Silo de la Palma del Condado (Huelva) 2018 2019

17214 Adult Female Silo de la Palma del Condado (Huelva) 2018 2019

17215 Adult Female Silo de la Palma del Condado (Huelva) 2018 2019

17219 Adult Male Silo de la Palma del Condado (Huelva) 2018 2019
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Migratory connectivity of the colonies
Two metrics were used to explore the segregation of lesser 
kestrels throughout their nonbreeding range: home ranges 
overlaps and distances between home ranges centroids.

Home ranges overlaps were calculated using the function 
‘“kerneloverlap” from adehabitatHR R library (Fieberg and 
Kochanny 2005), resulting in a matrix of pairwise compari-
sons which included the proportion of animal i’s home range 
that is overlapped by animal j’s home range (Kernhoan et al. 
2001). Overlap values range from 0 (no overlap) to 1 (com-
plete overlap). We calculated the “intra-colony” overlap as 
the overlap between the home ranges (KDE 95%) of individ-
uals from the same breeding colony during the same year, and 
the inter-colony overlap as the overlap between home ranges 

of individuals from different colonies during the same year  
(n = Supplementary Table S3). We only used 95% KDE to cal-
culate overlap because 50% KDEs were too small to overlap 
between them in many cases. In addition, when data for at 
least 2 complete years were available for the same individual 
(n = 9), we calculated the repeatability of nonbreeding areas 
as the year-to-year overlap following the previous method.

Distances between home ranges were estimated as the 
Euclidian distance between their centroids. Similarly to the 
previous metric, we estimated intra-colony distance (dis-
tances between centroids of the home ranges of individuals 
from the same breeding colony) and inter-colony distance 
(those of individuals from different breeding colonies). 
In order to explore the differences between intra-colony 

Figure 1 Location of breeding colonies and nonbreeding range in the western Sahel of the 40 lesser kestrels tracked in this study.

http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad028#supplementary-data
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and inter-colony metrics, 2 linear mixed models (LMMs) 
were performed, testing the normality of their residuals. 
Overlap (0–1) and distances between centroids were fitted 
as response variables, while colony relation (intra-colony/
inter-colony) was fitted as an explanatory variable. All 
models were run including colony identification as a ran-
dom effect.

All statistical analyses were performed with R Software v. 
4.0.5. The significance level was established at < 0.05.

Results
Phenology and home range sizes
The 40 lesser kestrels spent the nonbreeding period in a lon-
gitudinal strip of about 1,600 km within the western Sahel 
(Figure 1). On average, the nonbreeding period lasted 147 
± 27 days, from the last week of August to the last week of 
January, on average (Table 2 and Supplementary Table S1). 
The average nonbreeding season range of an individual (95% 
KDE) was 143,697 ± 98,048 km² (range = 5,001–445,393), 
while the core areas (50% KDE) averaged 29,414 ± 20,572 
km2 (range = 750–96,323; Table 2 and Supplementary Table 
S1).

No differences between sexes were found in the onset dates 
(ANOVA P-value = 0.67), end dates (P = 0.63), home ranges 
(P = 0.22), or core areas (P = 0.19). Likewise, no differences 
between colonies were found in the onset dates (P = 0.19), 
end dates (P = 0.31), home ranges (P = 0.60), or core areas 
(P = 0.54).

All but 1 individual (8 out of 9) repeated their nonbreeding 
areas (95% KDE) in consecutive years (Supplementary Table 
S3 and Supplementary Figure S1). The year-to-year overlap 
of those nonbreeding areas was 49 ± 27 % (range = 33–87). 
Only 1 individual (17,253) shifted completely its nonbreeding 
area, resulting in zero overlap.

Migratory connectivity of the colonies
Intra-colony home ranges (95% KDE) overlap index aver-
aged 38.8 ± 21.4 % (range = 0–69; Figures 2 and 3 and 
Supplementary Table S2), while inter-colony overlap 
index was 35.5 ± 12.5 % (range = 14–50; Figure 3 and 
Supplementary Table S3). The distance between the centroids 
of home ranges (95% KDE) of individuals from the same 
breeding colony averaged 347 ± 281 km (range = 23–990), 
while those of individuals from different colonies averaged 
335 ± 262 km (range = 16–1,067; Figure 3). Differences 

between intra-colony and inter-colony metrics were not 
found (Table 3).

Discussion
This study supports that there is no small-scale migratory 
connectivity in the lesser kestrels breeding in Spain, accord-
ing to home range overlaps and distances between them. On 
the contrary, it is suggested that individuals from the same 
breeding colony disaggregate during the wintering season in 
western Africa and communal roosts are composted by birds 
from different breeding clusters.

Sex and colony belonging did not influence nonbreeding 
phenology and home range sizes. Lesser kestrels usually 
showed itinerant behavior during the nonbreeding season and 
occupied large areas irrespectively of sex and the breeding 
colony of origin. Indeed, the lesser kestrels occupied larger 
areas during the nonbreeding period than other raptors in 
the Sahel and other sub-Saharan regions, such as the lesser 
spotted eagles (Aquila pomarina; Meyburg et al. 2015), the 
Montagu’s harrier (Circus pygargus; Limiñana et al. 2012b), 
the Egyptian vulture (Neophron percnopterus; García-
Ripollés et al. 2010), and the booted eagle (Aquila pennata; 
Urios et al. 2017). Lesser kestrels usually move along the 
longitudinal Sahelian strip and occupy several smaller areas 
(López-Ricaurte et al. 2022), probably motivated by the 
insectivorous diet of the species and the deteriorating ecolog-
ical conditions in the Sahel during late winter (Trierweiler et 
al. 2013): lower food abundances require more intense for-
aging activity, flight effort and displacements between areas 
(Schlaich et al. 2016; García-Macía et al. 2022). In fact, grass-
hopper density was shown to influence the distribution of the 
lesser kestrel and other insectivorous species in the western 
Sahel (Augiron et al. 2015). Therefore, the abundance of 
insects may be the key to understanding the itinerant move-
ments of insectivorous raptors in the Sahel and the large areas 
occupied by these species. Ultimately, this itinerant behavior 
and the large areas occupied by the species may also affect 
migratory connectivity (Fraser et al. 2017).

Our results suggest that there is no small-scale migratory 
connectivity in the lesser kestrel. The estimated intra-colony 
overlap and distances were not significantly higher than 
inter-colony metrics, which suggests that lesser kestrels 
aggregate irrespective of colony belonging and share space 
and resources. Low connectivity has been widely reported 
in long-distance migrant birds (Finch et al. 2017), including 

Table 2 Phenology and movement-related variables during nonbreeding season: onset and end of nonbreeding season, duration, home ranges (95% 
Kernel Density Estimator, KDE), and core areas (50% KDE). Values are shown as “mean ± SD (minimum–maximum),” calculated by using mean values 
of each nonbreeding season. Specific values are shown in Supplementary Table S1 

Onset of 
nonbreeding period

End of 
nonbreeding period

Duration of nonbreeding 
period (days)

Home range 
(95% KDE, km2)

Core areas (50% 
KDE, km2)

Overall 
(n = 55)

29/08 24/01 147 ± 27 143,697 ± 98,048
(5,001–445,393)

29,414 ± 20,572
(750–96,323)

Male (n 
=30)

09/09 02/02 146 ± 25 145,253 ± 87,939 
(5,001–279,949)

30,020 ± 18,709
(750–58,163)

Female 
(n = 25)

16/08 12/01 149 ± 30 141,829 ± 
110,811
(12,770–445,393)

28,687 ± 22,983
(2,764–96,323)

http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad028#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad028#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad028#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad028#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad028#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad028#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad028#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad028#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad028#supplementary-data
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Figure 2 Differences in home range overlaps and distances between their centroids between intra-colony and inter-colony.

Figure 3 Overlap of nonbreeding areas of individuals from the same breeding colony. Each panel represents the overlapping of the members of the 
colony during a single nonbreeding period. Each individual nonbreeding area is represented in a different color.

Table 3. LMMs coefficients for explanatory variable (colonial relation) used to explain home ranges overlap and distances between them for the 40 
lesser kestrels wintering in western Sahel. SE = Standard error; P = P-value. Significant values are highlighted in bold

Home ranges overlap (0-1) Distances between centroids (km)

Variable Estimate SE Degrees of freedom P Estimate SE Degrees of freedom P

(Intercept) 0.351 0.055 15.64 <0.001 366.10 61.02 15.42 <0.001

Intra-colony 0.029 0.064 13.48 0.66 63.00 68.82 0.92 0.48
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other insectivorous birds that overwinter in the Sahel, such as 
the Montagu’s harrier (Limiñana et al. 2012a).

However, Sarà et al. (2019) reported strong connectivity 
for lesser kestrels, but using a population-scale approach. 
Therefore, the species may show strong connectivity at large 
scales, but not at a small one. Probably, belonging to the 
same breeding cluster does not affect the behavior out of 
the breeding season and large-scale connectivity results from 
the efficiency of the migratory routes selected by the differ-
ent regional populations. Low connectivity was expected in 
the colonies because the ecological and reproductive con-
straints during the nonbreeding period are very different from 
those during the breeding season (Urios and García-Macía 
2022). Without being tied to a nest and a colony, lesser kes-
trels are able to optimize landscape exploration and forage 
independently of their breeding partners. Thus, the itinerant 
behavior of the species during the nonbreeding season, trig-
gered by the deteriorating environmental conditions, may be 
the most efficient strategy during this period, when individ-
uals prioritize the search for the best foraging areas and are 
mixed with other individuals irrespective of colony belonging

The high spreading degree in the Sahel might also respond 
to habitat loss and fragmentation, forcing individuals to sep-
arate their foraging areas to avoid competition (Curtis 2005). 
Further studies should explore how the changing environmen-
tal conditions in the Sahel affect the selection of nonbreeding 
areas by the species. In the case of the lesser kestrel, despite its 
itinerant behavior, its fidelity to the same nonbreeding areas 
may have negative implications on its foraging activity.

In conclusion, our study suggests that there may be large-
scale migratory connectivity in the lesser kestrel (Sarà et al. 
2019), but not a small-scale one, with colonies belonging to 
the same breeding cluster in Iberia mixing among them within 
the wintering grounds.
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