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ARTICLE INFO ABSTRACT

Article history:

The secreting function of pituitary adenomas (PAs) plays a critical role in making the treatment
strategies. However, Magnetic Resonance Imaging (MRI) analysis for pituitary adenomas is labor inten-
sive and highly variable among radiologists. In this work, by applying convolutional neural network
(CNN), we built a segmentation and classification model to help distinguish functioning pituitary adeno-
mas from non-functioning subtypes with 3D MRI images from 185 patients with PAs (two centers).
Specifically, the classification model adopts the concept of transfer learning and uses the pre-trained seg-
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Kf"y \{vords: mentation model to extract deep features from conventional MRI images. As a result, both segmentation
Pituitary adenomas R . R . . . S
MRI and classification models obtained high performance in two internal validation datasets and an external

testing dataset (for segmentation model: Dice score = 0.8188, 0.8091 and 0.8093 respectively; for classi-
fication model: AUROC = 0.8063, 0.7881 and 0.8478, respectively). In addition, the classification model
considers the attention mechanism for better model interpretation. Taken together, this work provides
the first deep learning-based tumor region segmentation and classification models of PAs, which enables
early diagnosis and subtyping PAs from MRI images.

Deep learning

© 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Pituitary adenomas (PAs) account for approximately 15% of all
intracranial tumors [1]. Recently, the prevalence of PAs has
increased to 115 cases per 100,000. The increase is probably due
to the rising use of diagnostic medical imaging and enhanced
awareness [2]. Clinically, PAs may cause considerable mortality
due to their mass effects and the hypersecretion of one or more
pituitary hormones [3]. Nonfunctioning pituitary adenomas
(NFPAs) are usually associated with mass effects, including head-
ache, visual defects, and the development of hypopituitarism.
Secretory adenomas produce one or more pituitary hormones such
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as prolactin, growth hormone (GH), adrenocorticotropic hormone
(ACTH), and thyroid-stimulating hormone (TSH), causing pheno-
typic clinical symptoms, including loss of libido, hyperthyroidism,
acromegaly and Cushing’s syndrome [2]. Treatments are deter-
mined often according to the size of the lesion and the status of
the secreting function. Therefore, early detection and management
of pituitary adenomas are non-negligible in improving the progno-
sis of patients with PAs.

Contrasted magnetic resonance imaging (MRI) is the main-
stream method to evaluate the location and size of PAs. The Grow-
Cut algorithm is freely available as a module for the medical image
computing platform 3D Slicer [4]| and has been used in a recent
study to segment PAs based on MRI [5]. Assessment of pituitary
hormones is another essential factor to determine the types and
treatment modalities for adenomas. Analysis of MRI images is
labor intensive and highly variable among radiologists. Besides,
the clinical testing of all pituitary hormones is usually time
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consuming, economically costly, and even remains unavailable in
many local medical centers. Therefore, constructing an artificial
intelligence system will assist the radiologists to obtain more reli-
able PAs diagnoses from the conventional MRI images, and thus led
to time and cost saving.

For the past decades, deep architecture [6] has garnered a great
amount of attention in various fields due to its representational
power. Deep learning methods, especially convolutional neural
networks, have shown great potential power in the assessment
of medical problems, such as cancer classification, tumor segmen-
tation and survival prediction [7-10]. Furthermore, reports
demonstrated that a computer-aided diagnosis (CAD) system can
accurately diagnose PAs through MRI images [11]. Ranging from
the LeNet architecture [12] to Residual-style Networks [13-15],
the network architectures have become deeper and wider for rich
representations. On the large labelled datasets, CNNs have shown
good performance in different computer vision tasks, such as Ima-
geNet [16,17], Microsoft COCO [18].

However, CNNs cannot be trained efficiently from scratch for
medical images due to small datasets. For the small dataset scenar-
io, an effective method to employ CNNs to medical image classifi-
cation is transfer learning [19]. Transfer learning is a deep learning
approach in which a model that has been trained for one task is
used as a starting point to train a model for a similar task. Usually,
fine-tuning a network from pre-trained network with transfer
learning is more computationally efficient than training a network
from scratch. Transfer learning techniques have been shown to be
successful in several medical applications, such as the diagnosis of
Alzheimer’s disease [20], magnetic resonance (MR) image segmen-
tation [21] and microscopy images [22]. In the previous studies,
there are two types of transfer learning approaches, such as (i)
use off-the-shelf trained CNN models over a large dataset of natu-
ral images as a feature extractor and train a separate learning
method for classification [23-26]. (ii) Use pre-trained CNNs and
apply fine-tuning to the application of medical images database
[27,28].

Although increasing the depth and width of network architec-
ture could help improve model performance, models tend to pro-
duce many redundant features and make convergence difficult.
Many researchers have investigated a different aspect of the archi-
tecture design, termed attention. The significance of attention
mechanisms has been studied extensively in previous research lit-
erature [29,30]. Introducing attention mechanisms in network
architecture design is more computationally efficient.

In this study, we employed a 3D deep learning algorithm to
generate three fully automated segmentation models based on
conventional MRI images. Then, we exploited transfer learning
methodology for feature representation based on trained segmen-
tation models to enhance classification accuracy. Our method is
different from (i) discussed above. We did not agree with the idea
of transfer learning from natural 2D images due to the purpose of
making full use of the 3D contextual information of MRI images.
We used pre-trained segmentation CNN models which are trained
on relatively large 3D MRI patches to initiate the classification
models and fine-tuned the classification models. Meanwhile, we
adopted an attention module to automatically refine extracted fea-
tures, making the classification model more concerned with fea-
tures that contain significant information.

2. Materials and methods

2.1. Study cohorts

From January 2017 to March 2021, patients with PAs surgically
treated in Sun Yat-sen University Cancer Center (SYSUCC) were
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retrospectively reviewed. The following inclusion criteria were
used: (1) pathological confirmation of a pituitary adenoma, (2) a
completed evaluation of pituitary hormones, and (3) availability
of four contrast MRI data (T1-weighted image, contrast-enhanced
T1-weighted image, T2-weighted image, and T2-weighted FLAIR
image). All the procedures in the current study were approved by
the ethics committee of SYSUCC. Written informed consent was
obtained from all the patients. A total of 168 patients from SYSUCC
were enrolled and divided into training (n 100), internal
validation 1 (n = 44) and validation 2 (n = 24) sets. For external
independent testing, a total of 17 patients from Daping Hospi-
tal, Army Medical University who were treated surgically from
January 2018 to December 2019 were recruited as a testing set
(Fig. 1).

2.2. Clinical and laboratory evaluation

Demographic and clinical-pathological variables (see Sup.
Table 1), including age, sex, pathological diagnoses, hormone
levels and tumor size were collected using an electronic medical
record system. Venous blood samples were collected in the morn-
ing after a 12-hour fast. Hormone assays including prolactin, corti-
sol, TSH, free T4 (fT4), GH, luteinizing hormone (LH), follicle-
stimulating hormone (FSH), estradiol and total testosterone were
measured with methods described previously [31]. The diagnosis
of a pituitary adenoma was based on physical examination, con-
trast magnetic resonance imaging, hormone assay, and pathologi-
cal observation. Accordingly, PAs were further classified into
functioning and nonfunctioning adenomas based on their
hormone-secreting status [2,32].

The diagnosis of prolactinoma was confirmed by constantly
increasing prolactin levels (>100 ng/ml). The diagnosis of a GH
secreting adenoma was based on an increased GH level, a lack of
GH suppression under 1 ng/ml during an oral glucose load (75 g),
and an IGF-1 level over reference for sex and age [33]. The inva-
siveness of the tumor was evaluated according to the Knosp’s clas-
sification [34].

2.3. MRI data collection and process

An MRI was performed on a 1.5 or 3.0 T system. Four sequences,
T1W, contrast-enhanced T1W (T1CE), T2W and T2W-FLAIR, were
acquired for further analysis. The MRI images in the training, vali-
dation and testing datasets were preprocessed in the following
manner:

a) DICOM files were converted to NIFTI format.

b) All MRI volumes were rigidly registered to the same T2 ana-
tomic template and resampled to 1 mm voxel resolution through
the Oxford Center for Functional MRI of the Brain’s (FMRIB) Linear
Image Registration Tool (FLIRT) [35,36] from the FMRIB Software
Library [37-39].

¢) The volumes of all modalities were skull-stripped using the
Brain Extraction Tool (Bet) [40].

d) All MRI volumes used N4BiasCorrection [41] to remove ran-
dom field inhomogeneity.

e) Rescaling intensity range to [0, 1].

The tumor contours for 185 subjects were manually labeled and
validated by two neurosurgeons (XB Jiang and YH Zhang). All seg-
mentation was performed using the MITK software [42], taking
about 30 min per subject. To deal with ambiguities in tumor con-
tours’ definition, we had all subjects labeled by the two neurosur-
geons and subsequently fused the results to obtain a single
consensus tumor contour for each subject.

To take advantage of the 3D contextual information of the MRI,
we randomly extracted patches from preprocessed T1W, T2W,
Flair and T1CE images on the axial, sagittal and coronal views as
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Fig. 1. Schematic overview of the study.

the input images for the segmentation task. Four cropped patches
(96 x 96 x 96 voxels) were randomly extracted from prepro-
cessed T1W, T2W, Flair and T1CE images for each subject on the
fly during every training iteration. Therefore, each segmenta-
tion model totally used 4*30000 patches for training. Considering
the limited contribution of normal tissues to classify secreting
types of PAs, the classification model was only trained with
patches (96 x 96 x 96 voxels) that were extracted based on the
tumor center calculated from the tumor mask. Therefore, a total
of 4*3000 patches were applied for training for each classification
model.

2.4. Deep learning model design

2.4.1. CNN for PAs segmentation

Our segmentation network was based on Residual Unet archi-
tecture (Fig. 2A). Similar to a standard Unet [43], which is consisted
of an analysis path (encoder part) and a synthesis path (decoder
part). This network had 35 convolutional layers and was made of
the following blocks: Resblock, Conv3D for down-sampling and
Deconv3D for up-sampling. Each Resblock used in this study, as
shown in Sup. Fig. 1, consisted of a shortcut and a few stacked lay-
ers: the convolutional layers and the parametric rectified linear
unit (PReLU) layers. The analysis path consists of the repeated
Resblock, each followed by a Conv3D block that did a 3 x3 x 3
convolution operation with stride 2 in each dimension for
down-sampling. In the synthesis path, the repeated Resblock was
followed by a Deconv3D block that did a 3 x 3 x 3 transposed
convolution operation with stride 2 in each dimension for an
up-sampling of the feature map. Shortcut connections from layers
of equal resolution in the analysis path provided the essential high-
resolution features to the synthesis path. In the last layer, a
3 x 3 x 3 convolution operation reduces the number of output
channels to the number of labels, which is 2 in our case. The
segmentation model would output a pixel-wise mask of the input
image which 1 stands tumor tissue and 0 stands normal tissue. The
segmentation model contains a total of 76,967,968 parameters for
learning.

2.4.2. CNN classifier for secreting function type prediction

Transfer learning aims to transfer knowledge between related
source and target domains [44]. Transfer learning methods can
be divided into instance-transfer, feature-transfer, parameter-
transfer and relational-knowledge-transfer approaches. These
approaches [23,24] focused on feature transfer between datasets
under different tasks, even from nonmedical datasets. Here, we
didn’t adapt the idea of transfer learning from natural 2D images
due to the purpose of making full use of the third dimension of
MRI images. In comparison, we assumed that the source task (seg-
mentation task) and the target task (classification task) here shared
some parameters or prior distributions with the hyper-parameters
of the models. Therefore, we transferred the learned weights from
the segmentation models to train the classification models.

Our proposed classification model, as shown in Fig. 2B, made
use of the trained analysis path (encoder) in the segmentation
model to extract the features of the MRI images. Combined with
an attention module, our model learned to suppress irrelevant
regions in an input image while highlighting salient features. The
attention module (shown in Fig. 2C) used in our network is a Con-
volutional Block Attention Module (CBAM) [45]. The input feature
was refined based on an attention mask generated by CBAM. The
weights of the analysis path in the classification network were
transferred from trained segmentation models. The decoder was
modified to adapt to the classification task. The synthesis path
and final layer of the segmentation network were removed.
Instead, a 3D average pooling layer and a fully connected layer fol-
lowed by a softmax layer, with an output size of two, were
inserted. The classification would predict the probability of the
patient with functioning pituitary adenomas (FPAs). A total of
38,497,810 parameters is available for learning for the classifica-
tion model.

2.4.3. Multi-view model combination

To make full use of 3D contextual information, both segmenta-
tion and classification models were trained on extracted axial,
sagittal, and coronal images, respectively. In the validation and
testing procedure, predictions for segmentation and classification
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Fig. 2. Segmentation and classification network overview. (A) Segmentation network architecture. (B) Classification network architecture. (C) Convolutional block attention
module used in the classification network.

on different views were combined to obtain the final predictions as [46,47] and were trained on an NVIDIA GTX2080Ti GPU. The main
combined model prediction results. At test time, for each segmen- hyper-parameters of the two architectures are shown in Sup.
tation network structure, the corresponding versions of trained Table 2.

models were used to obtain a segmentation result from these three For the classification task, a two-phase training was used. In the

views, and these softmax outputs were averaged to obtain a single first phase, the network was trained on training patches for 2500
fused result. The classification network structure was tested iterations. During the first phase, all layers except the attention

similarly. module and the fully connected layers were fixed. In the second
phase, the network was trained on training patches for another

2.5. Experimental setup 500 iterations. During the second phase, all layers were trainable.
For the segmentation task, three same architecture networks

The segmentation and classification networks were imple- (as shown in Fig. 2A) were trained based on the MRI patches

mented in the TensorFlow library and NiftyNet platform in Python  extracted on the axial, sagittal and coronal views, separately. Sim-
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ilarly, three same architecture classification networks (as shown in
Fig. 2B) were trained on the axial, sagittal and coronal views sepa-
rately based on transferring the encoder part of the three trained
segmentation networks.

2.6. Statistical analysis

Statistical analysis for demographic variables was performed by
using chi-square tests for categorical data and one-way ANOVA for
continuous data. For the segmentation model, the experimental
results were evaluated based on two main metrics, namely, the
Dice similarity coefficient (DSC) and the Hausdorff distance. For
tumor regions, we obtained a binary map with algorithmic predic-
tions Pe{0, 1} and the experts’ consensus truth €{0, 1}, and we cal-
culated the Dice score which is defined as:
2|PNT|

I+ IT]

Dice(P,T) (1)

For surface distance evaluation, we calculated the Hausdorff
distance. For two point sets X and Y, the one-sided HD from X to
Y is defined as:

hd(X,Y) = max min ||x - y||,

2)

And similarly, for hd(Y, X):

hd(¥, X) = max min |x - y||,

3)
Finally, the Hausdorff distance is defined as:

Haus(P,T) = max(hd(P,T), hd(T, P)) (4)

For the classification model, the classification performance was
evaluated by generating receiver operating characteristics (ROC)
and precision-recall (PR) curves. The AUROC among different mod-
els was compared by Delong’s method [48].

3. Results
3.1. Patient characteristics

The flow diagram of this study is shown in Fig. 1. A total of 185
patients were included. As shown in Sup. Table 1, no significant
differences in sex, age, Knosp’s Grade, tumor type, tumor volume
and diameter were observed among the training, validation 1, val-
idation 2 and the external testing datasets.

3.2. Model construction for PAs segmentation from MRI images

We randomly selected one patient’s MRI image in testing data-
set and visualized the segmentation results (shown in Sup. Fig. 2).
The MRI scan slices on the axial view, sagittal view and coronal
view are visualized in Figure S2(A), Figure S2(B) and Figure S2
(C), respectively. From these example segmentations, our model
had a promising performance for 3D MRI slices. Table 1 presents
quantitative evaluations in the validation dataset 1. It shows that
the axial, sagittal, and coronal models achieved average Dice scores
of 0.7942, 0.8024 and 0.8082 for the whole tumor. Using the multi-
model ensemble method, the multi-view combined model
achieved the best performance in the validation dataset 1 (average
Dice score of 0.8188) and was better than GrowCut algorithm (av-
erage Dice score of 0.7014). To further evaluate our proposed
model, we collected another 24 samples as validation dataset 2
to validate. As shown in Sup. Table 3, our proposed segmentation
model still achieved the better performance (average Dice score
close to 0.810 and average Hausdorff distance close to
5.352 mm) than GrowCut algorithm (average Dice score close to
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0.689 and average Hausdorff distance close to 33.605 mm). In
the testing dataset, the axial, sagittal and coronal models achieved
a similar Dice score (shown in Table 2) for the whole tumor. Sim-
ilarly, the best performance was also done by the combined model
with an average Dice score of 0.81. The combined model still
achieved a better performance than GrowCut algorithm (average
Dice score of 0.6893). These results demonstrated the potential
of our segmentation models in 3D MRI segmentation tasks.

3.3. Classification model for predicting functioning and nonfunctioning
PAs

Transfer learning and an attention module were applied to
explore feature representations. The attention-based model (Att
model) was validated and assessed by comparison with the model
trained by random initialization (RI model) and the model trained
by transfer learning only (TF model). The RI and TF models shared
the same architecture, which only removed the attention module
in comparison with our proposed attention-based classification
network. Hence, the random initializing model (RI model) and
the transfer-learning only model (TF model) were the baseline
models.

A 4-fold cross-validation was performed in the training dataset
by randomly shuffling the dataset and distributing them into 4
groups (75 samples for training and 25 samples for in-training val-
idation). Validation and testing datasets were used to validate our
proposed model with two baseline models after cross-validation.

To evaluate the prediction performance of the proposed classi-
fication model, we performed a 4-fold cross-validation in training
dataset on the axial, sagittal and coronal views. Fig. 3(A-D) shows
the mean values of AUC and ROC curves of the RI, TF and Att mod-
els trained on the different plane views. Fig. 3E presents AUROC
comparison results for RI, TF and Att model on axial, sagittal, coro-
nal and combined views. Sup. Table 4 presents quantitative evalu-
ations of an AUROC comparison for the RI, TF and Att models on the
different plane views. As a result, the Att models trained on the
axial, sagittal and coronal plane views showed a performance
under 4-fold cross-validation with the area under the ROC curve
close to 0.79. Similarly, the multi-view combined Att model
achieved the best performance (AUC = 0.801; 95% CI, 0.738-
0.855) and was significantly better (P < 0.0001) than the combined
RI (AUC = 0.709; 95% CI, 0.639-0.772) and the combined TF
(AUC = 0.713; 95% CI, 0.643-0.776) model.

To check the robustness of our proposed model, we performed
the 10-fold cross-validation in training dataset on the axial, sagittal
and coronal views. Sup. Table 5 presents quantitative evaluations
of an AUROC comparison for the RI, TF and Att models on different
plane views. Under 10-fold cross-validation, the multi-view com-
bined Att model achieved the best performance (AUC = 0.792;
95% CI, 0.726-0.849) and was significantly better than the com-
bined RI (P = 0.0122, AUC = 0.724; 95% CI, 0.653-0.788) and the
combined TF (P = 0.0307, AUC = 0.745; 95% CI, 0.675-0.807) model.
These results suggested that our proposed classification model was
reliable.

To rigorously evaluate the prediction and generalizability per-
formance of our proposed classification model, we next compared
the combined Att, RI and TF models in the validation and testing
datasets. Fig. 4 presents ROC curves, PR curves for combined RI,
TF, Att model and the confusion matrix, diagnostic performances
for combined Att model in validation dataset 1 and testing dataset.
Supplementary Tables 6-7 present the quantitative ROC analysis
and comparisons in the validation dataset 1 and testing dataset.
The results show that the combined Att model achieved the best
performance in the validation (AUROC = 0.8063; 95%CI, 0.708-
0.883) and testing (AUROC = 0.8478; 95%Cl, 0.725-0.947) datasets.
The performance of the combined Att model in the validation data-
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Table 1
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Dice and Hausdorff measurements between the proposed method and GrowCut algorithm in validation dataset 1. Bold numbers indicate the best performance values on Dice and

Hausdorff measurements.

View Dice_mean Dice_std Hausdorff_mean (mm) Hausdorff_std (mm)
Axial 0.7942 0.0895 7.9551 6.2622
Sagittal 0.8024 0.1134 7.984 8.6931
Coronal 0.8082 0.0828 7177 3.8330
Combined 0.8188 0.0763 6.4735 3.3578
GrowCut 0.7014 0.0595 27.607 6.7506
Table 2

Dice and Hausdorff measurements between the proposed method and GrowCut algorithm in testing dataset. Bold numbers indicate the best performance values on Dice and

Hausdorff measurements.

View Dice_mean Dice_std Hausdorff_mean (mm) Hausdorff_std (mm)
Axial 0.7652 0.1159 11.2054 6.5137
Sagittal 0.7792 0.0991 11.2809 8.7102
Coronal 0.7646 0.1169 12.7353 9.0150
Combined 0.8093 0.0769 9.3599 5.4566
GrowCut 0.6893 0.0653 28.2917 6.6768

set 1 and testing dataset was comparable with the performance in
the training dataset (AUC = 0.801; 95% CI, 0.738-0.855). The diag-
nostic performance of our proposed model achieved an accuracy of
0.7083 with the Youden'’s Index of 0.1667) in validation dataset 2
(Sup. Tables 8-9).

To detect the classification performance within subgroups
divided by clinical characteristics, we run the model in a combined
dataset sub-grouped by gender and age. A total of 85 patients (27
FPA and 58 NFPA) were included, and 37 of them are female, with a
median age of 48. As shown in Sup. Tables 10-11, the proposed
classification model achieved similar performance (AUROC = 0.7937
in female subgroup, 0.7929 in male subgroup, 0.8108 in older sub-
group, and 0.7976 in young subgroup).

3.4. Model interpretation with the attention mask

Models trained with an attention module could learn to sup-
press irrelevant regions in the input MRI images while highlighting
the salient features. To determine how our proposed models iden-
tify the tumor region from the MRI images, attention maps were
generated using contrasted TIW scan to exhibit where and what
the models focus on.

Fig. 5 showed the T1CE scan and its corresponding attention
map for the patient with NFPA (Fig. 5(A-B)) and those with FPA
(Fig. 5(C-D)). The degree of the attention weights is marked with
different colors, where red represents the most attention paid by
the model. Heterogeneous colors distributed among the contrasted
T1W image indicate that the model trained with an attention
mechanism pays different attention to the regions. As shown in
Fig. 5, the profile of the color distribution in functioning and non-
functioning pituitary adenomas is different, where the tumor
region is marked in deep red for the nonfunctioning pituitary ade-
nomas but in light red for functioning ones. Additionally, the tis-
sues with the highest signal on contrasted T1W, including a
cavernous and basal sinus, were marked in red, and the normal
brain tissues were marked in light colors. Intriguingly, regions with
the lowest signal on contrasted TIW were also in red, such as basal
cisterns and the fourth ventricle.

4. Discussion

MRI is generally preferred over CT for the diagnosis of PAs
because of its superior definition of small lesions in the pituitary
sella and its improved anatomic definition before surgery. At pre-
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sent, surgery is the standard first-line therapy for the treatment
of patients with non-functioning PAs. Therefore, the accurate
tumor contours segmentation and precise classification of secret-
ing function types for PAs are crucial steps in surgical and treat-
ment planning. With the recent progress of Al algorithm on MRI
images, we expected a similar application that provides a more
efficient manner to diagnosis and classify PAs directly with MRI
images. Eventually, we developed two CNN models for PAs seg-
mentation and classification of functioning and nonfunctioning
PAs based on conventional T1W, T2W, Flair and T1CE MRI
sequences.

As a result, the combined segmentation model achieved 0.8188,
0.8091 and 0.8093 Dice scores for the whole tumor in two valida-
tion datasets and a testing dataset by using multi-model ensemble
methods. For segmentation tasks, we found several factors that
may explain the high performance achieved by our segmentation
model. First, the use of a 3D convolutional neural network com-
pared to a 2D convolutional neural network could make full use
of the third MRI image dimension. Additionally, the Resblock used
in the segmentation model allows us to build a deeper network
and take advantage of the deep neural network’s powerful repre-
sentational ability. Finally, the 3D segmentation models were
trained on image patches extracted on axial, sagittal and coronal
views. The results in Tables 1-2 revealed that joint use of the three
models’ predictions achieved substantially improved performance
after using any one model prediction in the validation and testing
datasets. Moreover, the inference time was approximately 32.8 s
per patient (using one RTX 2080Ti GPU). A previous study has
shown that there was reduction of intra-observer variation (by
36.4%), reduction of interobserver variation by 54.5%, and time sav-
ings of 39.4% with automated segmentation model assistance for
nasopharyngeal carcinoma [49]. Due to its short inference time
and the accuracy of tumor segmentation, the automated segmen-
tation model could be used as a PA computer-aided diagnosis tool
for radiologists.

Additionally, the combined classification model also achieved a
high predicting performance with accuracies of 72.7%
(AUROC = 0.8063) in validation dataset 1, 70.8% (AUROC = 0.7881)
in validation dataset 2 and 82.3% (AUROC = 0.8478) in the testing
dataset. During this task, we mainly investigated whether the inte-
gration of the transfer-learning method as well as the attention
mechanism could substantially improve the overall performance.
Four-fold cross-validation shows that transfer-learning based
models (TF and Att models) achieved higher AUC than random ini-
tial models, while the attention-based models (Att models) also
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Fig. 3. ROC analysis under 4-fold cross-validation. (A) the mean ROC curves of RI, TF and Att model trained on axial view. (B) The mean ROC curves of RI, TF and Att model
trained on sagittal view. (C) The mean ROC curves of RI, TF and Att model trained on coronal view. (D) The mean ROC curves of multi-view combined of RI, TF and Att model.
(E) Comparison results of averaged AUROC under 4-fold cross-validation for RI, TF and Att model on axial, sagittal, coronal and combined views.

obtained a higher AUC value than transfer-learning models them-
selves (TF models). Further comparisons between TF, RI and Att
models in training, validation and testing datasets proved our
assumption that the source task (segmentation task) and the target
task (classification task) shared certain parameters and similar
prior distributions with the hyper-parameters of the models.
Moreover, comparing to make network architecture deeper and
wider, attention mechanisms used in classification models aim to
improve classification performance without increasing in models’
complexity and computation. The generated attention masks allow
the proposed Att model to concentrate adaptively on the abnormal
regions. Experimental results in the training, validation and testing
datasets (as shown in Sup. Tables 4-6) demonstrated that the
attention module in our transfer learning-based models plays a
critical role. The benefit comes from encoding a top-down
attention mechanism into a bottom-up top-down feedforward
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convolutional structure in the classification model, so it can learn
the specialized features of the input MRI images. Similarly, by
using a multi-model ensemble method, the combined Att model
was more robust and achieved the best performance.

Model comparisons in the validation and testing datasets
demonstrated that introducing attention module enables models
to perform better. By visualizing the attention masks, we found
that our models pay more attention to some regions with the low-
est signal. It is unclear why these areas attract attention from the
machine, and much more works are warranted to investigate the
underlining mechanisms and its clinical significance. In the model
of attention mask, the machine may be aware of some unique fea-
tures from the MRI, and thus help the radiologists to differentiate
functioning and nonfunctioning preoperatively. As far as we know,
there is no theoretical basis for the classification of PAs based on
MRI. However, some studies have explored the correlation
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Fig. 4. Evaluation of classification model in validation and testing datasets. The ROC curves of multi-view combined RI, TF and Att model and the confusion matrix for multi-
view combined Att model in the (A) validation dataset 1 and (B) testing dataset. Precision-Recall Curves of multi-view combined RI, TF and Att model in the (C) validation
dataset 1 and (D) testing dataset. (E) The diagnostic performance of multi-view combined Att model in validation dataset 1 and testing dataset.

between MRI and pathological features. For example, Peng et al.
suggested a machine learning model which can immunohisto-
chemically classify PAs with an MR-based radiomic analysis [50].
Similarly, diffusion-weighted imaging (DWI) MRI was reported to
differentiate functional types of pituitary macro-adenomas in a
small set of patients [51]. These data indicate that an MRI-based
deep convolutional neural network is potential to aid in classifying
the functioning status of PAs based on preoperatively MRI.

The main limitation of this study is the sample size, resulting in
fewer micro-adenomas for build segmentation models, which
could cause poor generalization ability in  unseen
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micro-adenomas data. In addition, the collected ACTH patients
were relatively small comparing to GH and PRL patients, which
could limit the accuracy of our classification model for ACTH
patients. Our coming efforts will include more data points from
those kinds of patients as well as a large sample size to further
improve the accuracy of the models. Moreover, we failed to evalu-
ate the ability segmentation model in analyzing tumor con-
stituents. The constituent of PAs is a critical factor for surgical
plans, which should be addressed in the future works. Finally, as
only newly diagnosed and surgically treated PAs were recruited
for the analysis, this model could only apply to patients with
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Fig. 5. (A) Original contrast enhanced T1w (T1CE) image for the patient with NFPA. (B) Attention mask of the same T1CE image for the patient with NFPA. (C) Original contrast
enhanced T1w (T1CE) image for the patient with FPA. (D) Attention mask of the same T1CE image for the patient with FPA. Basal cisterns and the fourth ventricle with low
signals were marked as red in attention mask. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

primary PAs which should be surgically, but not for the recurrent
and/or those treated medically. Therefore, much more work is
encouraged to investigate the role of deep learning in predicting
the tumor constituent.

Collectively, this research was the first computer-based descrip-
tion to predict subtypes of PAs by conventional 3D MRIs, and the
models showed preferable performance in the testing set, enabling
supporting early diagnosis and treatment plan for PAs. Our models
have the potential to be used more widely as a practical tool to
support PA early diagnosis and treatment planning.
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