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Computerised Dynamic 
Posturography in Premanifest 
and Manifest individuals with 
Huntington’s Disease
Alvaro Reyes1, Danielle Salomonczyk2, Wei-Peng Teo  3, Luis D. Medina  4, 
Danielle Bartlett5, Eva Pirogovsky-Turk7, Pauline Zaenker5, Jody Corey Bloom8, 
Roger W. Simmons9, Mel Ziman  5,10, Paul E. Gilbert11 & Travis Cruickshank6,12

Evidence from small-scale studies indicates that impairments in postural stability are an early and 
disabling feature of Huntington’s disease (HD) and may be a useful clinical endpoint for disease 
modifying trials. Larger studies are needed to confirm these preliminary findings and the suitability of 
postural stability outcomes as clinical endpoints. Static and dynamic postural stability were evaluated 
in 54 premanifest HD, 36 manifest HD and 45 healthy individuals using the Sensory Organization 
Test (SOT) and Limits of Stability (LOS) test. Manifest HD displayed significantly lower scores on all 
SOT conditions and on the SOT composite score and had more falls than healthy and premanifest 
HD (p < 0.05). Premanifest and manifest HD demonstrated significantly lower endpoint excursion 
(p < 0.001), maximum excursion (p ≤ 0.001), and directional control (p ≤ 0.004) values than healthy 
individuals on the LOS test. Deficits in LOS were found to manifest on the left side of premanifest HD. 
Significant but low associations were observed between UHDRS-TMS, disease burden score, diagnostic 
confidence level, SOT conditions and SOT composite score. We confirm here that individuals with 
premanifest and manifest HD display significant impairments in static and dynamic postural stability. 
Dynamic posturography assessments should be considered as clinical endpoints for future disease 
modifying trials.

Impairments in postural stability are a disabling feature of Huntington’s disease (HD) that worsen as the disease 
progresses and contribute to a deterioration in physical function and an increased risk of falls and fall-related 
injuries1–4. Sensitive assessment of postural stability changes is therefore crucial for preventing falls and monitor-
ing clinical progression of HD.

Studies examining changes in postural stability in individuals with HD have typically used clinical tests and 
scales such as the Timed Up and Go Test, Functional Reach Test, Tinetti Mobility Test, mini Balance Evaluation 
System Test, Berg Balance Scale and Activities-specific Balance Confidence Scale1,2,5–7. These studies have 
reported an increased risk of falls, reduced balance confidence, a widened base of support and impairments in 
postural transitioning and single- and double-legged stance in individuals with manifest HD1,6,7. While useful in 
clinical settings, these measures are unable to detect subtle changes in postural stability and are prone to ceiling 
and floor effects and rater bias, which limits their usefulness as a clinical endpoint in disease modifying drug 
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trials. These measures also provide little insight into the pathological mechanisms underpinning changes in pos-
tural stability in individuals with HD1–4,8,9.

Quantitative posturography overcomes many of these limitations, providing a more reliable and valid measure 
of postural stability in individuals with HD5,10. Quantitative posturography assessments are normally undertaken 
using force plate and computerized dynamic posturography apparatuses. Studies using force plates to examine 
static and dynamic postural stability have reported significant alterations in centre of mass and pressure and 
reduced limits of stability in individuals with premanifest and manifest HD3,8,11. While informative, these studies 
have provided little insight into the motor and sensory mechanisms contributing to static and dynamic postural 
stability impairments in individuals with HD5.

Several small-scale studies have examined static and dynamic postural stability and the sensory and motor 
mechanisms contributing to postural instability in individuals with HD. These studies have found significant 
impairments in limits of stability, rapid postural adjustments and static and dynamic stability in response to 
somatosensory, visual and vestibular perturbations in individuals with premanifest and manifest HD4,8,12. These 
findings indicate that postural instability is one of the earliest clinical features of HD and may be useful as a 
clinical endpoint for upcoming disease modifying drug and rehabilitation trials. However, prior to routine uti-
lization in disease modifying trials, validation of computerized dynamic posturography measures in larger, 
well-characterized cohorts of individuals with premanifest and manifest HD is required4,8,12.

The primary purpose of this study was to evaluate static and dynamic postural stability using computerised 
dynamic posturography in a large, well-characterized cohort of premanifest HD, manifest HD and healthy age- 
and gender-matched individuals. This study also sought to examine associations between computerised dynamic 
posturography and clinical disease measures.

Methods
Participants. Ninety individuals with HD (54 premanifest, 36 manifest) and 45 age-and gender-matched 
healthy controls were recruited for the study. Individuals with HD were recruited from the North Metropolitan 
Area Mental Health Service (Perth, Western Australia), Deakin University (Melbourne, Victoria), San Diego State 
University, University of California San Diego and through newspaper advertisement. Characteristics of healthy 
controls and individuals with premanifest and manifest HD (study groups) are detailed in Table 1. Inclusion crite-
ria were: HD individuals with a CAG repeat ≥39 and the ability to understand and respond to verbal and written 
instructions given in the study. Exclusion criteria were: no concomitant neurological, cardiovascular, metabolic or 
vestibular conditions and no recent drug or alcohol consumption. All HD individuals were classified as preman-
ifest or manifest according to the diagnostic confidence level criteria of the Unified Huntington’s Disease Rating 
Scale-Total Motor Score (UHDRS-TMS)13,14. Disease burden score was calculated using the method described 
by Penney et al.15. An index to estimate proximity to diagnosis at study entry was obtained using the CAP score. 
CAP score was calculated by multiplying the age at study entry by a scaling of the CAG repeat length as follows: 
CAPS = (Age × (CAG-33.66))/432.3326. CAP scores <1, 1 and >1 indicate a 5-year diagnosis probability of 
<0.5, 0.5 and >0.5, respectively16.

Study approval, registration, and participants consent. This study was approved by the North 
Metropolitan Area Mental Health Service (NMAMHS), Edith Cowan University, Deakin University, San Diego 
State University and University of California San Diego Human Research Ethics Committees. Written informed 
consent was provided by all participants. All experiments were performed in accordance with relevant guidelines 
and regulations.

Procedures. Postural stability was assessed using the Sensory Organization Test (SOT) and Limits of Stability 
(LOS) test with the Neurocom Smart Balance Master (Natus Medical Incorporated, USA). SOT enables examina-
tion of somatosensory, visual and vestibular systems during static and dynamic postural conditions. LOS enables 

Clinical Outcomes
Healthy 
(n = 45)

Premanifest 
HD (n = 55)

Manifest HD 
(n = 32)

p-values

Healthy versus 
premanifest HD

Healthy versus 
manifest HD

Premanifest versus 
manifest HD

Age (years) 43.96 (10.48) 45.20 (11.99) 49.21 (9.73) 0.902 0.173 0.321

Height (cm) 168.04 (8.00) 168.61 (9.60) 168.37 (7.99) 0.966 0.991 0.995

Weight (Kg) 73.27 (13.55) 75.32 (14.53) 74.88 (13.12) 0.845 0.921 0.994

BMI 25.70 (3.12) 26.08 (3.37) 26.15 (3.04) 0.895 0.884 0.997

Handedness left/right* 2/43 3/52 1/31 0.408 0.384 0.290

CAG repeats — 42.442 (2.65) 45.18 (3.25) — — <0.001

UHDRS-TMS — 3.59 (6.03) 30.21 (12.32) — — <0.001

Disease Burden Score — 280.30 (76.40) 455.42 (112.26) — — <0.001

CAP score — 0.83 (0.19) 1.26 (0.26) — — <0.001

Diagnostic Confidence Level — 0.44 (0.68) 4.00 (0.00) — — —

Table 1. Characteristics of participants in the study (values are mean, standard deviation and p-values). BMI: 
body mass index, CAG: cytosine-adenine-guanosine, UHDRS-TMS: Unified Huntington’s Disease Rating 
Scale-Total Motor Score, CAP score: CAG-Age Product Scaled score. *p-values of handedness are based on a 
two-sample proportion test.
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examination of postural stability while participants shift their weight to different directions within their base of 
support. All participants were familiarized with SOT and LOS tests prior to their administration.

Measurements. Sensory Organization Test (SOT). The SOT comprises six different sensory conditions: (1) 
eyes open, fixed support and surroundings (static posturography), (2) eyes closed, fixed support and surround-
ings, (3) eyes open, fixed support, moving surroundings, (4) eyes open, unstable support, fixed surroundings, (5) 
eyes closed, unstable support, fixed surroundings, and (6) eyes open, unstable support and moving surroundings. 
Individuals were required to undertake three twenty-second trials for each sensory condition. For each trial, 
participants were instructed to stand upright with their arms crossed against their chest. Postural stability per-
formance on each trial was expressed as an equilibrium score, which is calculated by computing the difference 
between each participant’s sway of the centre of gravity (COG) and a theoretical maximum anterior-posterior 
sway of 12.5°. When a participant’s COG has minimal or no sway, the difference with the theoretical maximum 
sway is 12.5°. Values are expressed as a percentage of the theoretical maximum angle of sway, therefore a score of 
100 indicates good stability and no movement of the COG. When a participant’s COG moves beyond the limit 
of stability or the participant has a fall they receive a score of zero. The average of the three trials of each SOT 
condition was calculated and used for further analysis. A weighted composite score was also generated for each 
participant by averaging the equilibrium scores for SOT 1 and 2, adding this average to the scores for each trial 
of tests 3–6 and dividing the sum by the total number of trials. Sensory ratios were also computed to examine 
specific somatosensory, visual and/or vestibular system deficits. SOMATOSENSORY (SOM) was defined as the 
participant’s ability to rely on the somatosensory system to maintain postural stability (condition 2/condition 1), 
VISUAL (VIS) was defined as the participant’s ability to rely on visual system to maintain postural stability (con-
dition 4/condition 1), VESTIBULAR (VEST) was defined as the participant’s ability to rely on vestibular system 
to maintain postural stability (condition 5/condition 1) and PREF was the extent on which participants rely on 
visual information to maintain postural stability even when visual information is incorrect (condition 3 + condi-
tion 6)/(condition 2 + condition 5).

Limits of Stability Test (LOS) test. The LOS test was used to examine dynamic postural stability. Participants 
were asked to stand comfortably on the force plates and focus on a computer screen placed at eye level to pro-
vide visual feedback. Participants were instructed to transfer their weight as quickly and accurately as possible 
toward one of eight targets displayed on the screen without moving their feet. Targets are located in forward 
(FW), forward-right (FWRT), right (RT), backward-right (BWRT), backward (BW), backward-left (BWLT), left 
(LT) and forward-left (FWLT) directions throughout the test. The mean of the eight trials completed for each 
target was calculated for five LOS dependent variables: reaction time (RT), movement velocity (MV), endpoint 
excursion (EE), maximum excursion (ME) and directional control (DC). RT represents the time between the 
presentation of the visual signal to move and the beginning of the participant’s movement, MV is the average 
speed (degrees/seconds) of the COG in a specific direction, EE is the distance travelled by the COG in the first 
movement, ME is the farthest distance travelled by the COG and DC is the difference between the amount of 
movement in the intended direction and the amount of movement the COG deviated form from a straight line. 
For RT, a higher score represents a poorer performance, while for MV, EE, ME and DC, a higher score represents 
a better performance. RT and MV are expressed as absolute values and EE, ME and DC are expressed as a per-
centage of maximum theoretical LOS values as determined by Nashner et al. Balance Manager® Systems (2011)17. 
Results are presented using the average of the 8 directions (targets) for each variable (Table 2) and separated by 
direction (Fig. 1).

Statistical Analyses. Descriptive data are presented as mean and standard deviation. Normality assump-
tions were tested using a Shapiro-Wilk test. A mixed-factor nested ANOVA was used to compare differences in 
the six SOT conditions between healthy controls and individuals with premanifest and manifest HD. Significances 
were adjusted for multiple comparisons using a Bonferroni method after nested analysis of variance (ANOVA). 
A one-way analysis of variance (ANOVA) was used to compare differences in SOT composite score, falls, SOT 
sensory ratios and LOS measures between healthy controls and individuals with premanifest and manifest HD. 
A Bonferroni multiple comparison test was used after ANOVA. All analyses were controlled by study site and 
the results revealed that study site did not appear to represent a confounding factor. The number of participants 
recruited and assessed at each study site is provided in Supplementary Table 1. To assess the test-retest relia-
bility of SOT measures, intraclass correlation coefficient (ICC) values were calculated using trial data for each 
condition. Spearman correlation coefficients were calculated to examine associations between SOT, LOS and 
UHDRS-TMS, total functional capacity, disease burden score, CAP score, CAG repeat and diagnostic confidence 
level for premanifest and manifest HD participants. Results of the correlations are presented in scatterplots in 
Supplementary Fig. 1. Statistical significance was set at p ≤ 0.05. Statistical analyses were performed using STATA 
version 15.1.

Results
Reliability of SOT test. The results of the test-retest reliability of the SOT are presented in Supplementary 
Table 2. Reliability appeared to be higher for individuals with manifest and premanifest HD than healthy controls. 
ICC values ranged from 0.27 to 0.62 in healthy controls, from 0.42 to 0.76 in premanifest and from 0.56 to 0.78 
in manifest HD.

SOT test. A two-factor nested ANOVA revealed a significant effect for SOT conditions (F [5;809] = 214.15, 
p < 0.001), a significant group effect (F [2;809] = 281.22, p < 0.001), and a significant (group × condition) 
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interaction effect (F [10;809] = 11.38 p < 0.001). One-way ANOVA revealed significant differences between 
groups on the SOT composite score (F [2;132] = 92.64, p < 0.001), falls (F [2;132] = 27.75, p < 0.001), VIS ratio 
(F [2;132] = 35.12, p < 0.001), VEST ratio (F [2;132] = 45.84, p < 0.001), and PREF ratio (F [2;132] = 5.80, 
p = 0.003). SOM ratio was not significant between groups (F [2;132] = 0.55, p = 0.576). Bonferroni multiple com-
parison tests revealed that individuals with manifest HD had significantly lower scores on all SOT conditions, 

Postural Stability Outcomes
Healthy 
(n = 45)

Premanifest 
HD (n = 55)

Manifest HD 
(n = 32)

p-values

Healthy versus 
premanifest HD

Healthy versus 
manifest HD

Premanifest versus 
manifest HD

Sensory Organization Test

Condition 1 94.71 (2.08) 93.15 (2.52) 82.59 (8.44) 1.000 0.004 0.023

Condition 2 92.03 (2.40) 90.53 (4.11) 79.28 (7.72) 1.000 0.002 0.008

Condition 3 92.11 (2.90) 88.17 (6.94) 70.67 (17.92) 1.000 <0.001 <0.001

Condition 4 85.67 (7.92) 84.19 (9.78) 55.19 (23.12) 1.000 <0.001 <0.001

Condition 5 67.74 (9.66) 63.20 (18.86) 28.62 (23.29) 1.000 <0.001 <0.001

Condition 6 68.95 (11.50) 62.95 (20.32) 27.42 (23.54) 1.000 <0.001 <0.001

Composite Score 81.77 (5.12) 78.58 (9.99) 50.80 (16.77) 0.464 <0.001 <0.001

Falls 0.044 (0.20) 0.35 (1.26) 2.80 (3.12) 1.000 <0.001 <0.001

SOM score 0.971 (0.01) 0.971 (0.03) 0.962 (0.06) 1.000 1.000 1.000

VIS score 0.904 (0.08) 0.903 (0.10) 0.654 (0.25) 1.000 <0.001 <0.001

VEST score 0.714 (0.09) 0.676 (0.19) 0.333 (0.26) 0.996 <0.001 <0.001

PREF score 1.00 (0.07) 0.984 (0.11) 0.898 (0.24) 1.000 0.004 0.029

Limits of Stability Test

Reaction time (ms) 1.13 (1.71) 0.79 (0.23) 0.82 (0.18) 0.406 1.000 1.000

Movement Velocity (deg/s) 3.84 (1.30) 3.91 (1.35) 4.83 (1.10) 1.000 0.056 0.078

End Point Excursion (%) 71.53 (10.80) 61.60 (13.96) 53.87 (10.15) <0.001 <0.001 0.138

Maximum Excursion (%) 89.22 (6.66) 81.88 (11.96) 73.27 (10.72) 0.001 <0.001 0.019

Directional Control (%) 79.27 (6.06) 72.01 (12.55) 43.82 (15.27) 0.004 <0.001 <0.001

Table 2. Mean (standard deviation), and p-values of dynamic posturography variables for all groups. SOM: 
somatosensory (condition 2/condition 1), VIS: visual (condition 4/condition 1), VEST: vestibular (condition 5/
condition 1), PREF: (condition 3+ condition 6)/(condition 2+ condition 5).

Figure 1. ♦Schematic representation of specific direction impairments on the limits of stability test. Forward 
(FW), Forward-Right (FWRT), Right (RT), Backward-Right (BWRT), Backward (BW), Backward-Left (BWLT), 
Left (LT) and Forward-Left (FWLT). (+) significant between control and premanifest HD, (*) significant 
between control and manifest HD, (#) significant between premanifest HD and manifest HD. ♦Adapted from 
Ganesan M, Kanekar N, Aruin AS. Direction-specific impairments of limits of stability in individuals with 
multiple sclerosis. Annals of physical and rehabilitation medicine. 2015 Jun 1;58(3):145–50.
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composite score, falls, VIS, VEST and PREF sensory ratios than healthy controls and individuals with preman-
ifest HD. There were no significant differences between healthy controls and individuals with premanifest HD 
(Table 2).

LOS test. The analysis using the average scores revealed significant differences in LOS for endpoint excur-
sion (F [2;107] = 13.34, p < 0.001), maximum excursion (F [2;107] = 14.60, p < 0.001), directional control (F 
[2;107] = 53.67, p < 0.001) and movement velocity (F [2;107] = 3.04, p = 0.052). However, no significant differ-
ences were evident between groups for reaction time (F [2;107] = 1.21, p = 0.302). Bonferroni multiple compar-
ison test revealed that individuals with premanifest and manifest HD had significantly lower endpoint excursion 
(p < 0.001), maximum excursion (p < 0.002) and directional control (p < 0.006) values than healthy controls 
(Table 2). Maximum excursion and directional control were significantly lower (p = 0.024) in individuals with 
manifest HD compared to premanifest HD (Table 2). Movement velocity was slower, but did not reach signifi-
cance in manifest HD compared to healthy controls (p = 0.062), and in manifest HD compared to premanifest 
HD (p = 0.083; Table 2). The analysis using specific directions revealed impairments towards RT, BWLT, FWLT 
and LT in premanifest HD compared to healthy controls on all LOS variables. Individuals with manifest HD 
had poorer postural stability towards all directions for MV, EE, ME and DC in comparison to healthy controls. 
Manifest HD individuals had postural stability deficits leaning towards all directions except LT on ME and DC 
variables when compared to individuals with premanifest HD (Supplementary Table 3).

Association between postural stability tests, UHDRS-TMS, disease burden score CAG repeat 
and diagnostic confidence level. Spearman correlation coefficients revealed significant but low corre-
lations between UHDRS-TMS, disease burden score, diagnostic confidence level outcomes, SOT and LOS out-
comes within each group (Supplementary Fig. 1).

Discussion
This study examined the validity of static and dynamic postural stability in a large cohort of premanifest HD, 
manifest HD and healthy age- and gender-matched individuals using computerised dynamic posturography. 
Significant impairments in static and dynamic postural stability and a greater number of falls were detected 
in individuals with premanifest and manifest HD compared to healthy age- and gender-matched controls. 
Significant but low associations were observed between impairments in static and dynamic postural stability and 
falls and clinical disease outcomes. Dynamic and static posturography, as measured by the SOT, demonstrated 
low to moderate reliability for all study groups.

Previous work by our team has shown that individuals with manifest HD, but not premanifest HD, have 
significant impairments in postural control at their limits of stability4,12. Our results partially align with these 
earlier findings. Here we found that when compared to healthy controls, individuals with both premanifest and 
manifest HD displayed significant impairments in postural control at the limits of stability, particularly distance 
and accuracy of movement. Discrepancies between the results could be attributed to smaller sample sizes used in 
previous studies that were therefore limited in power. An analysis of the direction of impairments revealed that 
individuals with premanifest HD have greater difficulty maintaining postural control when leaning in LT, BWLT 
and FWLT directions, while individuals with manifest HD experience greater difficulty maintaining postural 
control while leaning in FW, FWRT, BWLT, LT and FWLT directions. These results suggest that impairments in 
postural control arise on the left side of the body and extend to the front and right sides of the body as the disease 
progresses. The exact reason for early direction-specific impairments in postural stability is unknown. It is possi-
ble that lateralization of motor or sensory abnormalities occur as a result of contralateral brain dominancy in HD. 
This tentative supposition is supported by previous studies, which found that neuropathology may originate in 
the dominant left hemisphere and thus affect the right side of the body18,19. In our study, most of the participants 
in all groups were right handed, suggesting that postural abnormalities did not follow the same brain dominancy 
pattern. Although handedness is associated with contralateral brain dominancy, it is not yet known if this holds 
true for postural stability. Additional studies are required to investigate whether hemispheric changes in the brain 
are responsible for the observed direction-specific impairments.

Similar to previous findings4,8,12, we also found that individuals with manifest HD have significant impair-
ments in postural control and a greater number of falls compared to healthy and premanifest HD individuals 
when sensory information is systematically manipulated. Impairments in postural control were particularly pro-
nounced on conditions 5 and 6 of the SOT. During these conditions, individuals are provided with degraded 
somatosensory and visual information and must rely on vestibular information to maintain postural control. An 
analysis of sensory ratio scores revealed that individuals with manifest HD have greatest difficulty maintaining 
postural control when reliant only on vestibular information, indicating the presence of vestibular pathology. 
However, none of the assessed manifest HD individuals reported vestibular impairments and recent evidence 
shows that the vestibular system is preserved in individuals with mild to advanced HD20. It is therefore unlikely 
that vestibular pathology solely underpins impairments on the SOT in individuals with manifest HD. Contrary 
to previous findings4, individuals with premanifest HD, even those close to onset, did not display impairments in 
postural control on any condition of the SOT. The larger sample of individuals with HD within the present study 
likely accounts for these discrepancies in findings. An analysis of test-retest reliability revealed that the SOT meas-
ure had low to moderate reliability and differed depending on the condition and group. Manifest and premanifest 
HD participants had a more reliable performance in comparison with healthy controls. Studies examining the 
reliability of dynamic posturography in individuals with neurodegenerative disease is scarce, however studies 
using the SOT in healthy individuals have reported a wide range of ICC intervals, which is consistent with the 
values obtained by healthy controls in this study, and suggests a learning effect that it is more evident in healthy 
controls than in premanifest and manifest HD21,22.
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Significant but low associations were observed between impairments in postural control and clinical meas-
ures of disease severity (UHDRS-TMS and DCL) and burden (DBS, CAP score and CAG repeat length). These 
findings suggest that genetic burden alone is not the sole factor underpinning postural control impairments in 
HD. Previous findings by our group found strong associations between postural stability outcomes and measures 
of cognitive function23. Similar findings have also been found in individuals with Parkinson’s disease24. This find-
ing has important clinical implications. In particular, it suggests that cognitive enhancement therapies should 
be incorporated into rehabilitation interventions aimed at improving postural stability in individuals with HD. 
Additional longitudinal studies are needed to evaluate potential associations between postural stability and cog-
nition in individuals with HD over time.

To date no studies have investigated the neural basis of static and dynamic postural control impairments 
in individuals with HD. However, degeneration within the striatum and brain stem of individuals with HD is 
believed to underpin postural control impairments25. The striatum and brain stem, along with other basal gan-
glia and cortical structures are crucially involved in sensorimotor integration, which is essential for maintaining 
normal postural control26–30. Studies in individuals with lesions in basal ganglia structures, such as Parkinson’s 
disease, have reported significantly poorer postural control31,32. Poorer postural control has also been reported in 
individuals with brain stem atrophy, such as patients with spinocerebellar ataxias and traumatic brain injuries33–36. 
Future studies are required to explore the neural basis of postural control impairments in individuals with HD.

This study is not without limitations. First this was a cross-sectional study, which does not provide information 
on changes in postural stability over time. Second, reliability analyses were only performed for the SOT. Future 
studies should continue investigating the reliability of the SOT and LOS test in HD, as an improved knowledge of 
the test-retest reliability of dynamic postural stability tests will improve their applicability for disease modifying 
drug trials. Third, individuals within the study continued their normal medication regimens, which may have 
improved or reduced performance on postural stability outcomes. Indeed, one patient was taking Tetrabenazine 
during testing procedures, which has been shown to improve performance on SOT outcomes previously37. Future 
studies should take into account medication as a variable affecting postural stability in HD.

Our findings show that impairments in static and dynamic postural control are common in individuals with 
premanifest and manifest HD and worsen with advancing disease. In addition, our findings show, for the first 
time, that impairments in postural stability commence on the left side of the body in individuals with premanifest 
HD. Although there is still a need to determine the sensitivity of these measures to postural changes over time; 
these findings provide compelling support for utilizing computerized dynamic posturography outcomes as a 
marker suitable for tracking the progression of HD, and potentially to determine the efficacy of upcoming disease 
modifying drug trials.

Data Availability
The dataset analysed during the current study is available from the main author upon reasonable request and with 
permission of the corresponding author.
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