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Abstract

Background: Alzheimer’s disease (AD) is known to be caused by multiple factors, meanwhile the pathogenic
mechanism and development of AD associate closely with genetic factors. Existing understanding of the molecular
mechanisms underlying AD remains incomplete.

Methods: Gene expression data (GSE48350) derived from post-modern brain was extracted from the Gene Expression
Omnibus (GEO) database. The differentially expressed genes (DEGs) were derived from hippocampus and entorhinal
cortex regions between AD patients and healthy controls and detected via Morpheus. Functional enrichment analyses,
including Gene Ontology (GO) and pathway analyses of DEGs, were performed via Cytoscape and followed by the
construction of protein-protein interaction (PPI) network. Hub proteins were screened using the criteria: nodes
degree≥10 (for hippocampus tissues) and ≥ 8 (for entorhinal cortex tissues). Molecular Complex Detection
(MCODE) was used to filtrate the important clusters. University of California Santa Cruz (UCSC) and the
database of RNA-binding protein specificities (RBPDB) were employed to identify the RNA-binding proteins of
the long non-coding RNA (lncRNA).

Results: 251 & 74 genes were identified as DEGs, which consisted of 56 & 16 up-regulated genes and 195 &
58 down-regulated genes in hippocampus and entorhinal cortex, respectively. Biological analyses demonstrated
that the biological processes and pathways related to memory, transmembrane transport, synaptic transmission,
neuron survival, drug metabolism, ion homeostasis and signal transduction were enriched in these genes. 11 genes
were identified as hub genes in hippocampus and entorhinal cortex, and 3 hub genes were identified as the novel
candidates involved in the pathology of AD. Furthermore, 3 lncRNAs were filtrated, whose binding proteins were
closely associated with AD.

Conclusions: Through GO enrichment analyses, pathway analyses and PPI analyses, we showed a comprehensive
interpretation of the pathogenesis of AD at a systematic biology level, and 3 novel candidate genes and 3 lncRNAs
were identified as novel and potential candidates participating in the pathology of AD. The results of this study
could supply integrated insights for understanding the pathogenic mechanism underlying AD and potential
novel therapeutic targets.
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Background
Alzheimer’s disease (AD) is recognized as the most com-
mon neurodegenerative disease and a typical hippocam-
pal amnesia, and also one of the dominating deadly
disease affecting elderly population. The disease is char-
acterized by the extracellular senile plaques formed by
amyloid-β (Aβ) peptides, intracellular neurofibrillary tan-
gles (NFTs), and also structure and function changes of
brain regions related to memory [1–3]. It is well known
that AD has complex multiple pathogenic factors, such
as genetic factor, environmental factor, immunological
factor, head injuries, depression, or hypertension [4–8].
Among these factors, genetic factors are estimated to at-
tribute about 70% to the risk for AD [9]. Dominant mu-
tations of genes encoding APP (amyloid precursor
protein), PSEN1 (presenilin 1), and PSEN2 (presenilin
2), which enhanced generation and aggregation of Aβ,
were included in the established genetic causes of AD
[10]. However, APP, PSEN1 and PSEN2 are only partially
accountable for the pathogenic mechanism of AD pa-
tients [11, 12]. Besides, genetic analyses have demon-
strated that, individual differences of AD could be
resulted from multiple genes and their variants, which
exert various biological functions in coordination to en-
hance the risk of the disease [13–15]. Except for identi-
fying mechanisms involved in the AD pathogenesis,
comprehensive analyses of potential candidate genes
could suggest novel potential strategies to predictive or
diagnostic test for AD.
Hub genes, regulatory transcription factors and micro-

RNAs in the entorhinal cortex tissues of mid-stage AD
cases have been identified via analyzing the database of
GSE4757 and therapeutic targets or biomarkers of the
AD were demonstrated in previous study [16]. Multiple
methods were employed in the identification of potential
molecules targets and drug candidates to AD, and hub
genes like ZFHX3, ErbB2, ErbB4, OCT3, MIF, CDK13,
GPI and so forth were found in the analyses of current
datasets, such as GSE48350, GSE36980, GSE5281, and
so forth [17–23]. Whereas, the remarkable and inte-
grated details of key candidate genes and pathways re-
lated with the pathogenesis of AD are still incomplete.
Furthermore, it is well documented that long non-
coding RNAs (lncRNAs) play vital roles in the regulation
of gene expression epigenetic, transcriptional, and post-
transcriptional levels [24–26], and only several lncRNAs
have been validated to be involved in the pathogenesis of
AD [27–30]. Given that sufficiently illuminating human
lncRNA-AD associations have great potential benefit to
diagnosis, prevention, treatment, and prognosis of AD, it
is an urgent task to find novel connections between
lncRNA and AD.
In the present study, we implemented integrated ana-

lyses of genes involved in AD from the information

filtration of the database, GSE48350 [31–33]. We
employed Morpheus, an online tool, to identified differ-
entially expressed genes (DEGs). Then biological enrich-
ment analyses were conducted to detect the remarkable
functional terms and analyzed the reciprocities among
the biological pathways enriched by pathway analyses
methods. Moreover, a protein network specific in AD
was speculated and evaluated in the background of the
human protein-protein interaction (PPI) network. 3
novel genes and 3 lncRNAs were differently expressed in
the tissues of hippocampus and/or entorhinal cortex be-
tween AD patients and normal ones were identified as
novel and potential candidates of AD pathology, and
binding proteins of these lncRNAs closely associate with
pathogenic mechanism of AD. The results of the present
study should supply ponderable hints for understanding
the pathogenesis molecular mechanisms of AD from a
standpoint of systems biology.

Results
Identification of DEGs
The gene expression profile and sample information of
post-mortem brain tissue samples of AD patients and
normal people of GSE48350 were obtained from
National Center of Biotechnology Information-Gene Ex-
pression Omnibus (NCBI-GEO) and ArrayExpress data-
base, respectively, which are free databases of
microarray/gene profile and next-generation sequencing.
There were total 253 samples in this database, including
microarray data from normal controls and AD cases
aged 20–99 years, from 4 brain regions: hippocampus,
entorhinal cortex, superior frontal cortex, and post-
central gyrus. We analyzed the differences of gene ex-
pression between 18 AD samples (69–99 years old) and
age-matched 24 normal samples of hippocampus tissues,
and 15 AD samples (69–99 years old) and age-matched
17 normal samples of entorhinal cortex tissues in the
present study (Additional file 1: Table S1). Employing
Morpheus software and using p < 0.05 and |log2FC| ≥ 1
(FC, fold change) as cut-off criterion, 251 genes (56 up-
regulated and 195 down-regulated genes) and 74 genes (16
up-regulated and 58 down-regulated genes) were identified
as DEGs in the AD samples compared with the normal
ones in the tissues of hippocampus and entorhinal cortex,
respectively (Table 1 and Additional file 2: Table S2).

Gene ontology (GO) enrichment analyses of DEGs
GO analyses for the DEGs after gene integration were
performed via Cytoscape and its plugs, Cluego and
Cluepedia. 86 of the 251 DEGs from hippocampus tissues
were mapped to 34 different biological processes (Fig. 1a),
of which prominent examples are memory 17.65%, re-
sponse to anesthetic 14.71%, chemical synaptic transmis-
sion 11.76% and cellular potassium ion transport 11.76%
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and neuropilin signaling pathway 11.76% (Fig. 1b and
Additional file 3: Table S3). 54 of the 251 DEGs from
hippocampus tissues were mapped to 23 different cellular
components (Fig. 1c), of which prominent examples are
integral component of synaptic membrane 39.13%, leading
edge membrane 21.74% (Fig. 1d and Additional file 4:
Table S4). 44 of the 251 DEGs from hippocampus tissues
were mapped to 19 different molecular functions (Fig. 1e),
of which prominent examples are potassium ion trans-
membrane transporter activity 47.37%, dicarboxylic acid
transmembrane transporter activity 15.79% (Fig. 1f and
Additional file 5: Table S5). 17 of the 74 DEGs from ento-
rhinal cortex tissues were mapped to 20 different bio-
logical processes (Fig. 1g), of which prominent examples
are sodium ion homeostasis 45%, positive regulation of
muscle contraction 15% and endoderm formation 15%
(Fig. 1h and Additional file 6: Table S6).

Pathway enrichment analyses of DEGs
In all, pathway enrichment analyses of DEGs were classi-
fied by the Kyoto Encyclopedia of Genes and Genomes
(KEGG), Reactome and Wikipathway databases, respect-
ively, using p < 0.05 as cut-off value. The different data-
bases provided similar information with the majority of
AD-related proteins acting in 19 major pathways (13
from hippocampus and 6 from entorhinal cortex),

mainly related transmembrane transportation, drug reac-
tions, synapses function, ion homeostasis, neurogenesis
and signal transduction (Additional file 7: Table S7).

PPI network analyses and module analyses
Using the Search Tool for the Retrieval of Interacting
Genes database (STRING) online database and Cytos-
cape software, total of 135 DEGs (26 up-regulated
and 109 down-regulated genes) of the 251 commonly
altered DEGs from hippocampus were screened into
the DEGs PPI network, containing 135 nodes and 221
edges (Fig. 2a), and 116 of the 251 DEGs did not fall
into the DEGs PPI network. Based on the STRING
database, we made the PPI network of a total of 135
nodes and 221 protein pairs was obtained with a
combined score > 0.4. As shown in Fig. 2a, the major-
ity of the nodes in the network were down-regulated
DEGs in AD samples. Among the 135 nodes, 9 cen-
tral node genes were identified with the filtering of
degree≥10 criteria (i.e., each node had more than 10
connections/interactions) as top 9 hub genes, which
were CDC42, BDNF, TH, PDYN, VEGFA, CALB,
CD44, TAC1 and CACNA1A (Fig. 2b). Figure 2b pre-
sents these 9 genes and their first neighbor genes.
In total, 2 modules (Modules 1 and 2) with score > 3

were detected by Cytoscape plug-in Molecular Complex

Table 1 DEGs were identified from the dataset

Gene symbol

Up-regulated genes
(hippocampus tissues)

ANKIB1 SLC25A46 ZNF621 XIST C1orf87 MAP 3 K19 CD163 LTF AGBL2 PZP TAC1 IGFBP7-AS1 SLC27A6 C1orf192
CD44 SYNE2 FAM216B ABCA6 SPATA18 CCDC11 FAM81B SERPINI2 CRLF1 WDR49 TNFRSF11B DNAAF3 CDK19
RASSF9 FREM3 ANKFN1 ZBBX ART3 CAPS SLC7A11 PIH1D3 WWTR1 CCDC81 EFCAB1 TEX26 EFEMP1 DNAH6
SLC19A3 C21orf62 TDGF1 /// TDGF1P3 MORN5 STON2 CP DYNC2H1 ECM2 WDR96 CXorf30 FANCB CDC14A LEPR
/// LEPROT FHL5 ARHGEF7

Down-regulated genes
(hippocampus tissues)

NWD2 ADAD2 BSN AMPH SLC26A10 NRP1 CYP2A7P1 EBP PCLO ETNK1 SLC24A3 KIT KCNJ6 DDX50 CD300C
DIRAS3 RAB3C TTC5 KCNG3 KALRN SCNN1G ACSL4 MICAL2 MAP 7D2 CALY SOX1 C16orf74 DNASE1L2 NEFH
ANK1 COL2A1 LOC100132891 RCOR3 GABRG2 SPDEF ACHE RDH10 TRAF3IP1 CNR1 TMEM35 PDPN F12 KCNC1
OBSCN STC2 EXOSC3 ACTRT3 RHCG DGAT2 SLC35G1 CAMK1 KCNK10 DCAF15 METTL10 GLS2 FHL2 MICB MCHR1
PPM1E TP53I11 KCMF1 CELF4 SCG2 SCN2B VAPA CARTPT NRP2 CDC42 MIR22 /// MIR22HG BRSK2 SPANXA1 ///
SPANXA2 /// SPANXB1 /// SPANXC ATP1A3 SLC2A3 PLK2 HOMER2 GFOD1 NCDN GLRX PCOLCE2 MATN1 NFKBID
LAMP5 LY86-AS1 RPL27A /// SNORA45A SYN2 KCNA1 KCNJ5 GSDMB SLC6A3 CADPS ATP8A2 SRGAP3 NUP93
TMEM155 QRICH1 IL4I1 DHRS2 AFF2 KISS1R STRIP2 TRPV2 SGPP2 OPRK1 SLC22A8 SSTR2 SLC1A6 C14orf180
RIMKLA KLK7 RET NKX2–5 ACTN1 SPAG11A LEPREL2 IGFBPL1 FABP3 MAGEL2 PPP1R17 IL12RB1 SYT2 SNORD114–
3 AFF3 PCDH20 LRRFIP1 LINC00622 L3MBTL1 PYCRL TBC1D26 /// ZNF286A ATF7IP2 PWP2 CACNA1A KCNJ4
TRHDE SUSD4 UBASH3B SIAH1 PTH2R SDK1 CCNJL KCNQ5 TMEM61 PML NRIP3 METTL7B LINC00282 WIPF3
CLSTN2 GREM2 LOC389906 IFRD1 MRAP2 CENPVP1 /// CENPVP2 KCNIP2 KDM6B CTSG KMT2D CPNE4 PGM5
CARD14 CST7 SPOCD1 HINT3 NR4A3 CENPW VEGFA PCDH8 PKIB DNAJB5 ARC GRP CKS2 PTGS1 ARHGAP36 A1BG
RTF1 AQP3 TSPAN18 TH CHGB CITED1 CALB1 CRABP1 MIR7-3HG PDYN FNDC9 SCGN WFIKKN2 BDNF RAE1 INHBA
EGR4 FOSB LAMB3 EGR2 MPO NPAS4

Up-regulated genes
(entorhinal cortex tissues)

ANKIB1 TAC1 SLC25A46 XIST ZNF621 C1orf192 SPATA13 PKP2 CDK19 A2ML1 CX3CR1 C1orf87 RAPGEF5 CD24 ID2
/// ID2B DST

Down-regulated genes
(entorhinal cortex tissues)

RIT2 SLC17A6 POPDC3 RPLP2P1 /// RPLP2P1 NEFH CKS2 LRRFIP1 CYP27C1 CABP1 SCGB3A1 LY86-AS1 VASH2
QPCT CENPF MPP7 TWIST2 COL4A1 TCERG1L RGS2 HSPB3 ANKRD34C OTP KDELR3 TPSAB1 BRE-AS1 CARTPT
SECTM1 XIRP1 IL1RL1 GPR68 MMP10 TPSB2 DUSP2 RSPO2 PTGS2 RTF1 IL7R GPR3 FOSL1 LINC00622 IL11 DHRS2
FOSB CBLN1 SAA1 /// SAA2 C2CD4A SPOCD1 TGFBI HDC HS3ST2 LINC00960 ATP1B4 RAE1 PMCH LAMB3 OXT
INHBA AVP

56 up-regulated genes and 195 down-regulated genes were included in the hippocampus tissues of AD patients’ samples compared to normal hippocampus
tissues; meanwhile, 16 up-regulated genes and 58 down-regulated genes were included in the entorhinal cortex tissues of AD patients’ samples compared to
normal entorhinal cortex tissues. (The up-regulated genes were listed from the largest to the smallest of fold changes, and down-regulated genes were listed
from the smallest to largest of fold changes)
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Detection (MCODE) (Fig. 2c and d). KEGG pathway en-
richment analyses showed that Module 1 consisted of 4
nodes and 5 edges, which are mainly associated with
Endocytosis, Rap1 signaling pathway and Ras signaling
pathway (Table 2), and that Module 2 consisted of 10
nodes and 14 edges, which are mainly associated with
neuroactive ligand-receptor interaction, and cocaine ad-
diction (Table 3).
Similarly, total of 32 DEGs (6 up-regulated and 26

down-regulated genes) of the 74 commonly altered DEGs

from entorhinal cortex were screened into the DEGs PPI
network, containing 32 nodes and 41 edges (Fig. 3a), and
42 of the 74 DEGs did not fall into the DEGs PPI network.
As shown in Fig. 3a, the majority of the nodes in the net-
work were down-regulated DEGs in AD samples. Among
the 32 nodes, 2 central node genes were identified with
the filtering of degree≥8 criteria (i.e., each node had more
than 8 connections/interactions) as top 2 hub genes,
which were OXT and TAC1 (Fig. 3b). Figure 3b presents
these 2 genes and their first neighbor genes.

Fig. 1 GO analyses of DEGs. 86 DEGs from hippocampus tissues were mapped to 34 different biological processes (a)(b). a Group information of
biological processes. b Percentages of biological processes terms per group. 54 DEGs from hippocampus tissues were mapped to 23 different
cellular components (c)(d). c Group information of cellular components. d Percentages of cellular components terms per group. 44 DEGs from
hippocampus tissues were mapped to 19 different molecular functions (e)(f). e Group information of molecular functions. f Percentages of
molecular functions terms per group. 17 DEGs from entorhinal cortex tissues were mapped to 20 different biological processes (g)(h). g Group
information of biological processes. h Percentages of biological processes terms per group
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In total, 1 module (Modules 3) with score > 3 was de-
tected by MCODE (Fig. 3c). KEGG pathway enrichment
analyses showed that Module 3 consisted of 5 nodes and
10 edges, which are mainly associated with signal trans-
duction (including multiple receptors) (Table 4).

Identification of lncRNAs and analysis of binding proteins
21 mutual DEGs were discovered through the tool of
venn by employing Funrich software, and among which
1 lncRNA, linc00622, was identified as differently
expressed both in the tissues of hippocampus and ento-
rhinal cortex between AD patients and normal controls
(Fig. 4a). Figure 4b and c show the relative expressed
values of linc00622 in the tissues of hippocampus and
entorhinal cortex. Linc00282 and linc00960 were differ-
ently expressed in the tissues of hippocampus and

entorhinal cortex, respectively. After using the online
tools, University of Califorina Santa Cruz (UCSC) and
the Database of RNA-binding protein specificities
(RBPDB), we obtained the RNA-binding proteins lists of
linc00662, linc00282 and linc00960. Then, 14 mutual
RNA-binding proteins were found to be shared by these
3 lncRNAs via the tool of venn (Fig. 4d). The biofunc-
tions of these RNA-binding proteins were summarized
in the Table 5.

Discussion
In general, AD is a genetically complex neurodegenera-
tive disease and is characterized by the presence of
extracellular deposition of senile plaques, intracellular
NFTs and loss of neuron and synapses [50, 51]. AD af-
fects patients’ living quality and is detrimental to their

Fig. 2 PPI networks and clusters of DEGs from hippocampus. a PPI networks of all 135 proteins. b Hub genes and their neighbor genes. c
Module 1 from the PPI network. d Module 2 from the PPI network

Table 2 Pathway enrichment in Module 1

#Pathway
ID

Pathway
description

Observed
gene count

False
discovery rate

Matching proteins
in your network (ids)

Matching proteins
in your network (labels)

5131 Shigellosis 2 0.0131 ENSP00000314458, ENSP00000398632 CD44,CDC42

4640 Hematopoietic cell lineage 2 0.0146 ENSP00000288135, ENSP00000398632 CD44,KIT

4014 Ras signaling pathway 2 0.0323 ENSP00000288135, ENSP00000314458 CDC42,KIT

4015 Rap1 signaling pathway 2 0.0323 ENSP00000288135, ENSP00000314458 CDC42,KIT

4144 Endocytosis 2 0.0323 ENSP00000288135, ENSP00000314458 CDC42,KIT

5205 Proteoglycans in cancer 2 0.0323 ENSP00000314458, ENSP00000398632 CD44,CDC42
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life, and further imposes a considerable burden on their
families and the whole society. However, there are rare
effective therapies for AD patients nowadays; it is urgent
to develop novel perspectives to improve treatment out-
comes [52].
We selected GSE48350 database, which contains

microarray data from AD cases (aged 20–99 years) and
age matched normal controls, from 4 brain regions:
hippocampus, entorhinal cortex, superior frontal cortex,
and post-central gyrus. Previous study has demonstrated
that frontal cortical dysfunction contributed a significant
extent to cognitive deficits and memory loss, which was
considered as the late characteristic of AD [53]; mean-
while, AD has been widely considered as an early am-
nesic syndrome of hippocampal type, which on behalf of
the most significant clinic feature for the diagnosis of
AD [54–56], and we believed that the data between age-
matched AD patients and normal controls were more
convictive. Besides, entorhinal cortex is also considered
as a vital brain region in characterizing AD, and aberrant

changes of entorhinal cortex happen before hippocam-
pus in the pathological mechanism of AD [57–59].
Therefore, we analyzed the data from hippocampus and
entorhinal cortex tissues between aged AD cases from
69 to 99 years and age matched normal controls. We
employed several types of tools to recognize critical mo-
lecular terms and mechanisms involved in AD.
We firstly used Morpheus to filtrate the DEGs from

post-mortem samples between AD patients and normal
controls using p < 0.05 and |log2FC| ≥ 1 as the criteria,
and then we obtained 251 DEGs including 56 up-
regulated genes and 195 down-regulated genes in hippo-
campus tissues, and 74 DEGs including 16 up-regulated
genes and 58 down-regulated genes in entorhinal cortex
tissues.
The overrepresented biological processes, cellular

components and molecular functions obtained from GO
analyses of DEGs from hippocampus and entorhinal cor-
tex tissues may give valuable information about the
pathogenic molecular mechanisms of AD. Among the

Table 3 Pathway enrichment in Module 2

#Pathway
ID

Pathway
description

Observed
gene count

False
discovery
rate

Matching proteins in
Your network (ids)

Matching Proteins
In your Network (labels)

4080 Neuroactive ligand-
receptor interaction

4 0.00166 ENSP00000234371, ENSP00000265572,
ENSP00000350198, ENSP00000358511

CNR1, KISS1R, OPRK1,
SSTR2

5030 Cocaine addiction 2 0.0359 ENSP00000370571, ENSP00000414303 BDNF,TH

Fig. 3 PPI networks and clusters of DEGs from entorhinal cortex. a PPI networks of all 32 proteins. b Hub genes and their neighbor genes. c
Module 3 from the PPI network
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GO terms overrepresented in AD patients, those related
to memory-related processes, drug reactions, transmem-
brane transportation, synaptic transmission and ion
homeostasis were included. These results were in ac-
cordance with previous studies that complex interrela-
tionships of synaptic depression, cognitive impairment,
aberrant drug metabolism, and imbalance of ion homeo-
stasis existed among the nosetiology and development
processes of AD [60–65]. The multiformity in the bio-
logical process of genes involved in AD indicated the
complicacy of the disease. Recent studies convinced that
ion channels are well-known to be involved in AD

pathophysiology, especially potassium ion channel, and
is emerging as a new target candidate for AD [66, 67].
Pathway enrichment analyses of DEGs from hippo-

campus and entorhinal cortex tissues were classified by
the Reactome, KEGG and/or Wikipathway databases, re-
spectively. The different databases provided similar in-
formation with the majority of AD-related proteins
acting in 19 major pathways (13 from hippocampus and
6 from entorhinal cortex), mainly related transmem-
brane transportation, drug reactions, synapses function,
ion homeostasis, neurogenesis and signal transduction,
which were consistent with the results of GO analyses of

Table 4 Pathway enrichment in Module 3

#Pathway
ID

Pathway
description

Observed
gene count

False
discovery
rate

Matching proteins in
Your network (ids)

Matching Proteins In
your Network (labels)

R-HSA:
416476

G alpha (q)
signaling events

5 3.80E-09 ENSP00000321106, ENSP00000324270, ENSP00000332225,
ENSP00000369647, ENSP00000434045

AVP,GPR68, OXTR, PMCH,
TAC1

R-HSA:
373076

Class A/1
(Rhodopsin-like
receptors)

5 1.49E-08 ENSP00000321106, ENSP00000324270, ENSP00000332225,
ENSP00000369647, ENSP00000434045

AVP,GPR68, OXTR, PMCH,
TAC1

R-HSA:
375276

Peptide ligand-
binding receptors

4 2.80E-07 ENSP00000321106, ENSP00000324270, ENSP00000332225,
ENSP00000369647

AVP,OXTR, PMCH, TAC1

R-HSA:
388479

Vasopressin-like
receptors

2 5.84E-06 ENSP00000324270, ENSP00000369647 AVP,OXTR

Fig. 4 LncRNAs identification and filtration of mutual binding proteins. a Mutual DEGs between hippocampus and entorhinal cortex. b Relative
expression of linc00622 in hippocampus. c Relative expression of linc00622 in entorhinal cortex. d Mutual RNA-binding proteins among linc00622,
linc00282 and linc00960
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these DEGs and previous works focused on the aetiology
of AD [60–65, 68]. Besides, in the pathway analyses of 3
modules (2 for DEGs from hippocampus and 1 for ento-
rhinal cortex), it was indicated that multiple signal trans-
duction pathways were involved in the pathological
mechanism of AD.
From the results of functional enrichment analyses

of DEGs, it can be concluded that synaptic depres-
sion, cognitive impairment, aberrant drug metabolism,
and imbalance of ion homeostasis participated in the
pathology of AD and signaling pathways that regulate
these biological phenomena would be the efficient
treatment targets for AD.
Among 11 hub genes (9 from hippocampus and 2 from

entorhinal cortex) obtained from PPI network analyses in
this study, several genes involved in the regulation of cell
survival and cell growth, such as CDC42 and VEGFA; sev-
eral genes involved in the memory, learning, and cognitive
functions, such as BDNF, PDYN, CALB, TH, CACNA1A,
and OXT; several genes involved in the immune and neu-
roprotective functions, such as CD44 and TAC1. Detailed
information of these genes is as seen-shown in Table 6.
Specially, as far as we know, CALB, CACNA1A and OXT
were identified as the hub participants in the pathological
mechanism of AD for the first time in this study.
Given multiple biofunctions of human lncRNA, the as-

sociations between lncRNA and AD have great potential
benefits to understanding the cause of AD. So far, only
several lncRNAs, such as BACe1-AS [27], 51A [28], 17A
[29], BC200 [95] and so on, have been validated to be in-
volved in the pathogenesis of AD. Identifying potential
diagnostic lncRNA biomarkers by employing computa-
tional methods is promising in the biomarker filtration for
AD. In the present study, among 21 mutual DEGs of

hippocampus and entorhinal cortex tissues, 1 lncRNA,
linc00622 was identified as differently expressed both in
the tissues of hippocampus and entorhinal cortex. Besides,
linc00282 and linc00960 were differently expressed in the
tissues of hippocampus and entorhinal cortex, respect-
ively. 14 mutual RNA-binding proteins were proved to
have close relationship with paroxysm and development
of AD. Therefore, linc00622, linc00282 and linc00960
could be considered as novel potential candidates partici-
pating in the pathological mechanism of AD.

Conclusions
Combined the results of comprehensive and systematic
analyses focusing on the biological functions and inter-
actions of the genes extracted from GSE48350 genome
database of AD patients and normal controls, genes
mainly related the biological functions of memory, syn-
apse, neuron survival, drug metabolism, ion homeostasis
and signal transduction were differently expressed in the
hippocampus and entorhinal cortex tissues of AD pa-
tients aged from 69 to 99 years and age matched normal
controls. Our study should shed some light toward a
better understanding of the underlying molecular mech-
anisms and crucial molecular players of AD, and provide
a new viewpoint for researchers with target the cause of
the disease, and also these understandings need to be
further validated by experiments in the future.

Materials and methods
Microarray data extraction and identification of DEGs
The network-based analyses of AD began with the authen-
tication of microarray gene expression dataset. We down-
loaded the gene expression profile and sample information
of GSE48350 from the public availability repository GEO

Table 5 Information of RNA-binding proteins of lncRNAs

Gene symbol Gene title Involved cell functions References

EIF4B eukaryotic initiation factor 4B long-term plastic changes in neuron [34]

PABPC1 cytoplasmic poly(A)-binding protein 1 inflammation [35]

FUS fused in sarcoma motor neuron degeneration [36]

Pum2 pumilio 2 neurogenesis [37]

MBNL1 muscleblind-like protein 1 neuron development [38]

ACO1 aconitase 1 neuron mitochondrial function [39]

KHSRP KH-type splicing regulatory protein inflammation, neuron survival and growth [40]

YTHDC1 YTH domain-containing protein 1 neuron development [41]

SFRS9 SR-family splicing factor 9 neuronal stimulation [42]

RBMX RNA binding motif protein X-linked gene neuron development [43]

SFRS13A SR-family splicing factor 13A cholesterol homeostasis, AD risk [44]

KHDRBS3 KH RNA binding domain containing, signal transduction associated 3 cell proliferation [45]

ELAVL1 ELAV-like protein 1 neurogenesis, neuroprotection [46, 47]

SFRS1 SR-family splicing factor 1 neuron differentiation and survival [48, 49]
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database (https://www.ncbi.nlm.nih.gov/geo/) [96] from
NCBI and European Bioinformatics Institute’s (EBI)
ArrayExpress-functional genomics database (https://www.
ebi.ac.uk/arrayexpress/) [97]. GSE48350 contains post-
mortem brain tissue samples from diseased (patients with
AD) and control (normal) conditions. Hippocampus region
of brain plays significant role in memory formation, which
is necessary in diagnostics since loss of memory and cogni-
tive competence and disorientation are the early signs of
AD [56]. In this study, we analyzed 18 AD samples of
hippocampus region of post-mortem brain aged from 69 to
99 (mean age 84.33 ± 6.56 years) and 24 age-matched con-
trol samples of hippocampus region of post-mortem brain
(mean age 82.71 ± 9.47 years), and 15 AD samples of ento-
rhinal cortex region aged from 69 to 99 (mean age 86.47 ±
5.46 years) and 17 age-matched control samples of entorhi-
nal cortex region (mean age 81.65 ± 9.76 years).
Morpheus (https://software.broadinstitute.org/morpheus/

) [98] online tool allows researchers to carry out of GEO
data to identify DEGs. A gene is defined as a DEG between
the patients’ samples and the normal control samples when
the p-value is < 0.05 and the FC is at least 2 times higher or
lower (|log2FC| ≥ 1).

Functional enrichment analyses for DEGs
Executing functional enrichment analyses for DEGs gives a
functional overview of the DEGs through computing the
whole conspicuousness of the gene expression. GO com-
prises biological process, cellular component, and molecu-
lar function, providing biological functional interpretation
of large lists of genes screened from genomic studies such
as microarray and proteomics experiments [99, 100].
KEGG is an encyclopedical database resource consisting
of graphical diagrams of biochemical pathways for func-
tional gene and molecules to be integrally analyzed [101,

102]. Reactome, an online bioinformatics resource of
pathway information, supplies integrated analysis of the
biologic reaction network [103, 104]. WikiPathway pro-
vides a database in a curated, machine readable way to
analyze and visualize data [105]. Pathway analyses of
KEGG, Reactome and Wikipathway were employed to il-
luminate how DEGs perform function through a certain
path.
We selected Functional Enrichment analysis tool

(Cytoscape v3.7.0), which is an autocephalous software
tool employed mainly for functional enrichment and
interaction network analyses of genes and proteins.
Cytoscape is open source software who can integrate
interaction networks of high-throughput expression data
and other molecular states of genes and proteins into a
unitive conceptual framework [106]. This software has
been widely employed by researchers to study biological
domains, the genome, proteome and metabonomics
[107–110]. The functional enrichment analyses for the
up-regulated and down-regulated DEGs and pathways
were performed via Cytoscape and its plugins, ClueGO
v2.5.3 and Cluepedia v1.5.3, using p < 0.05 as the se-
lected criterion in the present study.

Construction of PPI network for DEGs and recognition of
hub proteins
PPI was employed to analyze the interrelationship among
DEGs, and further illustrate the models of genes which
play significant roles in physiological and pathological sta-
tus. The STRING database (https://www.string-db.org/)
[111] supplies information about the predicted and experi-
mental interrelationships of proteins, and helps to assess
and integrate PPI, including direct (physical) and indirect
(functional) correlations [112, 113]. In this study, the
DEGs were mapped into PPI using STRING database

Table 6 Detailed information of hub genes

Hub genes Involved cell functions References

Hippocampus

CDC42 actin cytoskeleton, gene expression, cell proliferation, Aβ neurotoxicity [69–72]

VEGFA neurogenesis, neuronal migration [73–75]

BDNF growth, survival and maintenance of neurons [76, 77]

PDYN memory, learning, and cognitive functions; drug consumption and addiction [78–80]

CALB long-term potentiation, synaptic plasticity, and memory functions [81, 82]

TH memory and recognition functions [83, 84]

CACNA1A learning and memory [85, 86]

CD44 inflammation-related functions [87–89]

TAC1 neurotrophic and inflammation related functions [90, 91]

Entorhinal cortex

OXT drug addiction, anxiety and memory formation [92–94]

TAC1 neurotrophic and inflammation related functions [90, 91]
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v10.5. Then, Cytoscape software was employed to visualize
the PPI network. The network module was one of the pe-
culiarities of the protein network and contains peculiar
biological importance. The MCODE (v1.5.1) was
employed to identify remarkable modules in this PPI net-
work. Degree cutoff = 2, Node Score Cutoff = 0.2, and K-
Core = 2 were set as the advanced settings. MCODE was
applied to filtrate hub proteins within the PPI network. At
last, the enrichment analyses of the DEGs in different
modules were also conducted by the STRING database.

Identification of lncRNAs and binding proteins prediction
Mutual DEGs were discovered through the tool of venn by
employing Funrich (3.1.3) software. The relative expressed
values of linc00622 in the tissues of hippocampus and ento-
rhinal cortex were analyzed by Graphpad Prism (7.0) soft-
ware. Online tools, UCSC (https://genome.ucsc.edu/index.
html) [114, 115] and RBPDB (http://rbpdb.ccbr.utoronto.
ca/index.php) [116, 117] were used to obtain the RNA-
binding proteins lists of linc00662, linc00282 and linc00960.
Then, mutual RNA-binding proteins shared by these 3
lncRNAs were found via the tool of venn.

Additional files

Additional file 1 Table S1. Information for samples in the included
datasets. (ArrayExpress datasets). Included detailed information of
samples of hippocampus and entorhinal cortex regions extracted from
GSE48350. (XLSX 14 kb)

Additional file 2 Table S2. Information for the DEGs identified from the
GEO dataset (|log2FC| ≥ 1, p value< 0.05). Included detailed information of
all DEGs screened from hippocampus and entorhinal cortex regions.
(XLSX 31 kb)

Additional file 3 Table S3. Information for biological process analysis of
DEGs from hippocampus. Included detailed information of results of
biological process analysis of DEGs from hippocampus. (XLSX 32 kb)

Additional file 4 Table S4. Information for cellular component analysis
of DEGs from hippocampus. Included detailed information of results of
cellular component analysis of DEGs from hippocampus. (XLSX 21 kb)

Additional file 5 Table S5. Information for molecular function analysis
of DEGs from hippocampus. Included detailed information of results of
molecular function analysis of DEGs from hippocampus. (XLSX 17 kb)

Additional file 6 Table S6. Information for biological process analysis of
DEGs from entorhinal cortex. Included detailed information of results of
biological process analysis of DEGs from entorhinal cortex. (XLSX 16 kb)

Additional file 7 Table S7. Pathway enrichment analyses of DEGs.
Included detailed information of pathway enrichment analyses of DEGs
from hippocampus and entorhinal cortex. (XLSX 12 kb)
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