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ABSTRACT  18 

Atmospheric methane (CH4) acts as a key contributor to global warming. As CH4 is a short-lived 19 

climate forcer (12 years atmospheric lifespan), its mitigation represents the most promising means 20 

to address climate change in the short term. Enteric CH4 (the biosynthesized CH4 from the rumen 21 

of ruminants) represents 5.1% of total global greenhouse gas (GHG) emissions, 23% of emissions 22 

from agriculture, and 27.2% of global CH4 emissions. Therefore, it is imperative to investigate 23 

methanogenesis inhibitors and their underlying modes of action. We hereby elucidate the detailed 24 

biophysical and thermodynamic interplay between anti-methanogenic molecules and cofactor F430 25 

of methyl coenzyme M reductase and interpret the stoichiometric ratios and binding affinities of 26 

sixteen inhibitor molecules. We leverage this as prior in a graph neural network to first functionally 27 

cluster these sixteen known inhibitors among ~54,000 bovine metabolites. We subsequently 28 

demonstrate a protocol to identify precursors to and putative inhibitors for methanogenesis, based 29 

on Tanimoto chemical similarity and membrane permeability predictions. This work lays the 30 

foundation for computational and de novo design of inhibitor molecules that retain/ reject one or 31 

more biochemical properties of known inhibitors discussed in this study. 32 

 33 

 34 

 35 

 36 

 37 

 38 

INTRODUCTION 39 
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Greenhouse gases (GHGs) are atmospheric gases that possess the potential to absorb and retain 40 

infrared radiation in the atmosphere, hence trapping heat and causing a rise in temperature of the 41 

earth’s surface 1,2. Prominent GHGs encompass carbon dioxide (CO2), methane (CH4), nitrous 42 

oxide (N2O), as well as a selection of fluorinated gases1–4. GHGs have been one of the world’s 43 

major climate change drivers over generations since their emissions degrade the atmospheric layer. 44 

This results in global warming due to anthropogenic activities. Inclusive of these activities are 45 

enteric CH4 emissions from ruminant livestock, the release of CO2 from fossil fuel use, land use 46 

change, and landfills.  47 

According to the sixth assessment report by the Intergovernmental Panel on Climate Change 48 

(IPCC)5, there were 59 Gt of CO2-equivalence (CO2-e) emitted globally in 2019. Emissions from 49 

Agriculture, Forestry and Other Land Use (AFOLU) represented 22% of these emissions.  Enteric 50 

CH4 emissions accounted for 5.1% of total global GHGs, 23% of AFOLU, and 27.2% of total CH4 51 

emissions (Figure 1a). As CH4 has a short atmospheric lifespan (approximately 12 years), in 52 

periods where emission rates are reduced to a large enough degree, there will be less atmospheric 53 

CH4, resulting in lower warming. Accordingly, rapidly declining CH4 emissions can reduce 54 

temperature equivalent to the removal of atmospheric CO2. As such, reductions in CH4 emissions 55 

represent the most promising means to address climate change in the short term 6. This nuance of 56 

CH4 emissions in general and the relative contribution of enteric CH4 to total CH4 emissions make 57 

enteric CH4 mitigation particularly important 7,8. 58 

Due to increasing production efficiency, the carbon footprint of milk production was reduced by 59 

40%, from 33.6 to 19.9 g CH4/kg milk in recent years, and reductions of 16.3% of enteric CH4 per 60 

unit of beef produced for 2007 relative to 1977 9. While these reductions in carbon footprint from 61 
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the dairy and beef industry are commendable, recent pledges of carbon neutrality by industries and 62 

companies have increased since the Paris Climate Agreement10. These types of commitments 63 

require reductions in absolute emissions rather than reductions in emissions per unit of product. 64 

Accordingly, enteric CH4 mitigation is highly needed by both the dairy and beef industries. 65 

Methanogenesis is methane biosynthesis, irrespective of its emission source. Methane is a key 66 

natural secondary metabolite of enteric fermentation in the rumen of ruminants upon the digestion 67 

of consumed feed 11. Conditions favoring the production of enteric CH4 are designated to achieve 68 

homeostasis in the presence of excess hydrogen for maximum energy production. Methanogens 69 

(methanogenic archaea) are the predominant mediators of methanogenesis within the rumen. In 70 

agreement with the above, a study reported methanogens are influenced by other microbial 71 

members, primarily bacteria 12. Methanogenic interactions with bacteria, fungi, and protozoa 72 

influence enteric fermentation, the main metabolic reaction that leads to CH4 production. 73 

Therefore, methanogens represent a key target for investigating metabolic processes for CH4 74 

mitigation. 75 

Significantly, enteric CH4 production has been a conventional marker for farming productivity as 76 

CH4 is an associated product for carbohydrate utilization in ruminants. The quest for essential and 77 

volatile fatty acid production in livestock dietary metabolism has leveraged this gross implication 78 

of CH4 production in the four-chambered stomach of herbivorous grazing mammals13. As a natural 79 

result of excess hydrogen production in ruminants, CH4 is released into the atmosphere through 80 

either eructation (95%) or flatulence (5%)1 (Figure 1b). Following the stepwise biochemical 81 

reaction of CH4 biogenesis in ruminants, the enzyme Methyl Coenzyme M Reductase (MCR) 82 

produced from methanogenic archaea plays a key role. MCR catalyzes the final but rate-limiting 83 
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step between methyl-coenzyme B (CoB-HS) and methyl-coenzyme M (CH3-S-COM) to release a 84 

heterodisulfide Coenzyme M and Coenzyme B (COM-S-S-COB) and CH4 as products14 (Figure 85 

1c). The entire biochemical process is labeled methanogenesis for reference15.  86 

 87 

Figure 1. A comprehensive schematic illustrating the distribution of greenhouse gas emissions, focusing specifically 88 

on methane and detailing its biochemical synthesis and release mechanisms. a) Global representation of GHGs 89 

emissions with distributions centered on methane by sector as gathered from literature b) The entire enteric 90 

fermentation of carbohydrate (cellulose) feed as a mechanism of methane release. c) Biochemical reaction and the 91 

rate-limiting step in enteric methane synthesis catalyzed by MCR enzyme. 92 

Methanogenesis mitigation strategies and approaches have been conceptualized, designed, and 93 

deployed for a green and CH4-reduced ecosystem. Currently, several CH4 mitigation strategies are 94 

being explored by the agricultural sector. Options such as increasing feeding levels, decreasing 95 

dietary forage-to-concentrate ratios 16,17, and improving feed quality and digestibility have been 96 

promising options. However, these strategies often reduce enteric CH4 emission on a per product 97 
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produced basis and have only demonstrated reductions by around 16.3% 18. Mitigation options that 98 

reduce absolute emissions have also been investigated and include genetic and breeding 99 

selection19, feeding tanniferous forages 20 providing electron sinks 21 and supplementing fat 16,17. 100 

These options have been shown to reduce enteric CH4 emissions by around 10% 18.  101 

The mitigation options that have demonstrated the largest enteric CH4 mitigation potential are 102 

direct methanogenesis inhibitors. These include 3-nitrooxypropanol (3-NOP) and bromoform 103 

(CHBr3)-containing seaweeds (Asparagopsis spp.). 3-nitrooxypropanol has been shown to reduce 104 

enteric CH4 by 25-30% 22 and Asparagopsis  seaweeds have reduced enteric CH4 by 80-98% 23,24. 105 

3-nitrooxypropanol and CHBr3 from red seaweed have been suggested to inhibit methanogenesis 106 

by competitively binding and providing an agonistic effect on CH3-S-COM hence hindering the 107 

final and rate-limiting step in enteric methanogenesis 1,25,26. More specifically, halogenated 108 

compounds such as CHBr3 competitively displace other natural substrates that tend to interact with 109 

the Ni(I) ion of F430 coenzyme M. This results in methyl transfer inhibition and a reduction in CH3-110 

S-COM mediated CH4 release26.  111 

Amongst the methanogenesis inhibitors investigated and implemented, a data-driven deep-dive 112 

with precise molecular modeling of the atomic-level biochemistry of these inhibition mechanisms 113 

has remained largely elusive. Empirical approaches thus far have not provided enough biochemical 114 

information in order to design novel inhibitor molecules which can posit a high affinity of binding 115 

to rumen MCR bound to its cognate cofactor F430 aside 3-NOP1,2. Here, we employ in silico 116 

approaches to interpret the stoichiometric ratios (i.e., biophysical flooding) and binding affinities 117 

(i.e., biochemical trapping) of all well-documented inhibitor molecules against the redox-active 118 

nickel (Ni(I)) tetrahydrocorphin, coenzyme F430 cofactor of MCR.  119 

METHODS 120 
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Selection of Methanogenic Protein Structure and Inhibitor Compounds. A data mining sweep 121 

through reported literature was performed encompassing Google Scholar, GenBank 27, and 122 

UniProt 28 databases to pinpoint the methanogenic archaea Methyl-coenzyme M reductase enzyme 123 

responsible for enteric CH4 biosynthesis. Studies focused on the biochemical mechanism of the 124 

MCR enzyme, inhibitor molecules, and structural insights of both MCR and the inhibitor 125 

molecules were shortlisted. Based on the structural insight, a high-resolution, X-ray diffracted 126 

crystallized MCR (PDB Accession ID: 5G0R) was identified2 and downloaded from the Research 127 

Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB)29. Protein structure 128 

visualization, characterization, and determination of active site residues within a 5Å distance from 129 

the cofactor F430 were investigated using PyMOL30,31. A library of inhibitor molecules was 130 

downloaded from PubChem32 after a deep literature search for inhibitor molecules with or without 131 

experimental data from the above-mentioned literature databases. The MolView server33 was used 132 

to generate structures for inhibitors that were not available in PubChem.   133 

Molecular docking and molecular dynamics (MD) simulations. Molecular docking and MD 134 

simulations were conducted to explore further insights into the binding poses and proximities for 135 

CH4 inhibition amongst selected 16 individual inhibitor molecules with the Ni(I) of F430 cofactor 136 

of MCR. Rigid molecular docking was performed using AutoDock Vina34 to explore the binding 137 

interactions of the selected inhibitors out of a library of literature-derived small molecule 138 

compounds and the cofactor F430 of MCR (PDB ID: 5G0R). Protein and ligand preparation steps 139 

were conducted using AutoDockTools34. Using the gradient-based local search genetic algorithm 140 

built in AutoDock Vina 34, the docking energy scores and rankings of binding poses of each 141 

inhibitor molecule to the active-site of the MCR enzyme were obtained. Illustrations of inhibitor-142 

MCR complex were generated using PyMOL30,31. Molecular dynamics of the respective top-143 
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scored conformations of MCR- cofactor F430-anti methanogen ternary complexes were set up using  144 

GROMACS 2023 macromolecular modeling package with CHARMM36 forcefield35 (see SI for 145 

details).  146 

Stoichiometric ratio and binding affinity analysis. The stoichiometric ratio and distribution of 147 

inhibitor molecules within the catalytic groove of MCR at the surface of cofactor F430 were 148 

analyzed. All ligands’ poses within an electron transfer range (<5Å) with bound Ni(I) of the 149 

cofactor F430 were selected. The number of such poses for each inhibitor represents the maximum 150 

biophysically permissible stoichiometric ratio against inhibitor molecule type. 151 

Structural comparison of MCR inhibitors with ruminant specific metabolite databases. The 152 

16 inhibitors explored against MCR enzyme were compared for similarities in molecular 153 

fragments within two ruminant specific metabolite databases - a)  Milk Composition Database 154 

(MCDB) 36 and b) Bovine Metabolome Database (BMDB) 37, containing 2,360 and 51,682 entries, 155 

respectively. The structural information of metabolites was downloaded in Structure-Data File 156 

(SDF) format and further processed to obtain canonical Simplified Molecular Input Line Entry 157 

System (SMILES) representation using RDKit38. These SMILES strings were used as input for a 158 

GNN to generate molecular embeddings, providing a standardized and machine-readable 159 

representation of the complex molecular structures present in milk and bovine metabolites. 160 

Initially, the RDKit cheminformatics package was utilized to extract each metabolite's atomic 161 

identities and structural information into features as nodes and edges. These features were then 162 

passed into a simple GNN architecture containing 58 input neurons, corresponding to the different 163 

atoms present in the structure databases, a hidden layer with 64 neurons, and 128 output neurons. 164 

This GNN framework generated molecular embeddings as tensors with dimensions (N×128), 165 

where N represents the number of atoms in each metabolite, and 128 is the dimensionality of the 166 
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embedding space. These tensors were subsequently averaged across the atomic dimension to 167 

produce a unified 128-dimensional vector representation for each molecule. The high-dimensional 168 

embeddings were reduced to two dimensions using t-distributed Stochastic Neighbor Embedding 169 

(t-SNE). t-SNE parameters were optimized, with perplexity set to the minimum value between 30 170 

and the total number of molecules in the database. This dimensionality reduction facilitated the 171 

visualization of molecular relationships, enabling the identification of structural similarities and 172 

potential functional associations among the metabolites. 173 

Validation of clustered potential inhibitors via Tanimoto chemical similarity analysis and 174 

Haddock. We employed Tanimoto similarity analysis, utilizing Morgan fingerprints, to assess the 175 

similarity between selected metabolites and the set of MCR inhibitors39,40. Bovine metabolites 176 

were categorized into groups of two, those with the highest similarity (Likely Inhibitors Molecules; 177 

LIMs) and those with the lowest similarity (Unlikely Inhibitor Molecules; UIMs) with the 16 178 

known MCR inhibitors. Categorization was done based on clustering proximity. Additionally, we 179 

performed molecular docking studies using HADDOCK on five of the nearest and five of the 180 

farthest metabolites, targeting the enzyme MCMI reductase41. The active residues from the enzyme 181 

were selected for docking with the chosen metabolites (as detailed in S1 Figure). We predicted 182 

the expected membrane permeability of randomly chosen 16 Likely and Unlikely Inhibitor 183 

Molecules (LIMs/ UIMs), using an established supervised machine learning protocol42. Herein the 184 

SMILES representation of each molecule is one-hot encoded using an encoder-decoder setup and 185 

mapped to the respective membrane permeabilities (preferentially trained on colorectal 186 

adenocarcinoma cell membrane; Caco-2). The above protocol is housed within the KNIME suite 187 

of ML platforms43. 188 

RESULTS AND DISCUSSION 189 
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MCR from Methanothermobacter marburgensis and diverse inhibitors identified as key 190 

targets for methanogenesis inhibition. We selected an x-ray defined crystal structure of MCR 191 

protein with a Ni-methyl species that is a proposed catalytic intermediate in MCR. The methyl 192 

group of methyl-coenzyme M stated usually situates at least a 2.1 Å proximal to the Ni(I) of the 193 

MCR coenzyme F430 for a successful catalysis to materialize. A rearrangement of the substrate 194 

channel has been posited to bring together substrate species; however, Ni (III)-methyl formation 195 

alone does not lead to any observable structural changes in the channel 2. Given this, studies with 196 

biochemical and structural analysis of the MCR from Methanothermobacter marburgensis were 197 

focused upon with the assumption that the last step of CH4 production in ruminants is the rate-198 

limiting step of methanogenesis 44. A recent experimental study 2 of the inhibitory properties of 3-199 

NOP with the 3D structure of MCR (PDB ID: 5G0R) deciphered at a high resolution of 1.25 Å 200 

was selected for our study. In agreement with previous literature 44–46, the MCR protein selected 201 

is a 273 kDa hexameric protein (Figure 2) with two catalytic subunits that are 50Å apart. The 202 

MCR protein has a deep active site pocket with a substrate groove that runs ~ 30Å from to the 203 

protein’s surface1. The activity of MCR, as reported by computational analysis from experimental 204 

data44,47, demonstrated the enzyme remains active only when its Ni ion in the tetrapyrrole 205 

derivative of the cofactor F430 has a +1-oxidation state, therefore catalyzing the last CH4-206 

production step of methanogenesis in the rumen of livestock such as cattle, sheep, and goats1,48,49.  207 
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 208 

Figure 2. Illustration of the crystal structure of Methyl Coenzyme M Reductase (MCR) (PBD accession ID: 5G0R) 209 

from Methanothermobacter marburgensis and the six-chain hexameric complex. a) Each chain of MCR crystal 210 

structure has been indicated with six colors. b) Catalytically active chains (A and D) of MCR are shown in green and 211 

blue, while other non-catalytic chains are shown in gray. The location of the cofactor F430 in the enzyme structure 212 

for both catalytic chains are indicated. 213 

All literature-based reported inhibitor compounds for enteric methanogenesis inhibition were 214 

collected. Sixteen distinct molecular compounds were selected, including statins, pterins, nitro-215 

ol/esters, Coenzyme-B analogs (COBs), and CHBr3 (see Figure 3). Three statins (atorvastatin, 216 

rosuvastatin, and simvastatin), four nitro-ol/esters (2-nitroethanol, 2-nitropropanol, 3-217 

nitropropionate and 3- NOP), five Coenzyme B analogs (COBs) (N-5-218 

mercaptopentanoylthreonine phosphate: CoB5, N-6-mercaptohexanoylthreonine phosphate: 219 

CoB6, N-7-mercaptoheptanoylthreonine phosphate: COB7, N-8-mercaptooctanoylthreonine 220 

phosphate: CoB8, and N-9-mercaptononanoylthreonine phosphate: CoB9, and three Pterins (pterin 221 

B53 (2,6-diamino-5-nitrosopyrimidin-4(3H)-one), pterin B54 (4-{3-[(2-amino-5-nitroso-6-oxo-222 

1,6-dihydropyrimidin-4-yl)amino]propoxy}benzoic acid) and pterin B55 (2-amino-8-sulfanyl-223 
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1,9-dihydro-6H-purin-6-one)) were studied in comparison with CHBr3 using detailed molecular 224 

modeling and thermodynamic assessment of binding interactions with MCR in the presence of 225 

cofactor F430. 226 

 227 

Figure 3. Representation of all selected anti-methanogenic molecules (inhibitors) structures adopted for this study. a. 228 

Bromoform molecule. b. Group of Pterins. c. Group of Nitro- alcohols and esters. d. Group of Coenzyme B analogs. 229 

e. Group of Statins or HMG-CoA reductase inhibitors. 230 

Nitro-ol/ester compounds outperform other inhibitors in MCR binding affinity and 231 

stoichiometry. The top-scoring (strongest) binding poses were analyzed to evaluate the ligands' 232 

binding affinities, interactions, and potential binding modes with no superimpositions within 5Å. 233 
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No superimposition criterion was imposed to infer the maximum number of inhibitor molecules 234 

that can simultaneously invade and yet remain biochemically bound within catalytic distances of 235 

cofactor F430 within the MCR enzyme pocket. The number of inhibitor molecules thus obtained is 236 

a representation of the maximum permissible stoichiometry of the inhibitor on a per-molecule 237 

basis with the MCR enzyme. Consequently, the inhibitor molecule poses that were accounted for 238 

were the ones within the electron transfer range with the Ni(I) of the tetrapyrrole of F430 in MCR. 239 

The least likely inhibitor molecule from the binding affinities records were HMG-CoA reductase 240 

inhibitors (statins) with rosuvastatin, simvastatin, and atorvastatin having positive (i.e., overall 241 

repulsive binding interactions with MCR). They had +55.5, +54.7 and 79.7 kcal/mol binding 242 

energy scores, respectively – reflecting they are unlikely to stay bound and/ or inhibit catalysis 243 

sustainably, even though they are shape compatible for the MCR pocket and might temporally 244 

occlude the pocket. It is noteworthy that the MCR-binding affinity values observed with the statins 245 

numerically correlate (R2 = 0.82) with the molecular weights of each statin due to the tube-like 246 

shape of the binding pocket of MCR. Next, the coenzyme B analogs ranked as poor, albeit stable 247 

inhibitors from the affinity values from the top three docking poses per inhibitor, with CoB5 having 248 

the lowest affinity value (3.9 kcal/mol). However, the third best group of inhibitors was the pterins, 249 

with pterinB55 being the best amongst them at 2.17 kcal/mol, while the worst of that group was 250 

pterinB54 with an affinity binding of 15.52 kcal/mol. Best as desired, inhibitor molecules surfaced 251 

as the nitro-ol/ester group of molecules with mean affinity values ranging from -2.87 to -5.37 252 

kcal/mol (see Figure 4). The CHBr3 molecule scored an average affinity value of 1.33 kcal/mol, 253 

with the best individual CHBr3 molecule having a 0.2 kcal/mol but stoichiometrically having three 254 

poses with no superimposition (Figure 4).  255 
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 256 

 257 

Figure 4:  Illustration of all three selected poses of bromoform interacting with Ni(I) of F430 in MCR protein and 258 

graphical representation of the stoichiometric ratio of individual inhibitors docked to the active site of MCR enzyme 259 

in the close vicinity of F430. The dashed lines indicate the distances, in Å, between Ni(I) and bromoform. Cyan: for 260 

the distances of the first bromoform molecule.  Gold: for the distances of the second bromoform molecule.  Magenta: 261 
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for the distances of the third bromoform molecule. The distances of other inhibitor molecules from Ni(I) are 262 

represented in supplementary information (see Figure S2-S17). b. Scatter plot representation of the mean binding 263 

affinity values of top three conformations of inhibitor molecules docked to F430 of MCR. c. Representation of all 264 

positive conformations of inhibitor molecules accurately posed within a 5Å range. 265 

Energetics for each inhibitor (in silico affinity value scores) were calculated based on the best 266 

conformations docked at the active site. The relatively small CHBr3 and nitro-ol/ester compounds 267 

were observed to be comparable with each other and better than the other anti-methanogenic 268 

compounds due to their larger molecular size; however, fragments that interacted with F430 need 269 

to be analyzed further for more insights. Affinity values of each inhibitor (selected poses) were 270 

plotted for the compounds which are correlated with the stoichiometric ratio plot (Figure 4). Apart 271 

from CHBr3, which has more experimental evidence, nitro-ol/ester compounds could be stable 272 

enough for competitive inhibition. Molecular dynamics for these compounds warrant further 273 

investigation into their anti-methanogenic capabilities. 274 

Ni(I) ion mobility and steric clashes hinder stable MCR-cofactor F430 complex simulations. 275 

The MCR enzyme is a hexameric enzyme with two catalytic grooves, each guarded by three chains 276 

(Figure 2). The active form of cofactor F430 has a tetrapyrrole ring with Ni(I) held at its center. To 277 

reduce the computational cost without compromising the quality of MD simulation, we focused 278 

on one catalytic groove, which encompasses chains A, C, and D along with cofactor F430. The 279 

force field parameters for MCR are taken from CHARMM36, while cofactor F430 is parametrized 280 

using ATB 50. Equilibration of the three chains of enzyme along with the cofactor F430 with Ni(I) 281 

in an orthohedral TIP3P water box resulted in cofactor F430 moving out of the solvation box and 282 

Ni(I) moving away from cofactor F430 into the bulk solvent (SI Figure A). Selection of orthohedral 283 

simulation box is to reduce the solvent molecules with the aim to reduce computational cost. The 284 

undesirable shifting of cofactor F430 in orthohedral box may be a result of the edge effect due to 285 
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poor solvation, hence we controlled it by using a cubic water box, with 2.8 times increase in 286 

number of solvent molecules. Nevertheless, the tendency of Ni(I) to behave as a solvent ion 287 

continued to pose difficulty in modeling MCR-cofactor F430 complex (SI Figure B). We attempted 288 

to control the relative movement of Ni(I) with respect to cofactor F430 by imposing movement 289 

restrictions, which resulted in unfeasibly unstable energy due to steric clashes. Adding inhibitor 290 

molecules to a non-equilibrated enzyme-cofactor complex further worsened the instability of the 291 

whole simulation system, resulting in an unphysical simulation box. 292 

As atomic scale MD simulation of MCR enzyme-cofactor F430-inhibitor ternary complex is a 293 

challenging venture involving multiple steps of optimization, equilibration, and analyses involving 294 

a huge computational cost, we intend to implement the knowledge we gained in optimizing the 295 

simulation box for a future follow-up study to compare the structural and thermodynamic 296 

underpinnings of MCR inhibition 51.  297 

MCR inhibitors cluster together when compared with ruminant specific metabolite 298 

databases. Spatially adjacent molecules to the inhibitor cluster in the reduced-dimensionality 299 

space emerge as putative inhibitors or precursors of anti-methanogenic compounds. Since it is 300 

unclear what characteristics define a good inhibitor, as all 16 molecules are very different from 301 

each other in shape and chemistry, binding energy calculations can tell if a molecule is a good 302 

inhibitor, but this information alone is insufficient to design a new inhibitor. This necessitates the 303 

identification of common structural and chemical features that unify these 16 molecules while 304 

simultaneously distinguishing them when put in context with other bovine metabolites. Since the 305 

number of molecular features required to identify such a cluster is unknown due to paucity of data 306 

in experimental literature, we chose to use a latent encoder of molecular signatures using a graph 307 

neural network (GNN) whose encodings when projected onto a 2D space, exhibits clustering of 308 
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these 16 molecules close to each other and disparate from others. While other functional clusters 309 

have not been investigated in context with bovine metabolism and signal transduction, we are able 310 

to ascribe the clustering of all these 16 validated anti-methanogenic molecules to represent the loci 311 

in the 2D t-SNE space as responsible for anti-methanogenicity (Figure 5).  312 

 313 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.09.16.613350doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.16.613350
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

 314 

Figure 5. Two-dimensional t-SNE projection of molecular signatures reveals clustering of methanogenesis inhibitors. 315 

a) and b) Visualization of 16 known MCR inhibitors (Red) in relation to their four nearest neighbors (Black) selected 316 

from the Milk Composition Database (MCDB). c) and d) Similar visualization with four proximal metabolites (Black) 317 

identified in the Bovine Metabolome Database (BMDB).  318 

Proximal molecules to this functional cluster from the two databases emerge as putative inhibitors 319 

or precursors to anti-methanogenic molecules. Notably, molecules such as butyrate, 2-320 

hydroxybutyric acid, and biotin were identified as potential candidates.  Previous studies in the 321 

field address the success of computational tools for the prediction of inhibitors for various 322 

enzymes. From the discovery of novel QoI fungicides for cytochrome b inhibition in 323 

Peronophythora litchi 52 and the successful elucidation of antimicrobials for downy mildew 324 

pathogenicity in cucumber using in silico docking 53. Over the period of advancement, the use of 325 

ML-based tools54,55 dominates the race of drug or ligand prediction after several successes.  On 326 

this note, our team’s next steps are to leverage generative AI frameworks like Drug-large language 327 

models (LLM) or Chemistry42 in subsequent studies 51 to computationally predict potential 328 
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inhibitors using the putative inhibitors as templates and couple it with in vitro inhibitor assays to 329 

test the efficiency of such predictions. 330 

Validation of clustered potential inhibitors via Tanimoto chemical similarity analysis and 331 

HADDOCK. We demonstrate that the LIMs (likely inhibitors) exhibited significantly higher 332 

Tanimoto similarity scores with the known sixteen inhibitor molecules compared to the UIMs 333 

(unlikely inhibitors) metabolites (Figure 6 (a) and (b)). We conducted a t-test that yielded a p 334 

value of 0.0003 indicating that LIMs have a significantly higher chemical similarity (Tanimoto 335 

score) to the known inhibitors, compared to UIMs. This provides interpretability to our neural 336 

clustering (Figure 5). The chemical similarity trends, however, did not correlate with the 337 

HADDOCK computational docking scores (i.e., binding free enthalpies) with the MCR enzyme, 338 

as distal metabolites (UIMs) often resulted in tighter MCR binding (SI Table 3). This can be 339 

ascribed to the lack of appropriate biochemical microenvironment in a static docking simulation 340 

which ignores entropic effects of solvent molecules (see details on attempted MD simulations; 341 

Supplementary Information Figure S18). The complexity of the dynamics of this quaternary 342 

system (an enzyme, a F430 cofactor, a Ni(I) metal ion, and an inhibitor) when interfaced with 343 

explicit water molecules becomes intractable as seen in our attempt to perform the MD simulation 344 

(due to the paucity of all appropriate non-bonded parameters). This even more alludes to the lack 345 

of fidelity in available docking protocols which are not poised to handle co-docking setups with 346 

more than two moving pieces. Despite the accurate identification of the key (active) residues 347 

involved (S1 Figure) in substrate stabilization, HADDOCK results were thus not contributive to 348 

explaining the true energetics of the system. Overall, these findings suggest that chemical 349 

similarity, as measured by Tanimoto scores, is likely to be a more reliable predictor of MCR 350 

inhibition potential than inhibitor binding affinity. 351 
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 352 

Figure 6. Tanimoto chemical similarity analysis between the LIM and UIMs relative to sixteen 353 

MCR inhibitors. (a) The sixteen inhibitors are represented at the periphery of the spider plot. The 354 

red-shaded area indicating the similarity of the proximal LIMs while the gray-shaded area 355 

represents the farther UIMs. b) Box plots illustrate the similarity of seven LIMs and nine UIMs 356 

relative to the 16 known MCR inhibitors. The red boxes represent LIMs, while the gray boxes 357 

represent UIMs. A p value of 0.003 indicates that the LIMs exhibit a statistically significant higher 358 

similarity to the known sixteen inhibitors compared to UIMs. 359 

 360 

Membrane permeable metabolites are likely to inhibit the methane emission in ruminant. 361 

Table 1: Predicted Membrane Permeability and Confidence Levels of MCR Inhibitors and Near 362 

Metabolites Based on SMILES Codes. 363 

Ligand Type 
Smiles 

Confidenc

e 

Permeabilit

y 

Papp (10e-6 

cm/s) 

Known 

MCR 

BrC(Br)Br Low High 16.22 

P(=O)(O)(O)O[C@@H]([C@H](N
C(CCCCS)=O)C(=O)O)C 

Low Low 1.22 
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Inhibitors P(=O)(O)(O)O[C@@H]([C@H](N
C(CCCCCS)=O)C(=O)O)C 

High Low 1.45 

P(=O)(O)(O)O[C@@H]([C@H](N
C(CCCCCCS)=O)C(=O)O)C 

High High 49.76 

P(=O)(O)(O)O[C@@H]([C@H](N
C(CCCCCCCS)=O)C(=O)O)C 

High High 21.4 

P(=O)(O)(O)O[C@@H]([C@H](N
C(CCCCCCCCS)=O)C(=O)O)C 

High Low 4.26 

[N+](=O)([O-])CCO High Low 4.97 

[N+](=O)([O-])C(CO)C Low Low 1.44 

[N+](=O)([O-])CCC(=O)[O-] High Low 8.1 

[N+](=O)([O-])OCCCO Low Low 1.13 

FC1=CC=C(C=C1)C=1N(C(=C(C
1C1=CC=CC=C1)C(NC1=CC=C
C=C1)=O)C(C)C)CC[C@H](C[C
@H](CC(=O)O)O)O 

High Low 1.42 

FC1=CC=C(C=C1)C1=NC(=NC(
=C1/C=C/[C@H](C[C@H](CC(=
O)O)O)O)C(C)C)N(S(=O)(=O)C)
C 

High High 19.33 

CC(C(=O)O[C@H]1C[C@H](C=
C2C=C[C@@H]([C@@H]([C@
@H]12)CC[C@H]1OC(C[C@@H
](C1)O)=O)C)C)(CC)C 

High High 18.06 

NC1=NC(=C(C(N1)=O)N=O)N Low Low 0.98 

NC=1NC(C(=C(N1)NCCCOC1=
CC=C(C(=O)O)C=C1)N=O)=O 

High High 13.73 

 
 

Likely 
Inhibitor 

Molecules 

(LIM) 

NC=1NC(C=2N=C(NC2N1)S)=O Low Low 1.8 

CCC(O)C(=O)O High High 12.59 

CCCC(=O)O High High 18.79 

O=C(O)CCCC(=O)C(=O)O Low Low 0.96 

NCCCN Low Low 1.29 

O=C(O)CC1=CC=C(O)C=C1 High Low 7.33 
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CSCC(N)C(=O)O High High 18.25 

O=C(O)CCCCC(=O)C(=O)O High Low 3.05 

 364 

MCR is mostly associated with the membrane56, and recent findings confirm its localization near 365 

the cytoplasmic membrane57. This indicates the necessity of membrane permeability for effective 366 

inhibition. For instance, bromoform and 3-NOP are established MCR inhibitors26,58. Bromoform 367 

is known to penetrate cell membranes rapidly, achieving diffusion within nanoseconds at low 368 

concentrations59. 3-NOP has been shown to significantly reduce methane emissions in dairy cows, 369 

leading to its approval for commercial use by the FDA58,60. 370 

In our analysis, bromoform was predicted to exhibit high membrane permeability, albeit with low 371 

computational prediction confidence. Among putative inhibitors (without further property 372 

screening) candidates like CSCC(N)C(=O)O (S-methyl cysteine) and CCC(O)C(=O)O (4-373 

hydroxybutyric acid) emerge as highly permeable with high confidence (Table 1). They have high 374 

chemical similarities (median Tanimoto scores ~0.10, ~0.13 respectively) with the known sixteen 375 

metabolites. While S-methyl cysteine is a known anti-oxidant, anti-inflammatory61, and is 376 

biologically regarded as safe62–64 and hence a promising target for experimental testing, 4-377 

hydroxybutyric acid (Drugbank id: DB01440) is known to be a therapeutic drug and can lead to 378 

cytotoxicity65 above when administered beyond threshold. This makes the latter a less promising 379 

experimental target. It indicates the necessity to build additional bio-aware filters into 380 

computational predictive models beyond chemical similarity, membrane permeability and ability 381 

to approach Ni(I) before taking computationally predicted molecules to experimental testing for 382 

MCR. This is exemplified, as 3-NOP is predicted to have low permeability (even though with low 383 

confidence) (Table 1) which is contrary to experimental knowledge. Given its established use as 384 
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a commercial feed additive, 3-NOP should have exhibited high membrane permeability in our 385 

predictions. One potential reason could be lack of 3-NOP-type molecules in the existing databases, 386 

making the prediction low confidence anyway (Table 1). Therefore, there is a clear need for a 387 

more precise Caco-2 membrane permeability predictor with biochemical awareness. Future work 388 

may involve developing advanced models, such as nonlinear regression or gradient-boosted 389 

trees66, leveraging data on 511 known metabolites with permeabilities across 11 representative 390 

membranes. 391 

CONCLUSION 392 

MCR enzyme inhibition is considered a direct strategy to reduce CH4 emission from ruminant 393 

livestock. Here, we computationally compared 16 small molecules reported to be explored as MCR 394 

inhibitors. Through molecular docking, we showed that CHBr3 and nitro-ol/ester compounds have 395 

a higher affinity to bind to cofactor F430 in the active site of MCR compared to statins, pterins, and 396 

COBs. In this study, we revealed that the reaction dynamics and the overall mechanistic 397 

understanding of the inhibition process is greatly influenced by the stoichiometry of the inhibitors 398 

in the active site. Specifically, the presence of three bromine atoms in bromoform makes it a highly 399 

effective halogenated compound for competitively inhibiting the interaction of natural substrates 400 

with the Ni(I) ion in the F430 cofactor in MCR enzyme. Notably, inhibitor stoichiometry does not 401 

only dictate the binding affinity as a factor for methane inhibition but also the extent of methyl 402 

transfer inhibition and, consequently, the reduction in methane (CH₄) release. In this study, we 403 

demonstrate that the stoichiometry of the inhibitors in the active site, as deduced from the non-404 

superimposing docking poses within the active site groove, is directly proportional to the size of 405 

the inhibitor. It can be interpreted that smaller inhibitors have higher flooding effects within the 406 

active site. The GNN-powered t-SNE clustering indicated that all the 16 inhibitor molecules 407 
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explored in this study have inherent similarities among themselves when compared to ruminant 408 

specific metabolites and reveal some potential candidates from these databases as anti-409 

methanogenic agents and their precursors. Lastly, the challenges in setting up an atomic scale MD 410 

simulation box with MCR enzyme-cofactor F430 with an electrostatically bound Ni(I)- inhibitor 411 

ternary complex is discussed, indicating the importance of optimizing each component of the 412 

ternary complex solvated in a solvent box big enough to ultimately house all the components.  413 
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