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Abstract
Raman spectroscopy is an emerging tool in the research and diagnosis of different diseases, including neurodegenerative 
disorders. In this work, blood serum samples collected from healthy controls and dementia patients were analysed by Raman 
spectroscopy to develop a classification model for the diagnosis of dementia of Alzheimer’s type (DAT). Raman spectra 
were processed by means of multivariate tools for multivariate analysis. Lower concentration levels of carotenoids were 
detected in blood serum from patients, which allowed for a good discrimination with respect to controls, such as 93% of 
correct predictions on the test set with random forest. We also hypothesize that carotenoid levels might be informative about 
the severity and progression of the disease, since the intensity of carotenoid signals decreased from the early stage to more 
severe patients. These encouraging results suggest the possibility to use Raman spectroscopy for the analysis of alternative 
biofluids (e.g. saliva) and the unobtrusive diagnosis of other neurodegenerative disorders.
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Introduction

Neurodegenerative diseases represent a growing cause of 
disability in industrialized countries. The extension of lifes-
pan, due to improvements in public health, increased the 
incidences of age-related disorders, mostly of Alzheimer’s 
(AD) and Parkinson’s disease [1]. Dementia of Alzheimer’s 
type (DAT) is a severe neurodegenerative disorder of the 
brain characterized by loss of memory and cognitive decline 
[2]. Currently, neurodegenerative disease diagnosis is based 
on clinical symptoms, through a combination of psychiat-
ric questionnaires and biomedical imaging methods, such 
as computerized tomography (CT), magnetic resonance 

imaging (MRI) and positron emission tomography (PET) [3, 
4]. These methods are characterized by diagnostic accuracy 
but are slow, subjective and may not be predictive of the dis-
ease onset. Post-mortem pathological or molecular analyses 
of brain tissue (plaques and tangles) are then necessary for 
the verification of the pathology.

Biomarkers are essential to perform early diagnosis, moni-
tor neurodegenerative disease progression, measure responses 
to therapies and stratify neurodegenerative disorders into their 
different subtypes. An ideal biomarker would distinguish DAT 
from other types of dementia. This is important, because treat-
ment for these diseases might differ substantially [5]. There-
fore, the research is pushing for the finding of reliable biomark-
ers for neurodegenerative diseases by novel techniques, and a 
wide range of molecular markers is under investigation in tis-
sues and biofluids as well as through imaging. Mass spectrom-
etry [6] and enzyme-linked immunosorbent assay (ELISA) [7] 
are the most developed and used techniques for the identifi-
cation and quantification of biomarkers. Unfortunately, these 
techniques are slow and expensive. Raman spectroscopy is a 
label-free technique that rapidly provides chemical and struc-
tural information by detection of Raman scattering, i.e. inelas-
tic collision of photons from molecules [8]. With respect to 
traditional biological assays, almost no sample preparation is 
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required as well as no chemicals are necessary for the analysis, 
whose execution is also timesaving. The potential of the tech-
nique relies on its spectral fingerprint features, able to deter-
mine the presence of morphological–chemical alterations, due 
to a pathological condition, by slight changes in spectral pro-
files [9]. To highlight these spectral differences and to extract 
important biological information, the coupling with multivari-
ate statistical methods is mandatory. To build reliable models, 
reference spectra recorded from tissue and cells with a known 
pathological status are used for the training of classification 
algorithms [10, 11]. This approach makes Raman a powerful, 
fast and sensitive tool for the analysis of biological samples.

Raman spectroscopy and its derivatives, coupled with mul-
tivariate analysis, have been applied mainly to cancer diagnosis 
[12–19] on a range of sample formats, including fixed cells and 
tissues, as well as non-invasive biofluid measurements [20] has 
been used also in diagnosis and study of other diseases due to 
viral or bacterial infections [21], even to study biofluid profile 
after COVID-19 infection [22], until it has been used in neuro-
degenerative disease diagnosis [23]. Raman spectroscopy has 
been also applied to study stem cells [24], cell lines in vitro 
[25] and metabolomics [26].

Oxidative stress, a pathophysiological mechanism in aging 
as well as in the cognitive impairment, can be markedly influ-
enced by nutrition. Carotenoids are plant pigments responsible 
for bright red, yellow and orange hues in many fruits and veg-
etables that exhibit strong antioxidant properties. They have 
been associated with a reduced risk of several chronic diseases, 
such as cancers, diabetes, cardiovascular diseases and recent 
epidemiological studies that strongly suggest that consumption 
of carotenoid-rich foods reduces the incidence of some dis-
eases including neurodegenerative diseases [27]. Carotenoids 
exert brain and cognitive protection, against onset and progres-
sion of Alzheimer, and serum levels of carotenoids seems to 
be positively associated with better cognition in aging subjects 
[28]. Nevertheless carotenoid-mediated health benefits are still 
limited, as the fundamental mechanisms of action in relation 
to human relevance are still not completely understood [29].

In the present work, we used Raman spectroscopy to find 
reliable biomarkers in blood serum samples with the aim 
of developing a fast and low-cost preliminary diagnostic 
method for DAT. We focused on blood serum carotenoids, 
since it is a less invasive and easy available biofluid respect 
to cerebral spinal fluid (CSF) [30].

Materials and methods

Human subject and clinical plasma sample 
collection

Blood plasma samples were collected from a total of 
57 female subjects (considering the female prevalence 

in epidemiology of DAT; mean age ± SD, 78.8 ± 6.6). 
Twenty-six healthy controls (CTR) and 31 DAT patients 
from the Azienda Ospedaliero-Universitaria Pisana 
(AOUP) hospital were recruited. Patients underwent dia-
chronically clinical evaluation and blood withdrawn for 
several years during the disease course of the disease. The 
study was conducted following the Declaration of Helsinki 
criteria and the Guidelines for Good Clinical Practice of 
the European Medicines Agency. The exclusion criteria 
for DAT patients were who suffered from any other neu-
rological diseases, severe brain injuries and/or severe non-
neurological illnesses. All clinical and biochemical data of 
patients are available upon practical request and verifica-
tion of all ethical regulations.

DAT patients were diagnosed according to NIND 
criteria [31] and their disease severity scored according 
to the Clinical Dementia Rating (CDR) [32] at the time 
of collection. CDR is a 3-level assigned value: 1 indi-
cates a mild degree of severity, and 2 refers to an inter-
mediate stage, while 3 is assigned to the most severe 
stage of the disease. This parameter was assigned fol-
lowing clinical evaluation, neuropsychological and psy-
chophysiological assessments carried out periodically 
by the medical staff.

The blood was collected into EDTA-treated tubes. 
Serum was obtained by centrifugation at 150 g for 15 min 
at room temperature, followed by centrifugation at 9,600 g 
and then stored at − 80 °C. All plasma aliquots underwent 
a single freeze–thaw cycle only.

Raman spectroscopy

Blood serum samples were analysed by a Renishaw inVia 
confocal micro-Raman system, coupled with an opti-
cal Leica DLML microscope, equipped with a NPLAN 
objective 50 × with a numerical aperture of 0.75. The laser 
source used was a diode laser at 785 nm. The spectrom-
eter consists of a single grating monochromator (1200 
lines mm−1), coupled with a CCD detector, a RenCam 
578 × 400 pixels (22 µm × 22 µm) cooled by a Peltier ele-
ment. Spectral resolution of the spectrometer is 2.0 cm−1. 
Spectral calibration of the instrument was performed on 
the 520.0 cm−1 band of a pure silicon crystal.

Raman analysis was performed depositing 1 µL of 
blood serum on a microscope slide covered with an alu-
minium foil. The air-dried sample drop was irradiated by 
the 785 nm laser source with laser power on the sample of 
41 mW. Spectra were acquired after 5 accumulations last-
ing 10 s each. Five spectra for each sample were collected 
to capture a possible inhomogeneity present in the dried 
drop. Spectra were sampled at the edge of the drop, taking 
into account the “coffee-ring effect”.
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Statistical analysis

During this work, different multivariate analysis methods 
were applied. Besides the principal component analysis 
(PCA), used to compute the dimensionality reduction of the 
dataset, discrimination methods such as principal compo-
nent linear discriminant analysis (PC-LDA), principal com-
ponent quadratic discriminant analysis (PC-QDA), partial 
least squares discriminant analysis (PLS-DA) and orthogo-
nal partial least squares discriminant analysis (OPLS-DA), 
and a classification method, i.e. random forest (RF), were 
compared on the basis of their results in correct predictions 
of the test set.

Data analysis was performed using R software, both for 
spectra pre-treatment (speaq and ChemoSpec packages) 
and for multivariate analysis (ChemoSpec, ropls, caret and 
randomForest packages). Chemometric Agile Tool (CAT) 
software was used only to compute PC-LDA and PC-QDA 
analyses. During pre-treatment, spectra were normalized by 
total intensity, baseline corrected using modpolyfit (modi-
fied polynomial fitting) method and aligned and smoothed 
(Savitzky-Golay, window of 7 points, third polynomial 
filter). The analysed spectral range was between 500 and 
1800 cm−1.

All data were mean centred before PCA, PC-LDA and 
PC-QDA. To perform discrimination and classification 
methods, the dataset was randomly divided into two sub-
sets: a train set and a test set. The train set contained the 
70% of the dataset while the test set the 30% for PC-LDA 
and PC-QDA. In PLS-DA and OPLS-DA train and test set 
were 50/50, while in RF, they contained the 75% (train) and 
25% (test) of the dataset. RF model was built using a forest 
with 500 trees and mtry value of 6.

Results

Unprocessed Raman spectra of blood serum are reported 
in Fig. 1, and peak attribution is reported in Table 1 [33]. 
In supplementary information, Figure S1 showed spectral 
variances within and between CTR and DAT sample spectra, 
while Figure S2 showed the difference spectrum between the 
mean spectra of CTR and DAT. Most of the Raman peaks 
are related to the presence of proteins, e.g. the 1000 cm−1 
phenylalanine peak and the 1656 cm−1 amide I band. Other 
substances are also present, such as carotenoids, phospholip-
ids and haemoglobin (Hb). PCA was computed after spectra 
normalization and baseline correction to verify the homoge-
neity of each deposition, finding a low intra-sample variance 
(Figure S3, supplementary information).

Multivariate analysis was applied to a total of 284 spec-
tra (129 CTR, 155 DAT). Different discrimination and clas-
sification methods, computed on distinct datasets, were 

Fig. 1   Raman spectra from CTR (red line) and DAT (black line) 
blood serum sample

Table 1   Blood serum Raman peaks vibrational modes
∼

�(CM−1) Assignment

619 Phenylalanine
641 Tyrosine
715 Polysaccharides
743 Phospholipids
755 Proteins; haemoglobin
827 Glutathione
850 Tyrosine
877 Tryptophan
897 C–O–C stretching
938 C–C stretching: α-helix
955 CH2 rocking
1000 Phenylalanine; carotenoids
1079 Phospholipids, O–P–O and C–C stretching
1124 Proteins; C–C phospholipids stretching
1154 Carotenoids (C–C)
1170 Tryptophan, phenylalanine; haemoglobin
1204 Tryptophan
1230–1282 Amide III
1300–1345 Tryptophan; α-helix; phospholipids
1403 Glutathione
1446 Phospholipids, CH scissoring in CH2

1519 Carotenoids (C = C)
1548 Tryptophan
1583 Proteins, tyrosine
1602 Tyrosine, phenylalanine
1613 Tyrosine, tryptophan C = C stretching
1656 Proteins, amide I α-helix; phospholipids
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compared. In particular, data analysis was applied to the 
complete spectrum and to reduced spectra, containing only 
Hb (spectral ranges selected, 736–746 cm−1, 994–1008 cm−1, 
1075–1085  cm−1, 1118–1129  cm−1, 1145–1162  cm−1, 
1300–1345 cm−1, 1424–1470 cm−1, 1633–1685 cm−1) or 

carotenoid signals (spectral ranges selected, 994–1008 cm−1, 
1145–1163 cm−1, 1503–1532 cm−1). Raman spectra of refer-
ence standard of carotenoids and Hb were reported in Fig-
ure S4 (see supplementary information). Dataset dimension-
ality was reduced by PC analysis. The first 10 PCA scores 

A

B
Wavenumber (cm-1)

Fig. 2   PC analysis: score plot (A) and loading plot (B) of the reduced spectrum dataset (carotenoids) (89.3% of variance explained on the two 
first principal components, 99.8% of variance explained by the first 10 PCs). CTR are in blue, while DAT in red
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were extracted and used to compute PC-LDA and PC-QDA 
analyses, since these discrimination methods require a 
higher number of observables with respect to the number 
of variables. PCA plots of carotenoid signals were shown 
in Fig. 2, while PCA plots of the entire spectrum and Hb 
signals were shown in supplementary information, Figure S5 
and S6 respectively.

Multivariate analyses results are showed in Table 2, 
where the correct predictions on the test set for the different 
methods are reported.

The loading plot of PC analysis computed on the entire 
spectral range (Figure  S5B, supplementary informa-
tion) showed that carotenoids (peaks at 1000, 1154 and 
1519 cm−1) [34] are responsible for the separation in the 
score plot between CTR and DAT, with the highest content 
of carotenoids correlated to CTR samples. Discrimination 
methods provided good results, with over the 80% of correct 
predictions on the test set. The 91.5% of the test set samples 
were correctly classified by RF, with the 12.7% of OOB 
estimate of error rate.

Since DAT patients tend to suffer of anaemia [35], the 
eventual change in spectrum profile of serum due to vari-
able levels of Hb was evaluated. A mild separation between 
CTR and DAT could be appreciated in the related score plot 
(Figure S6, supplementary information). Furthermore, DAT 
samples (in red) were distributed following a trend coherent 
with the information given by the loadings, i.e. higher levels 
of Hb at negative values of PC1 and positive values of PC2. 
Among the discrimination methods, the best performance in 
test prediction was achieved by the PC-QDA model (74.1%), 

while RF provided the 83.1% of correct test predictions. 
Out-of-bag (OOB) estimate of error rate was 20.2%.

Analyses were applied also to the dataset reduced to 
carotenoids signals. In the PCA score plot (Fig. 2A), sepa-
ration between classes was more accentuated, as the first PC 
contained the 81% of explained variance. Samples with more 
intense carotenoid signals were plotted at negative values of 
PC1, as showed by the loading plot (Fig. 2B). The discrimi-
nation methods provided slightly worse results with respect 
to the analysis applied to the entire spectral range, still better 
than those obtained from the Hb reduced spectra analysis. 
RF, on the other hand, provided the best result among all the 
analyses tested, since the 93% of the test set items were cor-
rectly classified, with the 8.9% OOB estimate of error rate.

PCA analysis was also computed on serum samples of 
DAT patients, classified in 3 classes of the clinical demen-
tia rating (CDR) according to disease severity. PCA was 
applied to the carotenoid reduced dataset. Patients are 
coded as “Dx_y”, where “x” indicates the patient num-
ber, while “y” indicates the number of the sample col-
lected from the same patient. According to the score plot 
(Fig. 3A), class A samples were at the right side of the 
plot, coherently with the loading plot, which collocated 
higher levels of carotenoids at positive values of PC1, 
while class C samples were on the left side. The intermedi-
ate stage patients, class B, corresponding to CDR = 2, had 
an ambiguous behaviour, since samples were apparently 
randomly dispersed around the plot. It could be helpful to 
correlate this data with disease progression, which, unlike 
severity, gives information about how quickly the disease 
advances. We found that samples whose disease had pro-
gressed quickly (i.e. in a few years they passed from mild 
to severe stage of severity) were plotted close to samples 
with CDR = 3, while patients with a slower and constant 
progression of the disease were plotted in proximity to 
those with mild degree of severity. As shown in Fig. 3C, 
samples from the subject renamed D14_1, which were plot-
ted in the left side of the score plot, had a CDR = 2 when 
collected and since the onset discovery, but severity was 
going quickly to get worse to CDR = 3. Samples from the 
subject renamed D26_1 (Fig. 3D), instead, plotted on the 
right side, are related to a more stable period in CDR = 1, 
being collected after above 20 months after passage to 
CDR = 2. The score plot could give also some insights 
about patients follow-up. Indeed, in the analysed dataset, 
samples collected from the same patient at different dis-
ease stages are present. Disease worsening of the disease 
should be accompanied by a decrease in serum carotenoid 
levels that is a shift towards the left side of the plot. This 
trend was observed for samples D23_1 and D23_2, D4_1 
and D4_2 and D15_1 and D15_2 (each couple were blood 
serum samples collected from the same patient in different 
times). The trend followed by samples D7_1, D7_2 and 

Table 2   Multivariate analysis results on the test set for each spectral 
range

Dataset Method Correct test 
predictions

Complete spectrum PC-LDA 80%
PC-QDA 81.2%
PLS-DA 82.2%
OPLS-DA 82.2%
RF 91.5%

Haemoglobin PC-LDA 70.6%
PC-QDA 74.1%
PLS-DA 70.9%
OPLS-DA 70.2%
RF 83.1%

Carotenoids PC-LDA 71.8%
PC-QDA 76.5%
PLS-DA 72.3%
OPLS-DA 73.7%
RF 93%
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D7_3, instead, is apparently not attributable to disease pro-
gression. However, they remained on the right side of the 
plot, and they were collected from a patient who maintains 
a constant mild disease severity.

Discussion

Using Raman spectroscopy as a tool for the monitoring 
of DAT progression is an attractive and challenging task. 
Strength points of the Raman technique are the short analy-
sis time and the small amount of sample needed to carry out 
the analysis, the minimal sample preparation, the possibility 
to quickly pre-treat spectra prior to multivariate analysis and 
lower cost than other reported methods, as immunoselection 
techniques or mass spectrometry.

In this study, we investigated the spectral fingerprint of 
blood serum from DAT subjects compared to healthy controls. 
Statistical analysis was computed both on the entire spectral 
range (500–1,800 cm−1) and on two reduced spectral window.

Verma et al. studied by Raman spectroscopy the increase 
of Hb concentration in mice serum after haemolysis induced 
by sepsis due to a bacterial infection [36]. We looked for a 
similar variation in Raman spectra profile of serum, as DAT 
patients suffer from anaemia. However, we were not able to 
observe such variations in Hb peak intensity, as not enough 
Hb was released following haemolysis due to anaemia. It is 
worth noting that Verma et al. worked on mice serum and 
they induced haemolysis, while we worked on human col-
lected samples. Variations of carotenoid levels, instead, were 
largely detectable, and they significantly influenced the sepa-
ration among classes and prediction results. An important 
correlation by Raman spectroscopy between carotenoids and 
DAT is reported in this work. Since carotenoids are antioxi-
dants, they could react with reactive oxygen species (ROS) 
originating from the formation of the Aβ plaques during the 
progression of the disease [37]. Thus, lower levels of carot-
enoids could be found in DAT serum samples. Carotenoid 
importance in the neurodegenerative disorder is confirmed 
by their use as therapeutics [38]. This class of compound 
is generally quantified by liquid chromatography, which 
requires sample preparation, the use of organic eluents and 
analysis time over 10 min [39]. On the other hand, identifica-
tion by Raman is straightforward and proceeds without the 
need of additional chemical supplies. Moreover, although 
the statistical analysis is focused on carotenoids signals, the 

entire spectrum is acquired and then eventually available for 
multivariate analysis.

Summarizing, after testing different multivariate analysis 
methods, we could distinguish between serum samples of 
healthy controls and of DAT patients. In particular, very 
good results were obtained with random forest, both for 
the complete spectrum and for the reduced dataset contain-
ing the carotenoid peaks (both with correct test predictions 
above the 90%). Overall good results were obtained for the 
multivariate analysis of the complete spectrum, since all 
the methods achieved correct test prediction around 80%. 
In general, PC-QDA provided better results with respect 
to PC-LDA, while OPLS-DA was not always better than 
PLS-DA. Furthermore, each model was able to classify 
DAT samples with greater precision than CTR. However, 
despite the important role of carotenoids in the disease, 
discrimination methods reported better results for analyses 
conducted on the complete spectra rather than those con-
ducted on the spectra reduced to the carotenoid peaks, as 
the other spectral features also influenced the construction 
of the model. Nevertheless, RF achieved the best analyses 
result processing this dataset, as it is robust to overfitting 
and it is considered more stable in the presence of very high 
dimensional parameter spaces that other machine learning 
algorithms [40]. The built models could be further improved 
introducing other methods that could reduce the dataset, 
e.g. genetic algorithms (GA), that, coupled to data analysis 
tools as PLS-DA, could improve the performance of the 
technique and also facilitate the identification of spectral 
regions that allow for better discrimination between classes.

Tau proteins and amyloid b peptide are generally inves-
tigated as biomarkers of AD. Very often, the study of these 
substances, however, involves the analysis of tissues or bio-
fluids that require greater invasiveness [41, 42], or particu-
lar instrumentation or specially designed devices are used 
[43]. In the present work, we used Raman spectroscopy as 
a label-free method for the analysis of blood serum, which 
can be considered a minimally invasive biofluid and an easy 
sample to prepare. An important correlation was also found 
between carotenoids and disease severity and progression, 
as lower carotenoid levels characterized samples collected 
by patients affected by a higher degree of severity. Then, 
results suggested also that decreasing carotenoid levels 
might indicate the worsening of the disorder, as demon-
strated by the trend of samples collected from the same sub-
ject at different stages of the disorder. It has been recently 
reported that low levels of circulating carotenoids could 
play a role in cognitive impairment, while higher blood con-
centrations of carotenoids are associated with lower risk of 
age-related cognitive dysfunction [44]. Therefore, circulat-
ing carotenoids could be considered informative of the state 
of cognitive function.

Fig. 3   A PCA score plot of disease severity of DAT samples (99.8% 
of variance explained by the first 10 PCs). The arrow indicates the 
direction of increasing intensity of carotenoid peaks suggested by the 
loading plot, showed in B. In C and D, the CDR is plotted against the 
months of blood sample collection, for patients D14_1 and D26_1, 
respectively. The yellow circle indicates the date of collection of the 
analysed sample

◂
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