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Abstract
The complete genome sequence of a novel mononegavirus, Lepeophtheirus salmonis negative-stranded RNA virus 1 (LsN-
SRV-1), obtained from a salmonid ectoparasite, Lepeophtheirus salmonis was determined. The viral genome contains five 
open reading frames encoding three unknown proteins (ORF I, II and III), a putative glycoprotein (G), and a large (L) protein. 
Phylogenetic analysis placed LsNSRV-1 in the recently established mononegaviral family Artoviridae. LsNSRV-1 showed 
a prevalence of around 97% and was detected in all L. salmonis developmental stages. Viral genomic and antigenomic RNA 
was localized to nerve tissue, connective tissue, epithelial cells of the gut, subepidermal tissue, exocrine and cement glands, 
as well as the testis, vas deferens and spermatophore sac of male L. salmonis and the ovaries and oocytes of females. Viral 
RNA was detected in both the cytoplasm and the nucleoli of infected cells, and putative nuclear export and localization 
signals were found within the ORF I, III and L proteins, suggesting nuclear replication of LsNSRV-1. RNA interference 
(RNAi) was induced twice during development by the introduction of a double-stranded RNA fragment of ORF I, resulting 
in a transient knockdown of viral RNA. A large variation in the knockdown level was seen in adult males and off springs of 
knockdown animals, whereas the RNA level was more stable in adult females. Together with the localization of viral RNA 
within the male spermatophore and female oocytes and the amplification of viral RNA in developing embryos, this suggests 
that LsNSRV-1 is transmitted both maternally and paternally. Small amounts of viral RNA were detected at the site where 
chalimi were attached to the skin of Atlantic salmon (Salmo salar). However, as the RNAi-mediated treatment did not result 
in LsNSRV-1-negative offspring and the virus failed to replicate in the tested fish cell cultures, it is difficult to investigate 
the influence of secreted LsNSRV-1 on the salmon immune response.

Introduction

The salmon louse (Lepeophtheirus salmonis), is a marine 
ectoparasite feeding on mucus, skin and blood of salmo-
nids in the northern hemisphere [1, 2]. The salmon louse 
has a high reproductive capacity, and extensive farming of 
Atlantic salmon (Salmo salar) has led to an increase in host 

availability and density [2, 3]. Infestations of salmon lice 
are a serious problem for the salmon farming industry, with 
an estimated cost of €180 million each year [4]. The infesta-
tions have also been suggested to have a detrimental effect 
on wild salmonids [2, 3].

In the last few years, there has been a dramatic increase 
in the number of mononegaviruses discovered in arthropods, 
as new techniques for virus detection have been developed 
[5–12]. The order Mononegavirales consists of 11 families: 
Rhabdoviridae, Filoviridae, Paramyxoviridae, Pneumov-
iridae, Bornaviridae, Nyamiviridae, Sunviridae, Mymo-
naviridae, Artoviridae, Lispiviridae, and Xinmoviridae 
[13, 14]. The genomes of the mononegaviruses have the 
gene order 3’-UTR – core protein genes – envelope protein 
genes – RNA-dependent RNA polymerase gene – 5′-UTR 
[15]. For bornavirus genomes, this corresponds to the gene 
order 3′-UTR – nucleoprotein (N) gene – phosphoprotein 
(P) gene – matrix protein (M) gene – glycoprotein (G) gene 
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– polymerase (L) gene – 5′-UTR [16–18]. Within the phos-
phoprotein gene, there is also an overlapping open reading 
frame (ORF) encoding the X protein, which is involved in 
regulation of polymerase activity [19, 20] and inhibition 
of type I interferon signalling and apoptosis [21, 22]. In 
the family Nyamiviridae, the genomes of the three viruses 
constituting the genus Nyavirus (Nyamanini virus, Mid-
way virus and Sierra Nevada virus) exhibit the gene order 
3′-UTR – N gene – ORF II gene – P gene – ORF IV gene 
– G gene – L gene – 5′-UTR. The ORF II protein of nyavi-
ruses is a negative regulator of the polymerase activity, and 
ORF II and ORF IV are suggested to form a two-complex 
matrix protein [23]. The mymonaviruses are unique among 
the mononegaviruses because they encode the N protein in 
ORF II and have an ORF downstream of the L protein [24].

In 2014, Økland and colleagues described two rhab-
doviruses infecting salmon lice: Lepeophtheirus salmonis 
rhabdovirus No 9 (LSRV-No9) and Lepeophtheirus sal-
monis rhabdovirus No 127 (LSRV-No127). These viruses 
are present in the glandular tissue of the louse and have a 
high prevalence in all developmental stages. Viral RNA is 
also present in the skin of the salmon surrounding the site 
where chalimi were attached, but the viruses do not rep-
licate in selected fish cell cultures [9]. The viruses do not 
significantly affect the developmental rate, survival or fecun-
dity of the salmon louse. However, infected lice appear to 
induce a dampened inflammatory response in salmon com-
pared to virus-free lice [25]. Virus-free salmon louse strains 
have been established through RNAi-mediated treatment of 
the viruses, and studies have indicated that LSRV-No9 is 
transmitted both vertically and horizontally [26]. Recently, 
a related rhabdovirus genome was described from Caligus 
rogercresseyi: Caligus rogercresseyi rhabdovirus Ch-01 
(CrRV-Ch01). CrRV-CH01 clusters phylogenetically with 
the two other caligid rhabdoviruses to form the newly cre-
ated genus “Caligrhavirus” (awaiting ratification by the 
ICTV) within the family Rhabdoviridae. CrRV-Ch01 differs 
from LSRV-No9 and LSRV-No127 by having an additional 
ORF with unknown function [27]. Here, we describe the 

genome, phylogeny, tissue tropism and prevalence of a third 
putative virus from L. salmonis, Lepeophtheirus salmonis 
negative-stranded RNA virus 1 (LsNSRV-1), which shows 
similarities to artoviruses.

Materials and methods

The complete description of the materials and the methods 
for Illumina sequencing and cell culturing systems has been 
reported elsewhere [9].

In short, a pooled sample of total RNA from five adult 
lice collected from different locations on the west coast of 
Norway was sequenced by BaseClear (BaseClear Group, 
The Netherlands) using Illumina next-generation sequenc-
ing. BF-2 (ATC​CCC​L91), ASK [28], CHSE-214 [29], and 
RT-Gill-W1 [30] cells were tested as possible culturing sys-
tems for the putative virus.

Screening

A real-time RT-PCR assay (TaqMan probes) based on the 
putative L protein ORF of LsNSRV-1 was designed for rela-
tive quantification (Table 1). Assays targeting the elongation 
factor from salmon louse and the elongation factor alpha 
from Atlantic salmon were used as internal controls [31, 32]. 
A total of 157 L. salmonis from nine salmon farming sites 
in western Norway and from wild Atlantic salmon in the 
Oslofjord, 22 C. rogercresseyi from three salmon farming 
sites in Region X in Chile, and two Caligus elongatus from 
farmed Atlantic salmon in western Norway were tested for 
the presence of the LsNSRV-1 genome. To study the tropism 
of the virus, 16 L. salmonis were cut into five (male) or six 
(female) pieces: the anterior part of the cephalothorax, the 
middle part of the cephalothorax, the posterior part of the 
cephalothorax, the genital complex, the abdomen and the 
egg strings.

All samples were stored at – 20 °C. RNA was extracted 
using Tri Reagent® (Sigma-Aldrich) according to the 

Table 1   Primers and probe for 
the TaqMan real-time RT-PCR 
assay targeting the L protein of 
LsNSRV-1 and primers used to 
make RNA probes for in situ 
hybridization targeting the ORF 
I protein

Code Sequence Position

Real time RT-PCR
LsNSRV-1 L F 5′- CCG TTG CTT CCC CAT CAT T -3′ 7376-7394
LsNSRV-1 L Probe 5′- AAT GAA ATT GTC TGG TCC TC -3′ 7396-7415
LsNSRV-1 L R 3′- TCT GTG GAG ATT GAT GTA CAA ATT GTT -5′ 7460-7434
In situ hydridization
LsNSRV-1-ORFI F 5′- AGG GAA TTT CAA CAG TTA GGT TCT CA -3′ 389-414
LsNSRV-1-ORFI R 3′- GGA AGG AAT ACC TCT GTA CCA TAC AGA -5′ 1119-1093
RNA interference
LsNSRV-1 -SYFw 5′- ATG CCT GTT CTT GAT ATT CCT ATC CTT GAC -3′ 227-256
LsNSRV-1 -SYRev 3′- GTG TAC CAA TTC TCT CTG GAA GAG CAC GTG -5′ 332-303
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manufacturer’s protocol with a few modifications: the tissue 
was homogenized for seven minutes at 50 Hz using a Tis-
suelyser LT (QIAGEN) and a 5-mm bead, and an additional 
washing step with 1 ml 100% ethanol was included before 
air drying and elution with 50-100 µl of DEPC-treated water. 
An AgPath-ID™ One-Step RT-PCR Kit (Applied Biosys-
tems™) and Applied Biosystems 7500 Real-Time PCR Sys-
tem (Applied Biosystems) were used for real time RT-PCR 
analysis with the following reactions: 1X RT-PCR buffer, 
800 µM forward and reverse primer, 176 μM probe, 0.5 × 
RT-PCR enzyme mix, 2.0 μl template, and RNase-free water 
to a total volume of 12.5 μl. The reaction was run according 
to the standard protocol for the AgPath-ID™ One-Step RT-
PCR kit (Applied Biosystems™).

Determination of the 5′ and 3′ terminal sequences

RNA from infected lice was ligated to allow circularization 
and sequencing of the LsNSRV-1 genome termini. Total 
RNA was extracted from 5-7 lice using Tri Reagent (Sigma-
Aldrich). To increase the efficiency of RNA ligation, the 5’ 
triphosphate residues of the RNA were removed by incu-
bating 5 μg of total RNA with 5 units of 5’ RNA pyroph-
osphohydrolase (Rpph; New England Biolabs) in 40 μl of 
1 × NEBuffer 2 for 30 min at 37 °C [33]. RNA cleanup was 
subsequently performed using an RNeasy Mini Kit (QIA-
GEN) according to the manufacturer’s recommendations. 
Purified dephosphorylated RNA (1 μg) was then ligated with 
10 U of T4 RNA ligase (ThermoScientific) in 50 μl of 1 × 
reaction buffer for T4 RNA ligase supplemented with 0.1 mg 
of BSA per ml and 40 units of RNAseOUT (Invitrogen) for 
1 h at 37 °C. For cDNA synthesis, 2.5 μl of ligated RNA was 
used directly as template for SuperScript III reverse tran-
scriptase (SuperScript III First-Strand Synthesis System for 
RT-PCR, Invitrogen), with gene-specific primers annealing 
to the putative L gene in the genomic RNA. The cDNA was 
subjected to nested PCR with forward primers located within 
the 3′ end of the putative L gene and reverse primers located 
within the 5′ end of ORFI, using the Expand High Fidelity 
PCR system (Roche). Finally, the nested PCR products were 
gel purified (QIAquick Gel Extraction Kit, QIAGEN) and 
sequenced by the Sanger method using the same primers that 
were used for the nested PCR.

In situ hybridization

In situ hybridization was performed on adult female and 
male lice according to Dalvin et al. [34] with modifications 
as described by Tröße et  al. [35]. Digoxigenin-labelled 
(DIG-labelled) sense and antisense RNA probes were made 
for the ORF I gene using the primers listed in Table 1.

Protein analysis

The theoretical isoelectric point (pI) and molecular mass 
(Mr) of the putative proteins were calculated using Prot-
Param [36]. Phosphorylation and glycosylation sites were 
predicted using the NetPhos 3.1 server, the NetNGlyc 1.0 
server and the NetOGlyc 4.0 server [37–39]. The Phobius 
web server was used to identify the signal peptide and trans-
membrane region of the G protein [40]. cNLS mapper was 
used to predict nuclear localization signals (NLS) [41], and 
LocNES [42], NESsential [43, 44] and NESmapper [45] 
were used to predict nuclear export signals (NESs). The 
COILS server [46] was used to predict coiled-coils domains. 
Protein sequences were aligned using MAFFT, and sequence 
identity, excluding gaps, was calculated using the identity 
distance algorithm in Unipro UGENE v1.26 [47].

Phylogeny

Selected L protein amino acid sequences from members of 
the virus families Nyamiviridae, Bornaviridae, Mymona-
viridae, Artoviridae, several unclassified negative-stranded 
RNA viruses related to members of these families, and at 
least one member of all mononegaviral genera approved by 
the ICTV were downloaded from the GenBank database. 
The 73 sequences were aligned using online MAFFT v7 
[48], and poorly aligned regions were removed using trimAl 
[49], resulting in a sequence alignment of 565 amino acids. 
The best-fit model of protein evolution was determined by 
maximum-likelihood analysis using MEGA 6, based on the 
Bayesian information criterion (BIC). Phylogenetic trees 
were calculated using maximum-likelihood (ML) in MEGA 
6 [50] with the LG + G + I + F model and 1000 bootstrap 
replications.

Production of dsRNA and RNA interference

The 3′ end of ORF I was amplified by PCR using Q5 high-
fidelity DNA polymerase (New England Biolabs) accord-
ing to the supplier’s instructions, using the same T7 over-
hang primers as were used for the in situ hybridization 
(Table 1). The resulting PCR product (731 bp) was purified 
using a GenElute PCR Clean-Up Kit (Sigma-Aldrich), and 
double-stranded RNA (dsRNA) was synthesized using a 
MEGAscript® RNAi Kit (Ambion) according to supplier’s 
instructions. RNA interference (RNAi) was performed as 
described previously by soaking of nauplii [51] or injection 
of pre-adults [52].

The dsRNA was further applied to a strain of LsRV-neg-
ative lice (LSOslo) [26] in an attempt to produce a strain 
that was free of all three viruses. The first approach was as 
described previously for the LsRVs [26], by immersion of 
nauplius larvae in 10 ng dsRNA per µl and a subsequent 
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injection of pre-adult I females and pre-adult II males 
(600 ng/µl dsRNA) kept on fish at 12  °C. Samples for 
analysis were taken from copepodids from dsRNA-treated 
parents.

In the second approach, the concentration of dsRNA 
was increased. Nauplius I larvae from three pairs of egg 
strings were divided into four groups, where one group was 
treated with elution buffer while the other three groups were 
treated with 13, 20 and 27 ng of dsRNA per µl, respectively. 
Again, fish kept at 12 °C were infested with copepodids that 
were given 20 ng of dsRNA per µl at 7 days post-immersion 
(dpi), and 1000 ng of dsRNA per µl at the pre-adult I♀/
II♂ stage (18 dpi). The lice were put back on the fish, and 
the egg strings were collected from the adult lice at 34 dpi 
and hatched in a single well flow-through system [53]. Sam-
ples for RNA isolation were taken from copepodids prior to 
infestation of fish, from pre-adult lice prior to injection, and 
from the adult lice and their offspring (hatched from their 
first egg string) at the copepodid stage. Pre-adult and adult 
lice were used individually for RNA isolation, while 20-40 
copepodids hatched from the same egg string were pooled 
before RNA isolation.

Results

Genome

A viral genome with sequence similarities to mononegavi-
ruses was discovered in an Illumina sequence dataset from L. 
salmonis. The sequence was confirmed by Sanger sequenc-
ing, and the 5′- and 3′-terminal sequences were determined 
after circularization of the genome (GenBank accession 
number: MG489864). The complete 12,434-nucleotide 
(nt)-long negative-sense genome of the virus contains five 
ORFs with putative transcription initiation and termination 
sites in the order 3′-ORF I-ORF II-ORF III-G-L-5′. The G 
gene is in reading frame 1, while the ORF I, ORF II, ORF 
III and the L gene are in reading frame 3. The genome has 
a 173-nt-long 3′ leader region and a 129-nt-long 5′ trailer 
region. The first 29 nt of the 3′ leader region shows 86.7% 

reverse complementarity to the last 29 nt of the 5′ trailer 
region (Fig. 1).

Protein genes

ORF I

The hypothetical ORF I gene is 2086 nt long and contains 
an ORF of 1986 nt encoding a putative protein of 661 amino 
acids (aa) (accession no: AUZ99695). The gene possesses a 
presumptive transcription initiation signal (TIS) (GAA​ACA​
A) and a transcription termination/polyadenylation signal 
(TTS) (TAAT(A)5). The protein has a molecular weight of 
73.9 kDa and a pI of 6.5. A Blastp search of the putative ORF 
I protein found sequence similarity to hypothetical protein 1 
of Běihǎi rhabdo-like virus 2 (YP009333446), hypothetical 
protein 1 of Běihǎi barnacle virus 8 (YP009333182), and a 
hypothetical protein of Pteromalus puparum negative-strand 
RNA virus 1 (PpNSRV-1) (APL97663). Aligning them to 
the ORF I protein sequence revealed 23%, 25% and 25%, 
amino acid sequence identity, respectively. Additionally, the 
ORF I protein shares similarities with an uncharacterized 
Daphnia magna protein (KZS21910) and an uncharacterized 
protein from Dendroctonus ponderosae (XP019755411), 
both with 24% amino acid sequence identity. LocNES, NES-
sential and NESmapper predicted the NESs 24TMARAL-
PERIGTLTL38 (score 0.513), 33IGTLTL38 (score 0.65) 
and 26ARALPERIGTLTLI39 (score 5.85), respectively. A 
proline-rich region (634PVVPAPAIRPPGPQLPPQNDGP-
PQDPNE661) was identified at the C-terminal end of the 
hypothetical protein, and a possible late domain was identi-
fied at amino acid position 221 (221YPDL224).

ORF II

The small putative ORF II gene is 337 nt long from its TIS 
(GAA​ATA​A) to its TTS (TAA​CTT​(A)5). The 5′-UTR of 
the ORF II gene overlaps the 3′-UTR of the ORF I gene 
by 33 nt. ORF II encodes a putative protein of 66 aa with 
a pI of 6.8 and a molecular weight of 7.6 kDa (accession 
no: AUZ99696). A Blastp search revealed no significant 

Fig. 1   (A) Organization of the 
LsNSRV-1 genome with a sche-
matic representation of coding 
regions. (B) The non-translated 
3′-end and 5′-end regions of 
LsNSRV-1 exhibit inverse com-
plementarity

3`end 5`end

1 nt

12434 nt 12406 nt

29 nt

A

B
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similarity to any known viral proteins. However, the ORF II 
protein shared slight sequence similarity with the conden-
sation domains of two hypothetical proteins from the plant 
pathogenic fungi Bipolaris victoriae (XP_014554506) and 
Bipolaris zeicola (XP_007711178).

ORF III

The hypothetical ORF III gene encompasses 1327 nt from 
the putative TIS (GAA​ACA​A) to the TTS (TAAG(A)5). The 
1173-nt-long ORF III encodes a putative protein of 391 aa 
with a molecular weight of 42.9 kDa and a pI of 5.7 (acces-
sion no. AUZ99697). No similarity to other proteins was 
revealed using Blastp. c-NLS mapper predicted a bipartite 
NLS at amino acid position 15 (15KSGVKIIQTDVLD-
HLSESILEYDKKLKATKEP46) with a score of 7.7 [41]. 
Using the COILS server [46], two coiled-coil domains were 
predicted in the N-terminal and C-terminal end of the hypo-
thetical protein. In all, 37 serine phosphorylation sites and 
12 threonine phosphorylation sites were predicted by Net-
Phos 3.1. The C-terminus of the putative protein contains the 
two possible late domains, 360PFSAP364 and 381LDRLF385.

G gene

The putative glycoprotein (G) gene is 1860 nt long from the 
TIS (GAA​ATA​A) to the TTS (TAAT(A)5). The 1794-nt-long 
ORF encodes a protein of 598 aa with a molecular weight 
of 66.9 kDa and a pI of 6.7 (accession no: AUZ99698). The 
putative G protein shows 24% amino acid sequence iden-
tity to a putative glycoprotein from PpNSRV-1 (APL97666) 
and a hypothetical protein from Húběi rhabdo-like virus 
6 (APG78704). Additionally, a lower level of similar-
ity was identified between the G protein and two unchar-
acterized arthropod proteins of similar size (KYN28643, 
XP015595137). A Phobius search of the G protein predicted 
a signal peptide and a transmembrane region at amino acid 
position 1-20 and 520-542, respectively. The putative glyco-
protein contains eight predicted O-linked and three predicted 
N-linked glycosylation sites.

L gene

The putative L gene is 6556 nt in length, containing a 
6534-nt-long ORF encoding a protein of 2178 aa (acces-
sion no. AUZ99699). The TIS and the TTS are assumed to 
be GAA​ACA​A and TAAG(A)5, respectively. The putative 
L protein has a molecular weight of 247.5 kDa and a pI of 
8.8. A Blastp search revealed sequence similarity between 
the putative LsNSRV-1 L protein and L proteins of the arto-
viruses PpNSRV-1 (APL97667, 30%), Běihǎi barnacle virus 
8 (APG78659, 29%), Húběi rhabdo-like virus 6 (APG78705, 
29%) and Húběi rhabdo-like virus 8 (APG78703, 28%), and 

Borna disease virus (NP042024, 26%), Nyamanini nyavirus 
(YP002905337, 25%), and S. sclerotiorum negative-stranded 
RNA virus 2 (ALD89145, 25%).

The L protein is the most conserved protein of the mon-
onegaviruses, composed of six conserved blocks contain-
ing essential motifs for the structure and function of the 
polymerase [54]. Pairwise alignment of the L proteins 
from closely related viruses and selected members of the 
order Mononegavirales revealed that block III is the most 
conserved domain, while block VI is the least conserved 
(Table 2). In block II, the motif 504KEREQK509 may be anal-
ogous to the motif KERELK in vesiculoviruses, which has 
been suggested to be involved in template recognition [54]. 
The subdomain III-C is the most conserved within block III, 
while subdomain III-D shows the least amino acid sequence 
similarity. A catalytic domain in the region from amino acid 
position 570 to 735 was detected using Motif scan [55]. A 
monopartite NLS was predicted at amino acid position 1495 
(1495LVRIIKRWCKSY1506) by cNLS-mapper with a score of 
7.5, and a possible bipartite NLS was detected by Motif scan 
at position 451 (451RKEWLLTPS-IKSDRR466). In block V, 
the sequence GSGT-72 aa-HR may correspond to the motif 
GSxT-(60–70 aa)-HR, which is essential for mRNA capping 
in nonsegmented negative-stranded RNA viruses [56].

Phylogeny

The phylogeny inferred from comparison of L protein 
sequences of 73 mononegaviruses showed LsNSRV-1 clus-
tering with members of the newly established mononega-
viral family Artoviridae [14]. This family includes PpN-
SRV-1 (APL97667) and six novel arthropod viruses (Běihǎi 
barnacle virus 8 (APG78659), Běihǎi rhabdo-like virus 1 
(APG78668), Húběi rhabdo-like virus 5 (APG78806), Húběi 
rhabdo-like virus 6 (APG78705), Běihǎi rhabdo-like virus 
2 (APG78672) and Húběi rhabdo-like virus 8 (APG78703)) 
(Fig. 2). The Artoviridae clade has a bootstrap support value 
of 100, and clusters together with members of the families 
Mymonaviridae and the newly established family Lispiviri-
dae with a bootstrap value of 42. The clade corresponding 
to the families Artoviridae, Mymonaviridae and Lispiviridae 
is separated from the remaining mononegaviral families in 
a larger clade with members of the families Nyamiviridae, 
Bornaviridae and Xinmoviridae with a support value of 79.

Prevalence and tissue association

Viral RNA from LsNSRV-1 is abundant in both male and 
female adult salmon lice and is detected in all stages of the 
louse life cycle, including developing embryos within egg 
sacs. The prevalence of the virus is approximately 97% (152 
of 157). Tropism studies revealed that viral RNA is abundant 
throughout the body of the louse. Gill and kidney samples 
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collected from six Atlantic salmon that were heavily infested 
with LsNSRV-1-positive salmon lice tested negative for the 
presence of viral RNA, while skin samples at the attach-
ment site were weakly positive. Two C. elongatus samples 
tested positive for the presence of viral RNA by real-time 
RT-PCR. However, it is unknown if this is the same virus, 
as no attempts have been made to sequence LsNSRV-1 from 
C. elongatus.

In situ hybridization

In situ hybridization revealed genomic RNA and expression 
of the ORF I gene in many L. salmonis tissues (Fig. 3). In 
the subepidermal tissue, denser staining of LsNSRV-1 RNA 
was observed as rings surrounding the nuclei of syncytia, 
particularly in the tissue facing the hemocoel. Dense patches 
were also observed in the salivary gland as well as in the 
tegumental type 1 and 2 glands. Weak staining and small 
dense patches were present in the cement gland, nerve tissue 
surrounding muscles, and epithelial cells of the gut. Weak 
and diffuse staining was seen in oocytes as well as in ovaries 
and testes. However, cells facing the lumen of the vas defer-
ens and in the spermatophore sac were densely stained, and 
both genomic RNA and viral mRNA were localized to the 
small cells of the spermatophore wall. Genomic RNA and 

viral mRNA were detected in both the cytoplasm and the 
nucleus of affected cells (Fig. 4).

Cell culture

The virus failed to replicate in any of the cell cultures tested 
(BF-2, CHSE-214, ASK and RT-Gill-W1).

RNA interference

Opposite to what was previously shown for the LsRVs [25], 
the first RNA interference (RNAi) approach for LsNSRV-1 
did not produce salmon louse offspring with decreased lev-
els of viral RNA (results not shown). Therefore, a second 
round of RNAi was conducted in which higher concentra-
tions of dsRNA were introduced into the lice. Of the three 
concentrations tested, maximum knockdown was achieved 
in copepodids treated with 20 ng of dsRNA per µl (Fig. 5A). 
These copepodids were allowed to infest fish, but at the pre-
adult I/II stage, these lice had levels of viral RNA similar to 
those of the control group (Fig. 5B).

After a second round of RNAi by injection, the adult 
males had an average knockdown of 38.2% and the females 
had an average knockdown of 83.5% (Fig. 5C and D). 
While one female showed downregulation, only 59%, 

Table 2   Percent amino acid sequence identity of LsNSRV-1 L protein domains and subdomains to related viruses and other members of the 
order Mononegavirales 

Virus L protein% 
identity

Blocks% identity Subdomains block III (%)

I II III IV V VI III-A III-B III-C III-D

PpNSRV-1(APL97667) 30% 34% 34% 38% 38% 32% 36% 69% 67% 90% 23%
Běihǎi barnacle virus 8 (APG78659) 29% 33% 34% 41% 30% 32% 31% 77% 52% 90% 46%
Běihǎi rhabdo-like virus 1(APG78668) 29% 34% 29% 42% 28% 29% 32% 54% 63% 90% 31%
Húběi rhabdo-like virus 5 (APG78806) 29% 30% 29% 36% 30% 34% 35% 69% 56% 70% 23%
Húběi rhabdo-like virus 6 (APG78705) 29% 29% 30% 40% 44% 33% 36% 62% 70% 90% 23%
Běihǎi rhabdo-like virus 2 (APG78672) 28% 29% 26% 43% 34% 29% 32% 69% 67% 100% 38%
Húběi rhabdo-like virus 8 (APG78703) 28% 30% 26% 33% 28% 27% 26% 54% 59% 60% 31%
Borna disease virus 1(NP 042024) 26% 15% 18% 24% 21% 21% 11% 38% 37% 50% 23%
Nyamanini nyavirus (YP002905337) 25% 17% 21% 27% 21% 19% 9% 38% 37% 70% 31%
Sclerotinia sclerotiorum negative-stranded RNA 

virus 2 (ALD89145)
25% 15% 19% 26% 21% 15% 6% 31% 52% 70% 31%

Avian metapneumovirus 15a(Q2Y2L8) 24% 13% 19% 21% 12% 16% 8% 23% 33% 40% 31%
Húběi rhabdo-like virus 7 (APG78729) 24% 18% 19% 24% 18% 15% 23% 38% 48% 50% 8%
Húběi rhadbo-like virus 4 (APG78632) 24% 16% 19% 24% 20% 17% 10% 38% 52% 60% 15%
Midway nyavirus (YP002905331) 24% 17% 22% 26% 20% 20% 11% 38% 37% 70% 31%
Lepeophtheirus salmonis rhabdovirus No127 24% 17% 18% 27% 21% 18% 16% 38% 41% 60% 23%
Newcastle disease virus B1(NP 071471) 23% 13% 15% 28% 15% 14% 28% 23% 44% 50% 31%
Lepeophtheirus salmonis rhabdovirus No9 23% 16% 17% 24% 13% 18% 19% 38% 44% 60% 31%
Vesicular stomatitis Indiana virus(NP 041716) 23% 16% 18% 23% 17% 17% 22% 38% 44% 50% 23%
Human orthopneumovirus (NP 056866) 22% 12% 20% 19% 15% 16% 5% 23% 37% 40% 23%
Zaire ebolavirus (NP 066251) 22% 17% 18% 24% 17% 17% 5% 38% 44% 40% 15%
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Fig. 2   Phylogenetic position of LsNSRV-1 in relation to 73 other 
viruses from all genera of the 11 families of the order Mononegavi-
rales and the family Chuviridae of the order Jingchuvirales. A max-
imum-likelihood tree based on alignment of 565 amino acids of the 

L-protein sequences is shown. The branch lengths reflect the evolu-
tionary distance and are represented as the number of amino acid sub-
stitutions in proportion to the scale bar
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the remaining females showed a knockdown between 76 
and 90% (Fig. 5D). The knockdown effect in the females 
did not correlate with the viral levels in their respective 
offspring, which varied between increased levels of viral 

RNA to a knockdown of up to 99% (Fig. 5E). However, 
large variation was also seen in the viral RNA levels in 
the males, with two individuals having the same amount 

Fig. 3   In situ hybridization tar-
geting genomic and antigenomic 
RNA of LsNSRV-1. Heavy 
staining of antigenomic RNA is 
observed in sub-epidermal cells 
and in tegumental glands (TG) 
(A), while staining of genomic 
RNA is slightly weaker (B). 
The gut epithelial cells exhibit 
staining of both antigenomic 
(C) and genomic (D) RNA. 
The salivary glands (SG) show 
patches of antigenomic (E) and 
genomic (F) RNA staining, 
while nerve tissue (N) is heavily 
stained. The smaller cells of the 
spermatophore (S) are weakly 
stained for both antigenomic 
(G) and genomic (H) RNA, 
while the cells of the vas defer-
ens (arrow) are heavily stained 
for both RNA strands
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of viral RNA as the controls while the others had a knock-
down of 13.7 - 51%.

Discussion

The family Mononegavirales currently consists of 11 fami-
lies [14]. LsNSRV-1 clusters phylogenetically with mem-
bers of the Artoviridae, a family containing seven other 
arthropod viruses, including PpNSRV-1. Artoviruses have 
five ORFs with gene lengths similar to those presented here 
for LsNSRV-1. ORF IV and ORF V share similarities with 
mononegaviral G proteins and L proteins, respectively. The 
possible functions of ORF I-III of artoviruses have not yet 
been examined.

The nucleoprotein of mononegaviruses is most commonly 
encoded by ORF I, with the exception of mymonaviruses 
where ORF I encodes a possible membrane protein and the 
nucleoprotein is encoded by ORF II [24]. The hypothetical 
protein encoded by LsNSRV-1 ORF I shares no character-
istics with any known viral nucleoproteins, but it does show 
sequence similarity to several hypothetical ORF I proteins 

from unclassified mononegaviruses and PpNSRV-1. The 
LsNSRV-1 ORF I protein also contains a possible late 
domain, YPDL, corresponding to the YXXL late domain of 
membrane and Gag proteins of arenaviruses, paramyxovi-
ruses and retroviruses [57–60]. Late domains are often pro-
line-rich and are usually found in membrane proteins inter-
acting with proteins of the endosomal sorting complexes 
required for transport (ESCRT) machinery, thus facilitating 
virion budding [61]. Such domains are also found in the 
nucleoproteins of arenaviruses, filoviruses, paramyxoviruses 
and retroviruses, where they are described to function as 
accessory factors for virion budding [61–64]. Whether the 
LsNSRV-1 ORF I protein primarily functions as a nucleo-
protein or a membrane protein, the predicted late domain 
and the presence of an additional proline-rich region at the 
C-terminus suggest that the protein is involved in virion 
budding.

The phosphoprotein of mononegaviruses is a multifunc-
tional protein acting as a cofactor for the RNA-dependent 
RNA polymerase complex [65]. For most mononegaviruses, 
the phosphoprotein is encoded by ORF II. ORF II may also 
encode other proteins in addition to the phosphoprotein [15, 

Fig. 4   In situ hybridization 
reveals staining of the nucleolus 
and nucleus. Antigenomic stain-
ing of the nucleus (asterisk) and 
the nucleolus (arrow) is shown 
in a tegumental gland cell (A) 
and in subcuticular cells (B). 
Genomic staining of the nucleus 
is shown in an epithelial cell of 
the gut (C) and in subepidermal 
cells (D)
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19, 20, 66, 67]. For Nyamanini virus, the ORF II protein has 
been suggested to function as a matrix in a complex with 
the ORF IV protein [23]. The ORF II protein of LsNSRV-1 
shows no resemblance to any of these proteins, and its puta-
tive function remains unknown. The ORF III of Nyamanini 
virus encodes an approximately 400-aa-long protein that 
functions as a polymerase cofactor [23]. The putative phos-
phoproteins of all three members of the genus Nyavirus are 
predicted to contain two coiled-coil regions at the N- and 
C-terminal ends of the protein [7]. The hypothetical ORFIII 
protein of LsNSRV-1 shows no sequence similarity to these 
proteins. Nevertheless, given that the LsNSRV-1 ORF III 
protein also has two predicted coiled-coil regions and is 
similar in size to the Nyamanini virus ORF III protein, com-
bined with the fact that its gene is in the same position, it 
is likely that the LsNSRV-1 ORF III protein has a function 
similar to that of the putative phosphoproteins of nyaviruses. 
However, the domains xPFSAPx and xLDRLFx could repre-
sent the two late domains PT/SAP and LXXLF found in the 
matrix proteins of arenaviruses, filoviruses, rhabdoviruses 
and the Gag proteins of retroviruses [59, 68–70]. Thus, the 
LsNSRV-1 ORF III protein could also be a matrix protein 
involved in virion budding.

Based on sequence analysis of the hypothetical LsN-
SRV-1 ORF IV protein, its genome position, and the pres-
ence of a signal peptide and a transmembrane region, ORF 
IV is predicted to encode the G protein. The sequence simi-
larity of the hypothetical LsNSRV-1 ORF V protein to other 
polymerases and the presence of several conserved domains 
related to the function of the polymerase indicate that ORF 
V encodes an RNA-dependent RNA polymerase.

Nucleorhabdoviruses and dichorhaviruses (family 
Rhabdoviridae), nyaviruses and bornaviruses replicate in 
the nucleus [23, 71, 72], and for bornaviruses, the nucleo-
lus has been identified as the site of replication [73]. The 
nucleocytoplasmic trafficking of the ribonucleoprotein 
(RNP) complex is mediated by viral proteins possessing 
NLSs and NESs [74]. In bornaviruses, NLSs are found in 
the nucleoprotein, phosphoprotein, the non-structural pro-
tein p10, and the polymerase [75–78]. NLSs have also been 
reported to be present in the nucleoproteins and phospho-
proteins of nucleorhabdoviruses and an unclassified Culex 

tritaeniorhynchus rhabdovirus [72, 79–81]. One leucine-
rich domain in the nucleoprotein and one methionine-rich 
domain in the phosphoprotein of bornaviruses have been 
identified as NESs [82, 83]. Leucine-rich NESs have also 
been described in the C protein and nucleoprotein of mor-
billiviruses and the phosphoprotein of rabies virus [84–86]. 
Our analysis suggests the presence of NLSs in the ORF III 
protein and the polymerase, and one NES in the ORF I pro-
tein of LsNSRV-1, suggesting that of LsNSRV-1 replicates 
in the nucleus. There are examples of viruses with proteins 
exhibiting NLSs and NESs that replicate in the cytoplasm. 
The NLSs and NESs of both morbillivirus nucleoprotein 
and rabies virus phosphoprotein mediate nucleocytoplasmic 
trafficking of the protein, and both are involved in blocking 
of the IFN response [85–88]. However, the presence of both 
genomic RNA and viral mRNA of LsNSRV-1 in the nucleo-
lus and the low efficiency of viral knockdown observed after 
treatment of lice with dsRNA targeting LsNSRV-1 ORFI 
indicate that this virus most likely replicates in the nucleus. 
While the cytoplasmic LsRVs have previously been shown 
to be entirely removed from lice by RNAi with only half the 
concentration of dsRNA used in this study [26], the presence 
of a nuclear reservoir of LsNSRV-1 might prevent efficient 
clearance of the virus by RNAi. Given that the virus par-
ticles have not been observed and that we were not able to 
cultivate the putative virus, one could argue that the virus is 
endogenous and that this prevents dsRNA-mediated removal 
of the virus. However, a viral genome incorporated into the 
L. salmonis genome with no exogenous phase should only be 
present in the cytoplasm as mRNA, and not as both mRNA 
and genomic RNA, as demonstrated by in situ hybridiza-
tion. Moreover, the successful ligation and complementary 
termini of the putative viral genome strongly suggest that it 
is not incorporated in the host genome.

Arboviruses rely on horizontal transmission, mainly 
through feeding and infection of the arthropod’s vertebrate 
host [89, 90]. The dampened salmon immune response and 
higher parasitic success of lice infected with LSRV-No9 
and LSRV-No127 suggest that these viruses have adapted 
to promote horizontal transmission. Like LSRVs, LsN-
SRV-1 is present in several glands that have ducts ending 
in cuticular pores on both the ventral and dorsal side of 
the salmon louse [91]. Viral RNA of LsNSRV-1 is also 
present in the gut and salivary glands. This could allow 
viral particles to be excreted and thus enable horizontal 
transmission. However, LsNSRV-1 has not been found in 
substantial amounts in the skin of salmon, and there is no 
evidence of replication in salmon. Vertical transmission of 
viruses in arthropods mainly relies on maternal transmis-
sion, though these viruses are also dependent on horizon-
tal transmission in order to persist in the host population 
[89, 90, 92–94]. Vertical transmission from both males and 
females has currently only been reported in sigmaviruses, 

Fig. 5   dsRNA treatment of LsNSRV-1-infected lice targeting 
ORF I. Viral RNA knockdown is shown as the relative RNA level 
(2−ΔΔCt)  ±  SD against control lice. A) Knockdown in copepodids 
(N = 3) 5 days post-immersion (dpi) in a 13, 20 or 27 ng/µl dsRNA 
solution at the nauplius I to II stage. B Knockdown in pre-adult I 
females and pre-adult II males at 18 dpi (N = 6). C-D) Knockdown 
in adult males and females at 34 dpi. The control is shown as an aver-
aged knockdown (N  =  6), while individual knockdown values are 
shown for the dsRNA-treated lice. E) Relative ORF I RNA level in 
the offspring from the knockdown females at the copepodid stage. 
The control is shown as the averaged knockdown (N = 3), while indi-
vidual knockdown values are shown for each egg string

◂
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a possible reovirus, and PpNSRV-1. These viruses have 
been shown to persist in the host population without hori-
zontal transmission [12, 95, 96]. Due to the presence of the 
viral genome of LsNSRV-1 in the genital products of both 
sexes of the salmon louse, and in the developing embryos 
and newly hatched nauplii, it is likely that LsNSRV-1 is 
transmitted vertically. The dense staining of LsNSRV-1 
RNA in the vas deferens and spermatophore sac also indi-
cate that the virus may be transmitted horizontally from 
males to females via seminal fluids as shown for LSRV-
No9 [26]. Interestingly, a large variation in the amount 
of viral RNA was seen in the offspring of dsRNA-treated 
females, despite the relatively stable knockdown of viral 
RNA in adult females. Since a large variation in viral 
RNA levels was seen in the adult males as well, it is pos-
sible that LsNSRV-1 was transmitted vertically from the 
males to their offspring. Unfortunately, the experimental 
setup did not allow us to distinguish which male fertilized 
which female, and future production or identification of 
LsNSRV-1-free louse strains is needed to confirm such 
vertical transmission.

Understanding the role of the viruses infecting L. sal-
monis could be vital for the control of this parasite. Indeed, 
LSRV-No9 and LSRV-No127 infection enhances the para-
sitic success of L. salmonis [25]. LsNSRV-1 does not seem 
to infect salmon, as viral RNA was only present in the skin 
in small amounts, and it was not possible to cultivate the 
virus in the fish cell cultures that were tested. The close 
coexistence of salmon lice and salmon frequently exposes 
the viruses infecting salmon lice to potential new hosts. 
The host range of a virus is generally dependent on mul-
tiple genes encoding structural or non-structural proteins. 
Mutation, recombination or reassortment of these genes 
may facilitate a change in the host range of the virus [97]. 
Such events are probably very rare [98], and host shifts are 
most often observed between closely related hosts [99]. 
However, all arboviruses have undergone an interphyletic 
host shift at some point in time, and it has also been shown 
by Li et al. [100] that the plant pathogen tobacco ringspot 
virus underwent an interkingdom host shift to be able to 
infect and replicate in the honey bee Apis mellifera. It is 
therefore possible that viruses in the blood-feeding salmon 
lice could pose a risk to Atlantic salmon. Surveying and 
characterization of the virome of salmon lice could thus 
be of value for the fish farming industry. Clearly, more 
research is needed to clarify the effect of LsNSRV-1 on 
its host and to assess the risk of a host shift to Atlantic 
salmon.
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