
 

 
C

ur
re

nt
 P

ha
rm

ac
eu

tic
al

 D
es

ig
n

������
����	
�
�
��

�������������	�
�������������	��

�������
�������

���

Send Orders for Reprints to reprints@benthamscience.ae 

  Current Pharmaceutical Design, 2016, 22, 3555-3568 

3555 

 

Miscellaneous Topics in Computer-Aided Drug Design: Synthetic Accessibility and
 

GPU Computing, and Other Topics 

 

Yoshifumi Fukunishi1,2*, Tadaaki Mashimo2,3, Kiyotaka Misoo2,3, Yoshinori Wakabayashi4, Toshiaki  
Miyaki5, Seiji Ohta6, Mayu Nakamura6 and Kazuyoshi Ikeda6 

1
Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial 

Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan; 
2
Technology Research Associa-

tion for Next-Generation Natural Products Chemistry, 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan; 
3
IMSBIO 

Co., Ltd., Owl Tower, 4-21-1, Higashi-Ikebukuro, Toshima-ku, Tokyo 170-0013, Japan; 
4
BY-HEX LLP, 1-19-14, 

Shimizu, Suginami-ku, Tokyo, 167-0033, Japan; 
5 

DiscoveResource Inc., 2-4-15, Minami-Aoyama, Minato-Ku, 

Tokyo 107-0062, Japan; 
6
LEVEL FIVE Co., Ltd.,� 21F, Shiodome Shibarikyu Bldg. 1-2-3, Kaigan, Minato-ku, 

Tokyo, 105-0022, Japan  

Abstract: Background: Computer-aided drug design is still a state-of-the-art process in medicinal chemistry, and 
the main topics in this field have been extensively studied and well reviewed. These topics include compound da-
tabases, ligand-binding pocket prediction, protein-compound docking, virtual screening, target/off-target predic-
tion, physical property prediction, molecular simulation and pharmacokinetics/pharmacodynamics (PK/PD) prediction. Message and 

Conclusion: However, there are also a number of secondary or miscellaneous topics that have been less well covered. For example, 
methods for synthesizing and predicting the synthetic accessibility (SA) of designed compounds are important in practical drug develop-
ment, and hardware/software resources for performing the computations in computer-aided drug design are crucial. Cloud computing and 
general purpose graphics processing unit (GPGPU) computing have been used in virtual screening and molecular dynamics simulations. 
Not surprisingly, there is a growing demand for computer systems which combine these resources. In the present review, we summarize 
and discuss these various topics of drug design. 

Keyword: Computer-aided drug design, Synthetic accessibility, Cloud computing, GPU computing, Virtual screening, Molecular dynamics 
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INTRODUCTION 

 We review miscellaneous topics in computer-aided drug design 
(CADD), including non-scientific, technical, old and forgotten top-
ics, since there have been a number of good reviews published al-
ready on the major topics in CADD. Computer-aided drug design is 
an assemblage of various computational methods and resources. 
These include compound databases, molecular dynamics simula-
tions, ligand-binding pocket predictions, protein-compound dock-
ings, structure-based drug screenings, ligand-based drug screenings, 
similarity searches, de-novo drug design, property predictions like 
LogS (aqueous solubility) and LogPow (water-octanol partitioning 
coefficient) prediction, target/off target predictions, and predictions 
of synthetic accessibility. Fig. (1) shows the relationship among 
these methods. They are based on the chemical compound struc-
tures, while the pharmacokinetics and pharmacodynamics studies 
are mainly based on the experimental data. 

 There have been many reviews reporting on compound data-
bases, molecular dynamics simulation, ligand-binding pocket pre-
diction, protein-compound docking, structure-based drug screening, 
ligand-based drug screening, similarity searches, and de-novo drug 
design. Thus, in the present review, we focus on a number of im-
portant but less-studied topics. We review the synthetic accessibil-
ity (SA) prediction SA is an important aspect of drug design, since 
in some cases computer-designed compounds cannot be synthe-
sized. In addition, we briefly consider the correlation between the 
sales price of approved drugs and the SA values. 

*Address correspondence to this author at the Molecular Profiling Research 
Center for Drug Discovery (molprof), National Institute of Advanced Indus-
trial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo 135-
0064, Japan; Tel: +81-3-3599-8290; Fax: +81-3-3599-8099;  
E-mail: y-fukunishi@aist.go.jp 

 These methods and resources in CADD are supported by vari-
ous computational technologies such as PCs, cluster machines, 
cloud computing, general purpose graphics processing unit (GPU) 
computing and ad-hoc specialized computers. Fig. (2) shows these 
resources used in CADD. Setting up a CADD system on a GPU or 
in the cloud is still a difficult task for users, while ordinary PCs and 
workstations are quite user-friendly. We also review how to set up a 
cloud and GPU computer environment. 

SYNTHETIC ACCESSIBILITY (SA) PREDICTION USING 

REACTION DATABASES 

 Synthetic accessibility (SA) is a well-known concept in organic 
chemistry, but calculation-based SA predictions have been studied 
only in the last 10 years [1-17]. On the other hand, researchers have 
been using software to predict synthetic reaction pathways since the 
1960s [11, 16]. Computer-aided drug design, especially de-novo 
design, became popular in the 1980s, but SA estimation of the 
newly designed compounds have proven to be difficult. Automatic 
SA evaluation programs would be helpful in such cases and, in-
deed, several programs for the prediction of synthetic reaction 
pathways have been developed. However, these programs depend 
on the availability of reagents, the catalogs of which have changed 
every year, and they do not evaluate SA quantitatively (see Fig. 3). 

 Several computational methods, including CAESA [3], RECAP 
[4], WODCA [5], LHASA [6], RASA [7], RSsvm [8], AIPHOS [9], 
and SYLVIA [10], have been developed to perform retro-synthesis 
[7, 11, 12, 16] and/or SA prediction for the compounds in question. 
In these methods, the synthetic reaction path is predicted based on 
reaction databases and the availability of reagents (starting materi-
als). Parts of the available programs are summarized in Table 1. 
These methods work well in some projects and should be useful in 
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drug design. However, the predicted reaction paths can be unrealis-
tic in some cases, since steric effects (such as atom collisions and 
other inter-atomic interactions) are not taken into consideration in 
these approaches and the reaction databases include incorrect en-
tries.  

 Fig. (4) shows one example of an SA prediction based on reac-
tion data [7, 11, 12, 16]. The compound in question is decomposed 
into fragments by breaking the relatively unstable bonds. This proc-
ess is repeated until these fragments reach the starting chemicals 
included in the database. The bond breaking is performed based on 
the reaction database. This decomposition process generates a num-
ber of reaction paths. Then the difficulty of each reaction is esti-
mated and the total SA of the compound in question is calculated. 
There are several ways to estimate the SA. One method evaluates 
the depth of the shortest path among all the predicted paths, since 
the SA depends on the reaction steps from the starting materials to 
the final product [7]. Generally speaking, if the compound is syn-
thesized within 5 steps, the synthesis is easy. The other method 
evaluates the SA by considering the number of possible reaction 

paths, the difficulty of each step in the predicted path, and LogP on 
which the difficulty of the purification process depends [7]. The 
difficulty of synthesis will be decreased if the number of possible 
reaction paths increases. The difficulties of the reactions are esti-
mated by chemists a priori. LogP prediction is more precise than 
LogS prediction and the descriptor-based LogP prediction is fast 
enough for practical use.  

 These retro-synthesis approaches depend on the reaction data-
base. Satoh et al. examined the 329 data entries of the ChemInform 
(ISIS-ChemInform MDL-Information systems Inc.) database [18]. 
They reported that 46% of the data contained some error. Namely, 
they found wrong numbers of reaction steps in 25% of the data, and 
wrong reactions in 21%, wrong reaction sites in 19%, wrong che-
mical structures in 15%, wrong reaction conditions in 9% and 
wrong yield constants in 5% of the data. Most of the errors were 
human input errors. The SA and reaction path prediction theory 
should be improved in the future, as same as the theory, the quality 
check of various databases should be important. 

 

Fig. (1). Schematic representation of methods in computer-aided drug design. 

 

 

Fig. (2). Schematic representation of resources in computer-aided drug design. 
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Fig. (3). Two major synthetic accessibility (SA) prediction procedures. 

 

 

Fig. (4). Reaction path-based synthetic accessibility prediction. 

SYNTHETIC ACCESSIBILITY PREDICTION WITHOUT A 

REACTION DATABASE 

 A quantitative SA prediction method was reported by Takaoka 
et al. (2003) [13]. This method had two important features. First, it 
is able to predict SA values based on only the chemical structure of 
the compound in question and thus does not require a reaction data-
base. Second, the method has already been assessed in a study in 
which expert manual assessment was used to evaluate the SA (in 
the original paper, “synthetic easiness”) of compounds in a teaching 

data set. The compounds in the teaching data set were described by 
molecular descriptors, and the weights of the descriptors were de-
termined to reproduce the SA. This approach worked well, suggest-
ing that SA is useful. 

 Of course, SA is not a well-defined concept but a fuzzy idea 
[14]. Many years ago, people thought that organic compounds 
could not be synthesized by humans but only by God. In the 19th 
century, organic compounds were made from charcoal and organic 
polymers could not be synthesized. In the middle of the 20th cen-
tury, many reactions were developed based on oil. Thus, the SA 
values of compounds would have changed in each epoch along with 
the available organic chemistry. 

 The latest methods are based on a commercially available com-
pound database and molecular descriptors. In these methods [13, 
15], reaction databases and retro-synthesis analyses are not neces-
sary (see Fig. 5). Instead, SA is estimated from the probability of 
the existence of substructures of the compound calculated based on 
a compound library, the number of symmetry atoms, and the num-
ber of chiral centers in the compound. A steric effect, such as that 
of atomic collision, could be partially taken into consideration by 
the probability of the existence of substructures of the compound. It 
has recently become easier to access free compound databases, such 
as PUBChem [19], ChEMBL [20], ZINC [21, 22], and LigandBOX 
[23, 24], and many vendors have made the catalogs of their com-
pounds (see Table 2). In general, the databases of compound struc-
tures are more reliable than the reaction databases. 

 Table 2 shows trends in the number of compounds provided by 
some of the major compound vendors available on the LigandBOX 
database (URL http://ligandbox.protein.osaka-u.ac.jp/ligandbox// 
cgi-bin/index.cgi?LANG=en). As shown in this table, the total 
number of commercially available compounds (stocks) has not 
changed for several years. Every year, several hundred-thousand 
newly designed compounds appear and almost the same numbers of 
compounds are sold out. Thus the total number of compounds in 
stock has not changed substantially. Also, the number of natural 
compounds has been increasing gradually. On the other hand, the 
number of fragments has been increasing recently, since fragment-
based drug discovery became a trend in medicinal chemistry.  

 Fig. (6) shows one example of an SA prediction algorithm in-
cluded in the MolDesk software package [17] (URL: 
http://www.moldesk.com/). This routine performs the SA prediction 
within about 0.1 seconds for a given compound with one click ma-
nipulation. 

 In the MolDesk software package, SA is calculated as follows: 

04321 cScNcScScSA complexitygraphchiralsymprob ++++=
!

Eq. 1 

tot

sym

sym
N

N
S =

                                                                         

Eq. 2

Table 1. A selection of software programs for synthetic accessibility. 

Software Name Company URL 

CAESA  Keymodule Ltd http://www.keymodule.co.uk/products/caesa/index.html 

SYLVIA Molecular Networks GmbH https://www.molecular-networks.com/products/sylvia 

AIPHOS ChemInfoNavi http://www.cheminfonavi.co.jp/main/product/aiphos.html 

LHASA Radboud University Nijmegen http://cheminf.cmbi.ru.nl/cheminf/lhasa/ 

WODCA Universität Erlangen-Nürnberg  http://www2.chemie.uni-erlangen.de/software/wodca/index.html 

MolDesk � Information and Mathematical Science Bio Inc. http://www.moldesk.com/ 
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Fig. (5). Substructure-based synthetic accessibility prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). An example of SA prediction by a commercial program (MolDesk GUI software. Information and Mathematical Science Bio Inc., Tokyo Japan). 
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Table 2. List of major chemical vendors and number of compounds supplied by them. 

Year 
Vender Name 

2015 2014 2013 2008 2006 

Ambinter    120764 101720 

AMRI    195420   

ACB Blocks(Fragment) 1291 1292 1292   

Alinda 186836 254092    

AnalytiCon(Fragment) 222 218 204   

AnalytiConMACROx 1118 1027    

AnalytiConMEGx 5130 4579 4855 1092 522 

AnalytiConMEGxp    2799 2066 

AnalytiConNATx 26282 25498 24264 19080 9640 

Aronis     45746 

ART-CHEM    185637 164136 

ASDI    105587 42578 

Asinex 402046 426345 426345 233540 236765 

Asinex(Fragment) 23191 10412 3479 9315  

AsinexPlatinum 16240   126615 132155 

AsinexSynergy    10740  

Aurora    24647 59164 

Bahrain    998 998 

Bellen(Fragment) 2911 2911    

BioBioPha(Natural) 3283 2910 2675   

BioMar 128     

Bionet 52025 47191 41618 46384 43410 

Bionet(Fragment) 25906 20584 13127   

ButtPark 21926 21926 21926 17273 14212 

CBI 125594 125230    

ChemOvation 3121 3143 3143 2922  

Chem-X-Infinity 11650 11825 13148 332  

Chem-X-Infinity(Fragment) 1156 727 700 2400  

Cerep     29230 

Chemstar    60081 60081 

ChemT&I    844248 641842 

Enamine 2089786 2056024 1883713 952314 506809 

Enamine(Fragment) 42044 157022 153444   

EvoBlocks(Fragment) 944 944 700   

Florida    30910 30419 

FSSI  102509    

He.Co.    7087 6136 

Innovapharm  324568    

Intermed 32037 50295    

 



3560    Current Pharmaceutical Design, 2016, Vol. 22, No. 23 Fukunishi et al. 

(Table 2) Contd…. 

 

Year 
Vender Name 

2015 2014 2013 2008 2006 

Labotest 80096 81805 82296 107737 97794 

LifeChemicals 392633 378162 333920 267020 147680 

LifeChemicals(Fragment)  32877 30042   

Maybridge 54228 54575 54768 56839 58854 

Maybridge(Fragment) 8956 8915 9273   

MDD    31254 31255 

MDPI  11189 19749 10649 10649 

Menai 5005 5005 5210 5017  

Menai(Fragment) 402 402 402   

MolMall 14415     

OTAVA 279563 263086 254048 118173 62091 

OTAVA(Fragment) 11719 8748 7810   

Peakdale   14636 6072 8548 

Peakdale    6257 6572 

Pharmeks 396620 396620 376899 276367 228630 

Pharmeks(Natural) 49587 49587 44840 31720 29038 

Princeton 1160008 1012682 416068 873993 517484 

RareChemicals 11279 11279 11279 15245 9375 

SALOR 174978 142206 186899 142876 137428 

ScientificExchange 47833 47843 47733 43964 34569 

SPECS 207973 199969 199969 199270 151570 

SPECS(Natural) 866 456 456 335  

Synthon Labs  32706 49727   

TimTec 130361 128078 1066286 308111 198599 

UOS 565990 540678 457256 700730 331710 

VillaPharma    4612  

Vitas-M 1319150 1321860 1163246 311813 220970 

Vitas-M(Natural)    24694 24694 

Vitas-M(Fragment) 18909 18909 8315   

WuxiAppTec 104245 93892 81983   

WuxiAppTec(Fragment)  1155 908   

WuxiAppTec(Natural) 1417 4565 4689   

Zelinsky 386127 386127 385559   

Toal number of entities 8497227 8884648 7908899 6542933 4435139 

Nonredundant Total Number 5,150,322 5,026,965 4,740,609 4,206,460  

Number of New chemical entiries 229,015 157,820 195,377   

 

where c0, c1, c2, c3, and c4 are fitting parameters. Parameters c0-
c4 are optimized to reproduce the SA determined by expert manual 
assessment. In this review, the SA determined by expert manual 
assessment is designated the “human SA” and the SA calculated by 

Eq. 1 is called the “calculated SA.” SA is estimated from the prob-
ability of existence (Sprob) calculated based on a compound li-
brary, the number of symmetry atoms (Nsym), the total number of 
atoms (Ntot) of the compound, the number of chiral centers of the 
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compound (Nchiral), and the graph complexity (Sgraph-
complexity) [25]. The Nsym is the number of chemically (topologi-
cally) equivalent atoms.  

 If a compound consists of fragments frequently found in an 
available-compound database, it should be easy to synthesize. On 
the other hand, if a compound consists of fragments rarely or never 
found in an available-compound database, it would be difficult to 
synthesize. The probability of existence (Sprob) was calculated on 
the basis of the decomposition of the compound into fragments, and 
the probability of existence of each fragment was estimated accord-
ing to the compound library. Any kind of substructure descriptor 
(the extended connectivity fingerprint (ECFP) descriptors devel-
oped by SciTegic [15], MACCS key, Dragon, etc.) could be used 
for the SA prediction. 

 All compounds in the library were decomposed into small 
fragments. Let N and N(i) be the total number of fragments found 
in the library and the total number of fragments found in the library 
that were exactly the same as the i-th fragment of the compound in 
question, respectively. The probability of existence of the i-th frag-
ment in library (P(i)) is given by 

P(i)=N(i)/N.                                                                               Eq. 3 

The total probability of existence of the compound in question is 
then given as 

�=
i

total iPP )(

                                                                   

Eq. 4 

and 

�==

i

totalprob iPPS ))((log)(log 1010 .                       Eq. 5 

 As shown in Fig. (7), the compound library should consist of 
already-synthesized available compounds. 

 

 

Fig. (7). Substructure-based synthetic accessibility (SA) prediction. SA is 

estimated from the probability of existence (Sprob) calculated based on a 

compound library, the number of symmetry atoms (Nsym), the total number 

of atoms (Ntot) of the compound, the number of chiral centers of the com-

pound (Nchiral), and the graph complexity (Sgraph-complexity). 

 

 The correlation coefficients between the predicted SA values 
and the human SAs are about 0.5-0.8 for these prediction methods. 
The R value (0.56) and the average error (1.2) obtained by MolD-
esk are similar to those between the human SAs (R=0.59 with a 
standard deviation of 0.22 and average error=1.1).  

4. CORRELATION AMONG HUMAN SAs 

 Takaoka et al. reported that the human SA values (synthetic 
accessibility (or synthetic easiness in the original text) values of 
visual inspection by individuals) were slightly dependent on the 
individual chemists, even within the same company. Nonetheless, 
while the concept of SA remains somewhat fuzzy and poorly de-
fined in the manner of concepts like “good” or “bad,” such abstrac-
tions are often quite useful. 

 Tables 3-6 show the correlations among human SAs reported in 
previous articles [7, 10, 17]. The human SAs were strongly depend-
ent on the skill and experience of the individual chemist. The SA 
values estimated by the 2 chemists who belonged to the same com-
pany were still similar to each other. The SA values estimated by 
the chemists from different companies were different from each 
other and showed almost no correlation. SA would be expected to 
depend on the equipment available at the individual company, as 
well as on the training and experience of the company chemists.  

RELATIONSHIP BETWEEN THE SALES PRICE OF AP-

PROVED DRUGS AND SA  

 In Japan, about 10% of approved drugs are not sold in the mar-
ket, since the drug prices do not meet the drug development costs. 
Thus the drug price is an important factor in drug development. We 
examined the relationship between the sales price and SA of ap-
proved drugs in the United States and Japan (US) [17]. Of course, 
the price of a drug is critical to its practical adoption by patients. 
For this reason, the ability to predict the price of a new drug in the 
drug-design process would be highly useful.  

 The prices of new drugs in the United States and Japan showed 
a weak correlation to the calculated SA values. Their correlation 
coefficients were 0.32 and 0.29, respectively (see Fig. (8)). The 
prices of generic drugs showed the same trends as the new drugs. 
The reason for this should be that the price of a generic drug fol-
lows the price of the original drug.  

 The price of a drug may depend on many kinds of costs, includ-
ing the costs of development, phase trials, and patents, as described 
in the next section (see Fig. (9)). In addition, the market size and 
efficacy of the drug should be considered to decide the price. This 
means that a drug that is difficult to synthesize is not always expen-
sive. The average SA of a drug is about 6, meaning that the average 
difficulty of drug synthesis is not extremely high. 

DRUG PRICES IN THE US AND JAPAN 

 Because different countries have different methods of setting 
the prices of drugs prices, these prices vary widely around the 
world. In the US, the pharmaceutical companies determine drug 
prices based on a capitalist paradigm. On the other hand, in Japan 
the government sets the price of drugs based on their estimated 
importance to the healthcare system. These differences also reflect 
the different health insurance systems in each country. Thus a com-
parison between the drug prices in the US and Japan should reveal 
differences between a free market-based and government-based 
healthcare system.  

 There is almost no correlation between the sales prices of drugs 
in the US and Japan [17]. On the other hand, Fig. (10) shows the 
correlation between the logarithm of the price of drugs in the US 
and the price in Japan. The correlation is very high (R = about 0.8). 
This means that the prices of drugs are roughly estimated and the 
values of drugs could change depending on each society. 

CLOUD COMPUTING IN CADD 

 Cloud computing has become a quite popular technology. Usu-
ally, the cloud computer is a large-scale computer and computer 
resources such as CPU and disk space are served on demand (see 
Fig. (11)). Two of the major cloud computer services are the Ama-
zon Web Service (AWS: URL https://aws.amazon.com/?nc1=h_ls) 
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Table 3. Correlation coefficient between human SAs evaluated by two chemists. 

 FMP1 FMP2 NARD1 NARD2 RASA SYLVIA Average 

FMP1 1.00  0.93  0.57  0.56  0.35  0.37  0.56  

FMP2 0.93  1.00  0.55  0.53  0.28  0.41  0.54  

NARD1 0.57  0.55  1.00  0.86  0.47  0.94  0.68  

NARD2 0.56  0.53  0.86  1.00  0.44  0.92  0.66  

RASA 0.35  0.28  0.47  0.44  1.00  N.D. 0.39  

SYLVIA 0.37  0.41  0.94  0.92  N.D. 1.00  0.66  

FMP: Fujimoto Chemicals. NARD: Nard Institute. 

 

Table 4. Correlation coefficient between human SAs evaluated by five chemists reported in RASA software. 

RASA Chemist 1 Chemist 2 Chemist 3 Chemist 4 Chemist 5 Average 

chemist 1 1.00  0.83  0.76  0.76  0.74  0.77  

chemist 2 0.83  1.00  0.84  0.78  0.74  0.79  

chemist 3 0.76  0.84  1.00  0.84  0.81  0.81  

chemist 4 0.76  0.78  0.84  1.00  0.82  0.80  

chemist 5 0.74  0.74  0.81  0.82  1.00  0.78  

 

Table 5. Correlation coefficient between human SAs evaluated by five chemists reported in SYLVIA software. 

SYLVIA Chemist 1 Chemist 2 Chemist 3 Chemist 4 Chemist 5 Average 

chemist 1 1.00  0.75  0.77  0.84  0.74  0.78  

chemist 2 0.75  1.00  0.78  0.73  0.74  0.75  

chemist 3 0.77  0.78  1.00  0.82  0.75  0.78  

chemist 4 0.84  0.73  0.82  1.00  0.81  0.80  

chemist 5 0.74  0.74  0.75  0.81  1.00  0.76  

 

Table 6. Correlation coefficient between human SAs evaluated by five chemists reported by Taisho Pharmaceutical Co., Ltd. 

Taisho Chemist 1 Chemist 2 Chemist 3 Chemist 4 Chemist 5 Average 

chemist 1 1.00  0.50  0.40  0.40  0.56  0.47  

chemist 2 0.50  1.00  0.42  0.47  0.52  0.48  

chemist 3 0.40  0.42  1.00  0.40  0.48  0.43  

chemist 4 0.40  0.47  0.40  1.00  0.48  0.44  

chemist 5 0.56  0.52  0.48  0.48  1.00  0.51  

 

and AZURE by Microsoft (URL: https://azure.microsoft.com/ja-
jp/). The cloud computer is very similar to the conventional server 
computer. The difference between the cloud and conventional 
server is that the cloud is a virtual machine on which the OS, mid-
dleware, programs and computational environment must be pre-
pared for application computing by users in general, and the virtual 
machine disappears when the users deallocates the virtual machine. 
Although this procedure (allocation and deallocation of the virtual 

machine) enables computers to be used flexibly, it is also compli-
cated and time-consuming. The other important aspect of cloud 
computing is the requirement of high security or privacy. On a con-
ventional server, we can see the status of other users’ jobs. Con-
versely, we cannot see any information on the other users of a vir-
tual machine. The scalability and high security have enabled many 
pharmaceutical companies to perform their virtual screenings, simi-
larity searches and MD simulations on cloud computers.  
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Fig. (8). Correlation between SA and the price of newly approved drugs in 

the US. 

 

 

Fig. (9). Setting of drug prices in the US and Japan. The setting of drug 

prices depends on the country, type of disease and type of drug. 

 

 

Fig. (10). Correlation between the sales prices of drugs in the US and Japan. 

 

 

Fig. (11). Rough sketch of access control in cloud computing. 

 

 Cloud computing also enables us to access specialized hard-
ware. The general purpose graphics processing unit (GPU) compu-
tational resource is somewhat troublesome for many users. Since 
the evolution of the GPU hardware is very fast, the GPU software is 
strongly dependent on the hardware, and the CUDA software 
(URL: https://developer.nvidia.com/cuda-zone) depends on the 
GPU hardware. Every year, new GPU hardware has appeared and 
the CUDA version has been updated. The GPU program should be 
tuned up for each GPU, since the performance of GPU programs 
depends on the balance of the number of GPU cores and memory-
band width. Also the application of GPU is quite limited. This 
means that the GPU is used only when the GPU programs are 
available. In contrast, CPUs are always used for all application 
programs. 

 One of the problems of cloud computing is that the cloud ma-
chine is a virtual machine that basically begins as an empty box in 
cases where we allocate our own resources. We must prepare our 
own computational environment before starting target computations 
such as virtual screenings or MD simulations. This is almost 
equivalent to the procedure of setting up a brand new machine, and 
it must be done each time a new connection is made to the cloud 
computer. The other problem is that we must pay for the number of 
computations and in many cases it is difficult to predict the compu-
tational cost before the computations have actually been run. Fi-
nally, it is necessary to retrieve the data from the cloud computer 
before the close of service on each use.  

 AWS provides more than 40 services (see Fig. (12)), including 
CPU, disk, database, and security resources. Most of the charges for 
these services are proportional to the amount of usage of the cloud 
services. To realize a scientific calculation, the users must integrate 
and combine these cloud services adequately. Because there are so 
many cloud services, selecting the best combination for each scien-
tific calculation can be hard work for the users. In addition, the 
users need resources on demand. Instead of asking the system pro-
viders, in some cases the users can manage their cloud computing 
using the available cloud services. 

 The cloud controller software assists in the process of preparing 
the computational environment and retrieval of data. There have 
been several reports on this software. Since the explanation of the 
mechanism of the cloud controller software is beyond the scope of 
this review, we will simply explain how to use such software. The 
controller software depends on the kind of computations to be 
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made. Thus, we must select the best controller software for the 
computer programs that we want to use. AceCloud is a command-
line cloud controller [26]. The users can submit their jobs, check the 
job status, abort them, and retrieve the results through AceCloud 
(see Fig. 13).  

 We show one example of the commercial cloud controller soft-
ware “MolGate” (BY-HEX LLP, Tokyo Japan. URL http://by-
hex.com/ 2015) in Fig. (13). MolGate is a web-based program with 
SSH communication and the users can use both the CPU and GPU 
resources. When input files are prepared for MD simulation a pri-

 

Fig. (12). Service menu of Amazon cloud computing. 

 

 

Fig. (13). Command list for cloud computing. 
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ori, MolGate can prepare the environment on the cloud and start the 
calculation within 10 minutes. The example shows how to perform 
MD simulation on AWS. Fig. (13) shows the procedures followed 
by the user. The user must allocate and deallocate the computa-
tional resources manually in addition to performing the login proc-
ess. The procedure consists of the following four steps. 

Step 1. Users open “MolGate” and connect to AWS. They then 
indicate what kind of server and how many servers are needed for 
the computation. There are about 40 types of servers available. 
These include m1.large, m1.xlarge, m2.4xlarge, cg1.4xlarge, 
cc2.8xlarge, c4.8xlarge, c4.2xlarge, etc. ( https://aws.amazon.com/ 
ec2/pricing/?nc1=h_ls. Last access: 2015/09/26). Each server in-
cludes CPU cores, memories and hard disks. 

Step 2. Users select the data that should be calculated on the local 
machine. MolGate prepares the computational environment for this 
calculation as a background job. The simulation programs, analysis 
programs and MPI environment are prepared on AWS automati-
cally. Users select the data that should be calculated on the local 
machine. MolGate sends or unzips the zipped files. 

Step 3. Users indicate the number of servers and estimate the CPU 
cost of the job. MolGate calculates the expected CPU time for the 
job. Users should change the server type and/or modify the input 
file for the simulation if necessary. Then users perform their job. 

Step 4. Users retrieve the resulting data after the job is finished.  

 On AWS, users can see only their virtual machine. Once the 
CPU resources are allocated, users will not be bothered by other 
users. Most of the costs of cloud computing are due to the CPU 
time, while the disk space usage is very inexpensive or even free in 
many cases.  

 To use the cloud computer, we should estimate the cost of the 
job a priori [27]. The computational cost depends on the size of the 
simulation system, the duration of the simulation, what kind of 
program will be used, and which service (type of server machine) 
of the cloud will be used. BY-HEX LLP provides a service for pre-
dicting the cost (URL: http://by-hex.com/). The total number of 
atoms is entered into the simulation system, and the site estimates 
the price per one MD simulation step. This prediction is still primi-
tive, but the service is useful.  

MACHINE SETUP: GPU AND COMPOUND DATABASE  

 GPU computation has also become very popular [28-36]. GPU 
computing is particularly suitable for performing molecular dynam-
ics simulation programs like AMBER [33], Gromacs [34], NAMD 
[35] and psygene-G/myPresto [36]. The computational details of 
these programs are described in detail elsewhere. Some of these 
GPU programs are freely available. One of the most serious prob-
lems for end users is how to set up the GPU machine for these MD 
programs. The other problem is that the system size for the GPU 
computation must be larger than the minimum size that is deter-
mined by the program. Since most GPU programs adopt a space-
decomposition method for parallel computing, the system must be 
decomposed into sub systems. This means that the MD of a small 
system (like a single molecule) is not suitable for GPU computing. 

 Fig. (14) shows how to set up the MD program for the GPU. 
Many computers have GPU boards that are used mainly for graph-
ics. To utilize the GPU for an application program, we must 
uninstall the GPU graphics driver software and install CUDA, a 
computer language for use with GPU. Most of the GPU-MD pro-
grams adopt CUDA for GPU computations. The slot number of 
each GPU board in the computer must be explicitly indicated in 
CUDA. Suppose our machine has three GPU boards. In some cases, 
a poor GPU is allocated to slot 1 for graphics. The additional two 
expensive GPU boards have slots 0 and 2 for the MD simulation. In 
some cases, a poor GPU is allocated to slot 0 for graphics. The 
additional two expensive GPU boards have slots 1 and 2 for the  
 

 

Fig. (14). Software and hardware GPU framework. 

 

MD simulation. This allocation depends on the machine. If the 
GPU programs use a slow and a fast GPU board, the computation 
speed depends on the speed of the slow GPU board. This setup job 
is somewhat time-consuming work. The user can request that the 
computer vendor set up the machine, or in some cases, the vendor 
will provide a pre-installed machine such as MolSpace (LEVEL 
FIVE Co., Ltd. Tokyo; URL: http://www.level-five.jp/). 

 In this section, we explain how to start using the GPU computa-
tion, since the set up the environment for the GPU computation is a 
much more time-consuming and complex process than the conven-
tional CPU. Most of the GPU programs run on the CUDA lan-
guage. This means that the GPU of the Intel Core-i series is not 
suitable for GPU computing, since the GPU of core-i is not de-
signed for CUDA. Many computers utilize the GPU card for graph-
ics. To use the GPU card for a scientific calculation program, we 
must stop using the GPU for graphics and change the status of the 
GPU card for application only. Our example is designed for 
CUDA7.0 running on Linux x86_64 (RedHat6 (RHEL6) and Cen-
tOS6). The RPM package of CUDA for RHEL6/CentOS6 is avail-
able from the NVIDIA CUDA download website 
(https://developer.nvidia.com/cuda-downloads).  

 In order to use GPUs for running CUDA application programs, 
we must check the versions of the software and hardware. For ex-
ample, CUDA for CentOS6 runs on the combination of kernel 
2.6.32, GCC version 4.4.7, and GLIBC version 2.12. Each CUDA 
version runs on each GPU card. We must check what kind of GPU 
card is available on the CUDA GPUs site 
(https://developer.nvidia.com/cuda-gpus). These points can be 
checked using the following 5 steps.  

Step 1. Check the version of the OS (obtained by “$ cat 
/etc/*release”).  

Step 2. Check the version of the kernel (obtained by “$ uname -a”).  

Step 3. Check the version of GCC (obtained by “$ gcc --version”).  

Step 4. Check the version of GLIBC (obtained by “$ rpm -q glibc”).  

Step 5. Check the GPU card (obtained by “$ lspci | grep -i nvidia”). 

 In the present review, we explain how to set up the GPU for 
MD simulation mainly for an NVIDIA CUDA environment for 
RedHat6/CentOS6, since CUDA is now popular for GPU simula-
tions. In order to use the NVIDIA driver PRM package, an EPEL 
package must be installed. This process should be done by follow-
ing 7 steps as follows. 

Step 1. Download a suitable EPEL, such as # yum install 
(http://dl.fedoraproject.org/pub/epel/epel-release-latest-
6.noarch.rpm). 

Step 2. Install the CUDA on the command mode (run level 3), then 
set the run level using the command “# /sbin/init 3.” 

Step 3. Install the CUDA repository (”# rpm --install cuda-repo-
rhel6-7-0-local-7.0-28.x86_64.rpm”). 
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Step 4. Clear the cache of yum (“# yum clean expire-cache”). 

Step 5. Install CUDA by yum (“# yum install cuda”). Answer yes 
(“y”) to all the questions. 

Step 6. Restart the computer system by typing the command ”# 
/sbin/shutdown -r now.” 

Step 7. Change the default parameter of EPEL. Change “enable=1” 
to “enable=0” for [epel] in the file “/etc/yum.repos.d/epel.repo”. 

 In order to compile our GPU application on our computer, we 
must set the path for the CUDA library. We add the following two 
lines in ~/.cshrc for c-shell or ~/.bashrc for bash. 

export PATH=/usr/local/cuda/bin:$PATH 

export 
LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PA
TH 

 Before starting our own application calculations, we check the 
software and hardware environment.  

 We download the sample program for CUDA and compile it 
using the following two steps. 

Step 1. Put the CUDA sample on an suitable directory. For exam-
ple, to put the sample on the current directory (.), we use the com-
mand “$ cuda-install-samples-7.0.sh .”. 

Step 2. Compile the sample using the command (”$ cuda-install-
samples-7.0.sh .”). 

 In the above section, we have shown how to prepare the CUDA 
environment for GPU applications. Now we can start the GPU ap-
plications. There are several GPU programs available on the Inter-
net, and most of these are MD simulation programs. We will ex-
plain how to use psygene-G of the myPresto program suit devel-
oped by our group, since most of the other application programs 
should follow a similar procedure. Psygene-G is available on the 
myPresto download site (http://presto.protein.osaka-
u.ac.jp/myPresto4/); after downloading, unzip the file using any 
suitable directory.  

 Psygene-G is an MPI parallel GPU program [36]. To compile 
this program, we must modify Makefile for our software environ-
ment. There are two Makefiles. One is for the MPI parallel program 
part (src/Makefile) and the other is for the CUDA program part 
(src/cuda/Makefile). Users should modify the Makefile of each 
application program in a manner similar to the following example. 

 Modification of Makefile for the MPI program (src/Makefile) to 
GPU in this example: 

(1) The CUDA version is indicated as “CUDA=cuda.x.y” for 
CUDA version x.y. 

(2) Activate the “#GPU Lib settings” block. 

(3) Psygene-G is written in FORTRAN90, and the MPI library for 
FORTRAN90 is indicated by “FC=mpif90”. 

(4) This is psygene-G specific indication. The memory size for a 
million atoms is indicated by “OPTIONS = -
D_LARGE_SYSTEM” 
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 Modification of Makefile for the CUDA program 
(src/cuda/Makefile) to GPU in this example 

(1) The CUDA version is indicated as “CUDA=cuda.x.y” for 
CUDA version x.y. 

(2) Compute capability that is the version of GPU card as de-
scribed on the CUDA GPUs site 
(https://developer.nvidia.com/cuda-gpus). For Tesla K20, the 
compute capability is indicated as “GEN_SM = -arch=sm_35”. 

(3) The option of CUB library (for CUDA5.0 and more recent 
version) is indicated. “USE_CUB=1” for psygene-G, and 
USE_CUB=0 means the use of Thrust library that is a supple-
ment of CUDA.  

[ src/cuda/Makefile ] 
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 If both Makefiles are correctly modified, psygene-G should be 
compiled by the make command in the form “$ make”. 

 In the case of psygene-G/myPresto, the control file (input file) 
for MD simulation is almost the same as that for the conventional 
MD simulation program for CPU. The following explanation is 
myPresto-specific, but a similar modification would be necessary in 
order to use the other MD programs. The recent MD simulation 
program adopts the space division technique with cut-off interac-
tion calculations like the reaction field. We explain this to help 
understand the input file. 

(1) The coordinate of the center of the system is indicated. 
“CENTRX= 0.0D0 CENTRY= 0.0D0 CENTRZ= 0.0D0” 

(2) The size of the system is indicated. “LXCELL= 0.75D+02 
LYCELL= 0.75D+02 LZCELL= 0.65D+02” 

(3) How to divide the system. In this example, the system cell is 
divided into 2x2x2 sub-cells. “DXCELL= 2 DYCELL= 2 
DZCELL= 2”  

(4) [ md.inp�EXE> SPACEINPUT ] 
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Input for GPU for psygene-G 

(1) How to allocate the GPU device. Multiple GPU cards are 
available by the MPI. “GPUALC=MPI” means the GPU cards 
are allocated by the MPI automatically. “GPUALC=RNK” 
means the GPU-allocation is defined by the machinefile.  

(2) The GPU-device numbers are indicated. “USEDEV=0,2” 
means that the GPU devices 0 and 2 are used for the calcula-
tion, In many cases, GPU device 1 is used for the graphics (de-
pending on the hardware vendors). 

(3) “NBDSRV= GPU” means that the GPU cards are activated. 

(4) The GPU kernel is indicated by option NBDKNL. 
“NBDKNL= GRID” means that the space-decomposition 
method is used for GPU calculation. 

(5) The precision of the GPU kernel is indicated. The recent GPU 
cards can calculate in both single precision and double preci-
sion; however, the single precision calculation is much faster 
than the double precision calculation. Thus, we must use the 
single precision calculation on GPU boards whenever possible. 
In psygene-G, each pairwise interaction calculation between 
atoms is calculated in single precision, but the summing-up of 
these results is performed in double precision.. 

[ md.inp�EXE> GPU ] 

� � ��

����������

��������	���������

���������	� !"��!��� "	�#$%&'()*����+�

����,�
�-	�.������

��!/
, -	���������

!/
"!�	�� �
��� 
,��	��
�
����0�

��
/�"!�	�!1�����2�

������

� � � 

[ machines ] 

&3*4��

&3*4��
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&3*4��

&3*4� 

 

In this machine file example, ranks 0-3, ranks 4-5, and ranks 6-7 are 
allocated to host0, host1 and host2, respectively. 

Finally, we can perform the GPU calculation. 

Psygene-G calculation is performed by “$ psygene-G < md.inp. 

 

 Recently, an integrated solution system for CADD appeared to 
reduce the above procedure for setting up the GPU environment. 
MolSeries is a system that includes MolSpace (workstation that 
provide GPU and execution environment for myPresto computer-
aided drug design program suit etc.) (LEVEL FIVE Co., Ltd. To-
kyo Japan), MolDesk (pre-installed CADD software) (Information 
and Mathematical Science Bio Inc., Tokyo Japan), and MolGate 
(cloud controller) (BY-HEX LLP. Tokyo Japan). Users can perform 
the MD simulation with GPU computing, protein-compound dock-
ing, virtual screening, drug design, and synthetic-accessibility pre-
diction using both the local machine and the cloud system without 
the set-up procedure.  

CONCLUSION 

 In the present work, we reviewed the concept of synthetic ac-
cessibility prediction as a minor part of the CADD programs, and 
we reviewed the software / hardware environment supporting the 
CADD in greater depth, such as cloud computers and GPU.  

 Synthetic accessibility (SA) prediction has become a practical 
tool in CADD. There are two types of SA predictions. One is based 
on prediction of the reaction path and the other is based on the 
chemical structure only. These programs are now available even for 
commercial use. The predicted SA showed good agreement with 
the SA estimated by chemists, with a correlation coefficient of 0.5-
0.8. Considering that the correlation coefficient between the SAs 
estimated by chemists is around 0.6, the computational prediction 
works well. Since SA is a fuzzy idea, different chemists can pro-
pose different SA values for the same given compound. The drug 
prices are only weakly dependent on the SA values (R=0.3). Thus 
the evaluation of drug prices is difficult work. 

 The use of cloud computing is still limited compared to the 
wide application of conventional computing on server computers. 
Currently, chemical computations on the cloud are relatively harder 
than those on local machines or ordinary server computers, al-
though some cloud controllers are now available and these pro-
grams should help laypeople to perform various computations on 
the cloud. GPU computing has been popular. But setting up the 
GPU for chemical computation is still a difficult task. To use cloud 
and GPU computing, a support service and supporting software 
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would be helpful. In the future, these relatively new methods should 
be actively studied.  
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