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Modeling Continuous Admixture 
Using Admixture-Induced Linkage 
Disequilibrium
Ying Zhou1,2,*, Hongxiang Qiu1,3,* & Shuhua Xu1,2,4,5

Recent migrations and inter-ethnic mating of long isolated populations have resulted in genetically 
admixed populations. To understand the complex population admixture process, which is critical 
to both evolutionary and medical studies, here we used admixture induced linkage disequilibrium 
(LD) to infer continuous admixture events, which is common for most existing admixed populations. 
Unlike previous studies, we expanded the typical continuous admixture model to a more general 
scenario with isolation after a certain duration of continuous gene flow. Based on the new models, 
we developed a method, CAMer,  to infer the admixture history considering continuous and complex 
demographic process of gene flow between populations. We evaluated the performance of CAMer by 
computer simulation and further applied our method to real data analysis of a few well-known admixed 
populations.

Human migrations involve gene flow among previously isolated populations, resulting in admixed populations. 
In both evolutionary and medical studies of admixed populations, it is essential to understand admixture history 
and accurately estimate the time since population admixture because genetic architecture at both population and 
individual levels are determined by admixture history, especially the admixture time. However, the estimation 
of admixture time depends largely on the precision of the applied admixture models. Several methods have been 
developed to estimate admixture time based on the hybrid isolation (HI) model1–4 or intermixture admixture 
model (IA)5, which assume that the admixed population is formed by one wave of admixture at a certain time. 
However, the one-wave assumption often leads to under-estimation when the progress of the true admixture 
cannot be well modeled by the HI model. Jin et al. showed earlier that under the assumption of HI, the estimated 
time is half of the true time when the true model is a modified gradual admixture (GA) model6.

Admixture models can be theoretically distinguished by comparing the length distribution of continuous 
ancestral tracts (CAT)7–9, which refers to continuous haplotype tracts that were deviated from the same ancestral 
population. CAT inherently represents admixture history as it accumulates recombination events. Short CAT 
always indicates long admixture history of the same admixture proportion, whereas long CAT may indicate a 
recent gene flow from the ancestral population to which the CAT belongs. Based on the information it pro-
vides, CAT can be used to distinguish different admixture models and estimate corresponding admixture time. 
However, accurately estimating the length of CAT is often very difficult.

Weighted linkage disequilibrium (LD) is an alternative type of information that can be used to infer admix-
ture1,10. Previous studies have indicated that it is more efficient than CAT because it requires neither ancestry 
inference nor haplotype phasing, which often introduces false recombination thus decreasing the power of esti-
mation. Weighted LD has already been used in inferring multiple-wave admixtures10,11. However, these methods 
tend to summarize the admixture into different independent events, even if the true admixture is continuous. In 
our previous work11,12, we mathematically described LD under different continuous models, allowing us to deter-
mine admixture history using these models.
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In the present study, we first developed a weighted LD-based method to infer admixture with HI, GA, and 
continuous gene flow (CGF)13 models (see Fig. 1). Both GA and CGF models assume that gene flow is a contin-
uous process. Next, we extended the GA and CGF models to GA-I and CGF-I models, respectively (see Fig. 1), 
which models a scenario with a continuous gene flow duration followed by a period of isolation to present. We 
applied our method to a number of well-known admixed populations and provided information that would help 
better understanding the admixture history of these populations.

Material and Methods
Datasets. Data for simulation and empirical analysis were obtained from three public resources: Human 
Genome Diversity Panel (HGDP)14, the International HapMap Project phase III15 and the 1000 Genomes Project 
(1KG)16. Source populations for simulations are the haplotypes from 113 Utah residents with Northern and 
Western European ancestries from the CEPH collection (CEU) and 113 Africans from Yoruba (YRI).

Inferring Admixture Histories by Using HI, GA, and CGF Models. The expectation of weighted LD 
under a two-way admixture model has been described in detail in another work11. Following the previous nota-
tion, the expectation of weighted LD statistic between two sites separated by a distance d (in Morgan) is as follows:
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, δ12(x) is the allele frequency difference between populations 1 and 2 at site x, and 

S(d) is the set holding pairs of SNPs of distance d; ai(d), i =  0, 1, 2 are the weighted LD statistics of the admixed 
population (i =  0) and the source population i, (i =  1, 2), respectively; mi is the admixture proportion from the 
source populationi; c(l) is admixture indicator for the admixture event of l generations ago, and n is supposed to 
be the number of generations since the source populations first met. To eliminate the confounding effect due to 
background LD from the source populations, we used the quantity, z(d), defined as follows, to represent the 
admixture induced LD (ALD)11.
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We presented it in a more compact form using the inner product of two vectors as follows:
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Figure 1. Classic admixture models (HI, GA and CGF) and the models we extended (GA-I and CGF-I). For 
each model, the simulated admixed population (Hybrid) is in the middle of two source populations (POP1 and 
POP2). Each horizontal arrow represents the direction of gene flow from the source populations to the admixed 
population. Once the genetic components flow into the admixed population, the admixed population randomly 
hybridizes with other existing components. The existence of horizontal arrows indicates gene flow from the 
corresponding source population.
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For different admixture models where admixture began ngenerations ago, z(d) varies in terms of the vector of 
coefficients of polynomial functions12:
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where the vector Cmodel has length n using the HI, GA, CGF1, or CGF2 model; and n represents when the admix-
ture occurred (HI) or began (GA and CGF) in terms of generations. For different models, the coefficient vectors 
have different patterns (see Fig. 2), which can be used to infer the best-fit model for a certain admixed population.

In the CGF model, CGF1 represents the admixture where source population 1 is the recipient of the gene 
flow from population 2, whereas CGF2 indicates source population 2 as gene flow recipient from population 1.  
Inference of the admixture time assuming the true admixture history in one of these different models can be 
regarded as minimizing the objective function as follows:

θ θ θ θ= ⋅ + −C AC Z1ssE( , , ) (2)0 1 model 0 1 model 2
2

The optimization problem is therefore expressed as follows:

θ θ
θ θ

Cmin ssE( , , ),
(3)C, ,

0 1 model
0 1 model

Figure 2. Coefficient vector of polynomial functions for each model. For each admixture model, the 
starting time of the population admixture is 50 generations ago. The admixture proportion in the final admixed 
population is set as 0.3:0.7 for population 1 and population 2.
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where Z =  (z(d1), z(d2), … , z(dI))T is the observed ALD calculated from the single nucleotide polymorphism 
(SNP) data of both the parental populations and the admixed population, both Z and admixture proportion mi 
can be calculated by the algorithm iMAAPs12; θ0 is a real number used to correct the population substructure; 
θ1 is a scalar that improves estimation robustness; 1 ∈  RI is a vector with each entry being 1; A is an I ×  J matrix 
with the ith row vector defined as Poly(di)T, i.e., A =  (Poly(d1), Poly(d2), … , Poly(dI))T, and J ≥  n is a pre-specified 
upper bound of n. Our definitions are consistent since we can let all entries after the n-th entry be 0 in Cmodel.

Next, we tried to estimate the parameters θ0, θ1, and Cmodel, where Cmodel has the information of the admixture 
model and the related admixture time n (in generations). In our analysis, the value of n is assumed to be a positive 
integer; therefore, our method is to go through all possible n values (with a reasonable upper limit J) to estimate 
n with the minimum value of the objective function. Given n, we used the ordinary least squares method to 
estimate (θ0, θ1) such that the objective function was minimized. Using this approach, the value of n in relation 
to the minimal objective function value for each model was determined, which represents the time of admixture 
occurrence under each model. The method to conclude which models are the best is described in Identification 
of the best-fit model session.

Admixture Inference under HI, GA-I, and CGF-I Models. GA and CGF models assume that the 
admixture is strictly continuous from the beginning of admixture to present. This assumption seems too 
strong to be valid in empirical studies. Here, we extended GA model and CGF model to GA-I model and 
CGF-I model respectively, by considering continuous admixture followed by isolation. In this case, the 
admixture event lasts from Gstart generations ago to Gend generations ago. Similar to the previous case, the 
coefficients of polynomial functions can be represented as a vector of length Gstart for each model, whose first 
Gend −  1 entries are filled with zeros. Suppose the admixture lasted for n =  Gstart −  Gend +  1 generations, then
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In this case, we can also try to find the parameters that minimize the objective function (eq. 2) under new 
models. By examining all possible pairs of (Gend, Gstart), it is possible to determine the global minimum of the 
objective function, but this might not be computationally efficient. Here, we used a faster algorithm (Algorithm 1)  
to determine the starting and ending time points of admixture.

Let E and S be the ending and starting time points (in generations, prior to the present) of the admixture, which we 
wanted to search for to minimize the objective function. The search starts from (E0, S0) =  (1, J), where J is the upper 
bound for the beginning of the admixture event, which can be set to be a large integer to seek for a relatively ancient 
admixture event. In our analysis of recent admixed populations, we set J =  500. For k =  1, 2, … , (Ek, Sk) is updated from 
(Ek−1, Sk−1) by two alternative proposals denoted by E S( , )k k

1 1  and E S( , )k k
2 2 . For convenience, we defined

θ θ=
θ θ

f E S E S( , ) : min ssE( , , , )
(4)

k k k k

,
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where θ0, θ1 can be determined by ordinary least squares.
We chose the proposal that resulted in a smaller value for f. The search stopped when the value of f with  

(Ek−1, Sk−1) was no larger than that of either proposal or Ek =  Sk. In this way, we could readily estimate the time 
interval of the admixture event (Gend, Gstart) quickly.

Algorithm 1:

for k in 1, 2, … 
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1 1

1 1
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  if (Ek, Sk) =  (Ek−1, Sk−1) orEk = Sk

     (Gend, Gstart):=  (Ek, Sk)

     stop

Result evaluation. To check our assumption of the true history and evaluate the inference, an intuitive way 
is to compare empirical weighted LD with the fitted LD. Here, we used two quantities: msE and Quasi F, defined 
by the following:

(1) Let θ θ= ⋅ + −e AC Z10 1 model . We looked at = ∑
−

msE e
I 1

I
i1
2
 with ei being the ith entry of e. This reflects good-

ness of fit and strength of background noise. A smaller msE indicates less background noise and better fit.
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(2) Let ′ = −ˆe Z Z , where Ẑ  is the fitted weighted LD obtained from iMAAPs, which theoretically can be 
regarded as the de-noised weighted LD. e′ is a vector of length I, with the ith entry denoted by ′ei . We looked 
at the quasi-F statistic = ∑

∑ ′
F e

e( )

I
i

I
i

1
2

1
2
. A small F indices that the current fit does not significantly deviate from the 

previous fit.

A reliable result should have both small msE and small F values. Particularly, F is involved in model compar-
ison: when F is too large, one would suspect that the true admixture history is far from any one of these models. 
Both F and msE are involved in revealing data quality. If F is small but msE is large, one would suspect that the 
quality of data is not good enough to draw convincing conclusions. Further explanation of these statistics is in 
Results and Discussion sessions.

Identification of the best-fit model. For the convenience of illustration, we defined the core model as the 
model used to infer admixture time. When inferring admixture of a target population, HI, GA, CGF1, CGF2, 
GA-I, CGF1-I and CGF2-I are used as the core models for conducting inference. Because GA-I, CGF1-I and 
CGF2-I describe more general admixture models than GA, CGF1, and CGF2, we classified model selection into 
two cases: one case is to identify the best-fit model(s) among the HI, GA, CGF1, and CGF2 models, whereas the 
more general case is to determine the best-fit model(s) among HI, GA-I, CGF1-I and CGF2-I models. In both 
cases, the same strategy is adopted, which depends on the pairwise paired difference of pseudo log(msE) values 
associated with each core model, which will be defined later. For an admixed population, there are N +  1 observed 
weighted LD curves obtained as follows: N (typically 22) autosomal chromosomes are considered in an individual 
genome, and one weighted LD curve is calculated from all these N chromosomes while the other N weighted LD 
curves are obtained by jackknife resampling, leaving out one chromosome for each LD curve1,10,11. Next, we fit 
each observed weighted LD curve for each core model by estimating θ0, θ1 and the time interval, which in turn 
allowed us to obtain the msE value associated with the optimal parameters for each weighted LD curve. Taken 
together, a total of N +  1 msE values associated with N +  1 LD curves were evaluated in each core model. For 
model M, the log(msE) obtained from all N chromosomes was denoted by M

0  and that from the LD curve with 
the q-th chromosome was left out by = …q N( 1, , )q

M . Following Tukey17, we defined the q-th pseudo log(msE) 
for model M to be = − −ˆ N N( 1)q

M M
q
M

0    and treated these pseudo values approximately as independent. 
Next, we defined the best-fit core model(s) to be the model(s) with significantly small ̂ q

M . A pairwise Wilcoxon 
signed-rank test was conducted for the pseudo log(msE) of the four models. More precisely, Wilcoxon 
signed-rank test was applied to all pairs of models with the ̂ q

M  being paired by index q, and then the p-values were 
adjusted to control family-wise error rate (see Table 1). We used the Holm-Bonferroni method to adjust 
p-values18. When ̂ q

HI was not significantly larger than those of the best model, i.e., the model associated with the 
smallest sample median of pseudo log(msE) values, HI was selected because HI is a simpler model compared with 
the others. Otherwise, the models whose ̂ q

M was not significantly larger than those of the best model were selected 
(the best model was selected as well). The significance level was set to be 0.05. Here, we paired the pseudo values 
according to index q and used Wilcoxon signed-rank test on the paired differences. ̂ q

M  is strongly correlated with 
q and hence q is a major covariate that must be controlled in the test to gain higher power. This is also the reason 
that even though theoretically there are examples where the best model, according to our definition, can be sig-
nificantly worse than other models in our process, we still use this method considering that such extreme cases 
are unlikely in practice. In addition, log(msE) rather than msE was used because after logarithm transformation, 
the small values of msE could also have huge effect to the comparison. That is to say, we could better detect the 

True Model Best Model(s)

Adjusted p-Values of Pairwise Wilcoxon signed-rank test

HI:GA-I HI:CGF1-I HI:CGF2-I GA-I: CGF1-I GA-I: CGF2-I CGF2-I: CGF1-I

HI (100) HI 1 0.20 1 0.068 1 0.059

HI (50) HI 0.054 0.83 0.83 0.049 0.023 0.83

CGF1 (1–100) CGF1-I, CGF2-I 0.012 0.012 0.012 0.055 0.018 0.28

CGF1 (1–50) CGF1-I, CGF2-I, 
GA-I 0.012 0.012 0.012 0.074 0.018 1

GA (1–100) GA-I 0.012 0.012 0.012 0.012 0.012 0.012

GA (1–50) GA-I 0.012 0.012 0.012 0.012 0.012 0.084

CGF1-I (30–100) CGF1-I 0.049 0.049 0.049 0.035 0.43 0.049

CGF1-I (70–100) HI 0.70 1 1 0.70 0.012 0.19

GA-I (30–100) HI 0.049 0.15 0.15 0.15 0.012 0.15

GA-I (70–100) HI 1 1 1 0.22 0.12 1

Table 1.  Adjusted p-values of pairwise Wilcoxon signed-rank test among core models: HI, GA-I, CGF1-I, 
CGF2-I. In each column, the adjusted p-values of the Wilcoxon signed-rank test comparing the two models 
are presented for all simulation cases. Simulated true model is followed by the parenthesis of time interval for 
the corresponding gene flow, where the first term in the parenthesis is the ending time of the admixture and the 
second term is the beginning time of the admixture. They are in the measurements of generation before present. 
For HI model, only one time point is included in the parenthesis.
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difference between small msE, thus gaining greater power in the test. This claim is also justified by our experience. 
In Table 1, we listed the adjusted p-values to determine the best-fit model(s) under various scenarios. In the sim-
ulation of HI (100), HI model was inferred as the best-fit model because ̂ q

HI is not significantly larger than ̂ ‑
q
GA I, 

ˆ ‑
q
CGF1 I , and ̂ ‑

q
CGF2 I . In the cases of  CGF1 (1–50), GA-I, CGF1-I, and CGF2-I were inferred as the set of best-fit 

models because we cannot distinguish the best fit model from GA-I, CGF1-I, and CGF2-I models. This case was 
marked as “Undetermined” in Table 2.

Software
Our algorithm has been implemented in an R package19, named CAMer (Continuous Admixture Modeler). The 
package is available on the website of population genetic group: http://www.picb.ac.cn/PGG/resource.php or on 
Github: https://www.github.com/david940408/CAMer.

Results
Simulation studies. Admixed populations were simulated in a forward-time way under different admixture 
models with the software AdmixSim20, which is under the framework of copying model that new haplotypes are 
assembled from the segments of the source populations’ haplotypes generation by generation4,21, and the same 
simulation strategy has been used in the previous work4. Simulation was initiated with the haplotypes from source 
populations (YRI and CEU) and the haplotypes for the admixed population were generated by resampling hap-
lotypes with recombination from source populations and the admixed population of last generation. During the 
simulation, population size was kept as 5000 and migration rate was controlled by the admixture model with the 
final admixture proportion in the admixed population to be 0.3. We employed a uniform recombination map in 
our simulation, which means recombination rate between two markers is positively proportional to their physical 
distance. For each model, simulation was performed using 10 replicates; each replicate contained 10 chromo-
somes with a total length of 3 Morgans. To evaluate the performance of our algorithm, we simulated admixed 
populations under the following conditions:

(1) HI of 50 and 100 generations, designated as HI (50) and HI (100),
(2) GA of 50 and 100 generations, designated as GA (1–50) and GA (1–100), respectively,
(3) CGF of 50 and 100 generation, population 1 as the recipient, designated as CGF1 (1–50) and CGF1 (1–100) 

respectively,
(4) CGF-I of a 70-generation admixture followed by 30-generation isolation, and a 30-generation admixture 

followed by a 70-generation isolation, with population 1 as the recipient, designated as CGF1-I (30–100) and 
CGF1-I (70–100) respectively, and,

(5) GA-I of a 70-generation admixture followed by a 30-generation isolation and a 30-generation admixture 
followed by a 70-generation isolation, designated as GA-I (30–100) and GA-I (70–100), respectively.

With simulated admixed populations, we first used the HI, GA and CGF models as core models to conduct 
inference (see Supplementary Fig. S1). When the simulated model was a HI, GA, or CGF model, our method was 
able to accurately estimate the admixture time, as well as to determine the correct model, with an accuracy of 
73.33%. When the simulated model was a CGF-I or GA-I model, the estimated time based on the core model HI 
was within the time interval of the admixture, whereas all best-fit models were HI (see Table 2).

With the same set of simulated admixed populations, we also used AdmixInfer9 to determine the admix-
ture model and estimate admixture time, which is based on the length distribution of CAT. To avoid any 
errors introduced by haplotype phasing and local ancestry inference, we analyzed the ancestral segments gen-
erated from AdmixSim. We found that AdmixInfer attained pretty accuracy in determining the admixture 
model and estimating admixture time when the simulation is under HI, GA, or CGF model. However, it could 
only give HI model as the best-fit model when the simulated admixture is under GA-I or CGF-I model. (see 
Supplementary Table S2) These results indicated the limitation of using the GA and CGF models in inferring 
admixture history, no matter the information from LD or CAT is used for inference.

We next employed GA-I, CGF-I and HI as core models for performing inference (see Fig.  3 and 
Supplementary Figs S2–11). With HI, GA, or CGF being considered as the true model, our estimation of the 
optimal model remained accurate. On the other hand, when the true model was GA-I or CGF-I, the failure 
rate decreased by 35%, compared to the estimation in the previous setting, but it was still at a very high level. 

True models Core models

Counts Rates

Correct Undetermined Wrong Correct Undetermined Wrong

HI;GA;CGF HI;GA;CGF 44 15 1 73.3% 25.0% 1.7%

GA-I; CGF-I HI;GA;CGF 0 0 40 0.0% 0.0% 100.0%

HI;GA;CGF HI;GA-I;CGF-I 30 29 1 50.0% 48.3% 1.7%

GA-I;CGF-I HI;GA-I;CGF-I 3 11 26 7.5% 27.5% 65%

Table 2.  Accuracy of model determination. Here, as our method can hardly distinguish CGF1 from CGF2 
model, we regard CGF1, CGF2 as the CGF model; CGF1-I and CGF2-I as the CGF-I model, which are different 
from GA-I and HI models. Here, “correct” denotes the best-fit model is the true model; “Undetermined” means 
the true model can not be determined from the best-fit models; “Wrong” denotes the true model is not given.

http://www.picb.ac.cn/PGG/resource.php
%20https://www.github.com/david940408/CAMer
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Furthermore, the estimated time intervals were wider than those of the true ones, although the results were still 
more accurate than those using GA and CGF as core models (see Table 2).

By introducing the GA-I and CGF-I models as core models, CAMer can resolve the admixture into continu-
ous time interval. Considering that CAMer is not so powerful in determining the best-fit admixture model (see 
Tables 1 and 2), in empirical studies, we presented the results from CAMer with estimations on all core models 
and the model(s) fitting best the data.

Empirical analysis. We applied CAMer to the selected admixed populations from HapMap, HGDP, and 
1KG. For each target population, we first used iMAAPs to calculate the weighted LD and fit the weighted LD 
decay curve with a numeric method11. Next, with the weighted LD of target populations, we determined the 
admixture model and estimated admixture time with CAMer. Quasi F and msE are designed for evaluat-
ing the inference with CAMer. The value of msE usually indicates data quality: small msE may indicate a high 
signal-to-noise ratio (SNR) and vice versa. The quasi F value measures the goodness of fit of the model we 
employed to fit the admixture event. A small F value indicates that the model we used was of satisfactory per-
formance in modeling an admixture event. In our analysis, we used 10−5 as the threshold for msE and 1.5 for F.  
Therefore, when the msE value ≤  10−5 and the F value ≤  1.5, we could not “reject the null hypothesis” that 
the related model was the true model, i.e., the model well fit the admixture event. On the other hand, an  
msE value ≥  10−5 indicates low-quality data that is incapable of identifying the best-fit model, whereas a  
F value ≥  1.5 prompts us to “reject the null hypothesis” and concludes that the model does not well fit the 
admixture. In the case of the same population from different databases, the data with smaller msE values 
were given more credits. For example, we obtained samples of ASW from the HapMap and the 1KG. With the 

Figure 3. Evaluation of CAMer under various simulated admixture models. Here, the core models are HI, 
GA-I, CGF1-I, and CGF2-I. The simulated models (True Model) are listed on the left, with the admixture time 
interval depicted in the parentheses. The gray area on the middle vertical panel is the simulated time interval, 
whereas colored lines indicate the estimated time intervals under different core models. HI: pink; CGF1-I: 
green; CGF2-I: purple; GA-I: blue. The intensity of lines means the number each point is covered by the time 
intervals estimated from all jackknives. Lighter colors represent fewer covers while darker colors indicate more.
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ASW data (CEU and YRI as source populations) from HapMap, the best-fit model was GA-I of 2–8 genera-
tions, and both msE and F values indicated that the inference was acceptable (see Supplementary Fig. S12). 
Similarly, using the ASW data (CEU and YRI as source populations) from 1KG, the best-fit model failed to 
be determined among GA-I, CGF1-I, and CGF2-I (see Supplementary Fig. S13). However, all the quasi F 
values bigger than 1.5 indicated that these models did not satisfactorily fit the admixture event. Because 
the msE value of the data set from 1KG was smaller, the conclusion using ASW was as follows: based 
on the best data we had, the time intervals estimated under the HI, GA-I, CGF1-I, and CGF2-I model 
were 5 generations, 2–9 generations, 1–11 generations, and 1–9 generations, respectively. Furthermore, 
none of these models satisfactorily modeled the admixture, whereas the HI model showed better perfor-
mance. We also applied CAMer to other admixed populations (see Table 3, Supplementary Figs S14–17).  
MEX (source populations: CEU [n =  64] and American Indian including 7 Colombians, 14 Karitiana, 21 Maya, 
14 Pimas and 8 Suruis) was satisfactorily modeled by the GA-I model, with the estimated admixture time interval 
being 2–15 generations, respectively. We also analyzed Eurasian populations, which showed that the Uyghurs 
(source populations: Han [n =  34] and French [n =  28]) most likely fit a continuous model, with a gene flow 
lasting for more than 60 generations to the present or near present. We cannot determine which model fits best. 
However, the values of msE were all larger than 10−5, indicating that the results were not so reliable. The Hazara 
population (source populations: Han [n =  34] and French [n =  28]) experienced a GA-I-like admixture event that 
lasted for about 60 generations, which started 64 generations ago and ended approximately 4 generations ago. It 
seemed that CAMer failed to reconstruct the admixture history of population MKK (Maasai in Kinyawa, Kenya), 
giving extreme msE and quasi F values.

Discussion
Modeling the demographic history of an admixed population and estimating time points of admixture event are 
essential components of evolutionary and medical research studies5–9,11,22. Previous methods have employed the 
length distribution of ancestral tracts6–8, which highly depends on the accuracy of local ancestral inference and 
haplotype phasing. Another limitation is that only HI, GA, and CGF models were utilized to fit the admixture as 
well as in identifying the best-fit model. In the present study, our simulations showed that when the true model 
was not HI, GA, or CGF, the generated inferences were relatively difficult to interpret.

Our method, CAMer, can be utilized in inferring admixture histories based on weighted LD, which can be 
calculated using genotype data with iMAAPs11. Furthermore, we extended the GA and CGF models to the GA-I 
and CGF-I models in order to infer the time interval for a period of continuous admixture events followed by 

Population Core model End time Start time msE Quasi.F

ASW-HapMap (57)

HI 5 5 3.44 ×  10−6 1.60

CGF1-I 1 10 2.87 ×  10−6 1.34

CGF2-I 1 8 2.47 ×  10−6 1.15

GA-I* 2 8 2.51 ×  10−6 1.17

ASW-1KG (56)

HI 5 5 4.12 ×  10−6 4.93

CGF1-I* 1 11 1.96 ×  10−6 2.34

CGF2-I* 1 9 2.17 ×  10−6 2.60

GA-I* 2 9 2.04 ×  10−6 2.44

MEX (86)

HI 8 8 1.05 ×  10−5 3.52

CGF1-I 1 17 3.74 ×  10−6 1.25

CGF2-I 1 17 3.60 ×  10−6 1.20

GA-I* 2 15 3.50 ×  10−6 1.17

MKK (143)

HI* 5 5 2.57 ×  10−5 12.66

CGF1-I 1 19 2.04 ×  10−5 10.24

CGF2-I 1 12 2.15 ×  10−5 10.82

GA-I 1 23 1.99 ×  10−5 9.78

Uyghur (10)

HI 26 26 4.65 ×  10−5 1.31

CGF1-I* 1 65 3.85 ×  10−5 1.08

CGF2-I* 1 63 3.85 ×  10−5 1.08

GA-I* 2 64 3.88 ×  10−5 1.09

Hazara (24)

HI 26 26 1.28 ×  10−5 2.05

CGF1-I 2 70 8.52 ×  10−6 1.35

CGF2-I 2 65 8.61 ×  10−6 1.37

GA-I* 4 64 8.19 ×  10−6 1.30

Table 3.  Results of CAMer on empirical populations. Number in parentheses denotes the sample size 
for each population. Values underlined do not pass our threshold. The time interval is summarized from 22 
jackknives, which is shared by more than half of all estimated intervals for continuous models or the nearest 
integer to the mean of estimated time point for HI model. The best-fit model is marked by an asterisk “*”. For HI 
model, the beginning time is the same as the ending time.
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isolation. Although HI model is a degenerate case for both GA-I and CGF-I models, where the admixture win-
dow becomes 1 generation, we kept it in our method because it is the most popular model employed in previous 
admixture studies. Considering the difficulty in fitting problem with polynomial functions, it is in our expectation 
that CAMer was not consistently accurate in determining the admixture model based on the weighted LD decay. 
However, its natural advantage of independence of both haplotype phasing and local ancestry inference makes it 
privilege to other CAT based methods. Our simulations indicated that its time interval estimations were reliable 
when its assumption that the true admixture history could be well approximated by one of the core models is 
valid.

Two quantities, namely msE and quasi F, were used to check the assumption of our method stated above and 
evaluate the credibility of the models’ inference. These two quantities should both be taken into consideration to 
determine whether the models well described the admixture history. Both the data quality and the goodness of 
fitting of models can affect the value of msE, although the F value mainly measures the goodness of modeling. 
Informally, for the convenience of interpretation, msE can be an indicator of data quality, while F value can be 
used to check model assumption on admixture history. In our analysis, we suggested thresholds for msE and F to 
determine whether the null hypothesis should be rejected or not, which may be too strict in empirical analysis. 
Actually, msE and F values together measure whether the observed weighted LD can be well fit by the best-fit 
model(s). For example, the fitting process showed poor performance in the MKK population, which was accom-
panied by exaggerated msE and F values, showing significant inconsistencies between the observed and fitted 
weight LD curves, which indicates that the true admixture history cannot be well explained by any of the core 
models (see Supplementary Fig. S17). Therefore, in empirical analysis, it can be informally considered that the 
msE value reflects the quality of the data, whereas F value describes the performance of the model, although both 
of them measure the goodness of fitting.

In our previous study11, we fit the weighted LD with high degree polynomial functions. However, this 
approach did not fully reveal the occurrence of continuous admixture. To address this issue, the present study 
developed CAMer to model admixture as a continuous process. CAMer also employed extensions of the classic 
continuous models, GA-I and CGF-I, which may bring the bias to have a wider admixture window when the real 
admixture exists in a short time. As we discussed earlier, another limitation for CAMer is its poor performance to 
determine the correct admixture model. Therefore, in empirical data analysis, we suggest all core models, rather 
than the best-fit model(s), should be examined. Taken together, despite there is space to further improve in the 
future, CAMer is a powerful method to model a continuous population admixture, which in turn would help us 
elucidate the complex demographic history of population admixture.
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