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Autoreactive CD4+T cells initiate the chronic autoimmune disease Type-1 diabetes (T1D),
in which multiple environmental and genetic factors are involved. The association of HLA,
especially the DR-DQ loci, with risk for T1D is well documented. However, the molecular
mechanisms are poorly understood. In this review, we explore the structural characteristics
of HLA-DQ and the role of HLA-DM function as they may contribute to an understanding
of autoreactive T cell development in T1D.
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INTRODUCTION
Multiple factors contribute to the chronic autoimmune disease
type-1 diabetes (T1D) characterized by selective destruction of
pancreatic β cells. To complement β cell deficiency, life-long insulin
replacement is required to maintain glucose metabolism. There
is evidence that both genetic and environmental factors con-
tribute to the etiology of T1D. Genome wide association analysis
data indicate that the highly polymorphic major histocompati-
bility complex (MHC), including both MHC class I and class II
(MHCI and MHCII), contributes approximately 50% of genetic
susceptibility to T1D (1). Individuals with MHCII DR3-DQ2 and
DR4-DQ8 haplotypes have a significantly higher risk of T1D
and DQ6 (DQA1∗0102/DQB1∗0602) is dominantly protective in
Caucasians, Mexicans, and other Latin American populations (1–
3). A number of studies have demonstrated the peptide-binding
specificity of DQ8 as well as T cells from T1D that recognize
pancreatic autoantigens presented by DQ8 (4–8). Compared with
the DQ2 and DQ8 homozygous individuals, DR3-DQ2/DR4-DQ8
heterozygotes (DRB1∗0301-DQA1∗0501-DQB1∗0201/DRB1∗04-
DQA1∗0301-DQB1∗0302) have the highest risk in whites of Euro-
pean and Northern African decent (9). Haplotype sharing analysis
in siblings also shows that the risk for T1D is dramatically increased
in DR3/4-DQ2/8 siblings (10). Another study of 607 Caucasian
families and 38 Asian families further confirmed the association
of DQ2 and DQ8, especially the trans-dimer DQ2-8, with the
highest risk of T1D (11). These striking observations raise sev-
eral open questions: (a) what structural features distinguish DQ
molecules associated with risk for T1D; (b) why do heterozygotes
have even greater risk for T1D than individuals homozygous for
DQ2 or DQ8; (c) how do the autoreactive CD4+ T cells that
mediate β cell destruction develop and escape negative selection
in the thymus. In this review, we will focus on the function of
MHCII molecules and their role in selection of autoreactive CD4+
T cells.

MHCII FUNCTION IN ANTIGEN PRESENTATION
In the adaptive immune system, MHCI and MHCII molecules play
critical roles by presenting peptides on the surface of antigen pre-
sentation cells (APC) to select or activate CD8+ and CD4+T cells,
respectively (12). MHCI and MHCII share very similar structure
in the peptide-binding groove and both can load with endoge-
nous or exogenous peptides through two sets of non-covalent
interactions: sequence dependent anchor-pocket interactions and
conserved hydrogen-bond networks formed between the pep-
tide and non-polymorphic amino acids in MHC. However, the
peptide-binding groove of MHCII is open in both sides, com-
pared with the closed binding site in MHCI; therefore, MHCII
can present relatively longer peptides. Extra residues in the N -
terminus of the bound peptide, such as P-1 and P-2, are important
for the stability of MHCII/peptide complexes (13). MHCII mole-
cules initially assemble with invariant chain (Ii) in the endoplasmic
reticulum (ER) and the peptide-binding groove is occupied by a
disordered region of Ii to prevent the loading of other ligands in
the ER. After translocation into late endosomal compartments, Ii is
processed by endosomal proteases and a segment of Ii, CLIP (class
II-associated Ii peptide), occupies the peptide-binding groove. The
dissociation of CLIP from the peptide-binding groove is necessary
for the loading of other peptides, which is accelerated by a non-
classical MHC class II molecule, HLA-DM (DM) (14). DM can
catalyze multiple subsequent rounds of peptide exchange, editing
the repertoire of presented peptides, and favoring the most stable
peptide complexes.

MOLECULAR MECHANISM OF DM-MEDIATED PEPTIDE
EDITING AND ITS POTENTIAL ROLE IN T1D
The general function of DM is well defined but many questions
have remained about its precise mechanism of action (14). The
possibility that DM selectively disrupts conserved hydrogen bonds
between peptide and MHCII had been proposed as a potential
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mechanism (15, 16); however, subsequent analysis of substituted
MHCII molecules with disrupted H-bonds ruled out this mech-
anism in its simplest form (17, 18). It has been suggested that
the interaction of DM with MHCII activates the empty or inac-
tive form of MHCII to be active for peptide loading (19, 20).
MHCII molecules with an empty P1 pocket can associate with
DM while the filled form has been reported to interact poorly
with DM (21). Molecular dynamics simulation studies indicated
that the peptide-binding groove in the bound, partially filled, or
empty states are significantly different (22–24), indicating that the
interaction of DM and MHCII might induce a conformational
rearrangement of peptide-binding groove, especially the α53–65
region around P1 pocket of MHCII (19). Recent advances with the
co-crystallization of DM and DR (25), and the co-crystallization
of DM and DO (26), another non-classical MHCII that inhibits

DM function (14), provide a significant advance in our under-
standing of the interaction of DM with MHCII, confirming that
DM binding is associated with a major structural rearrangement
of the MHCII α53–65 region (Figure 1A) that precludes occu-
pancy of the region of the peptide-binding groove that normally
accommodates the peptide N -terminus, including the P1 anchor
residue.

Genetic studies of the limited polymorphisms of DMα and
DMβ in different populations indicate that specific DM alleles
are associated with T1D (27–29). Interestingly, patients with T1D
show relatively high levels of CLIP on the surface of lympho-
cytes (30), and T1D-like NOD mice also display high CLIP levels
(31), indicating that DM is inefficient in removing CLIP from
specific MHCII molecules expressed in individuals with T1D and
NOD mice. A natural deletion of arginine in α53 of DQ2 has

FIGURE 1 | Structure characteristics of DR1 andT1D sensitive, neutral,
and protective DQ molecules. (A) The structure of DR1 showing with P1
pocket empty (left of upper panel, in co-structure of DM-DR1), bound with
high affinity HA peptide (middle), and bound with low affinity CLIP (right).
The purple and cyan colors show the conformational difference of the two
helices near the P1 pocket of the DR1 peptide-binding groove in the crystal
structures. The lower panel shows the H-bond between 310 helix and
β-sheet, and the αW43 position (purple arrow “→”). The unique H-bond in
DR1-CLIP is showed by blue arrow “→”. (B) Conformational difference of the
310 helix, β-sheet, and inter-helix H-bond(s) in different DQ molecules. There

is a conserved H-bond formed in all of the DQ molecules and DR1 bound
with CLIP peptide (blue arrow “→”), indicating a similar status among these
molecules. Also, extra H-bond(s) are found in T1D-associated DQ2 and DQ8
(orange arrow “→”), suggesting a stabilized conformation in this region,
compared with DQ1 or DQ6. (C) Conformational differences in the α chain
310 helix, the β chain near the P1 helix, and the H-bond(s) interactions
between the two helices. DQ8 have 3 H-bonds formed between the two
helices, and DQ8-2 has 1 H-bond, compared with DQ1, DQ2, and DQ6, with
no H-bonds. (D) Sequence comparison of different DQ molecules and DR1
in the helix regions.
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been demonstrated to reduce affinity for DM, explaining inef-
ficient DM-mediated peptide exchange in T1D-associated DQ2
molecules (32, 33), further supporting the idea that inefficient
DM editing may play a critical role in T1D-associated autoreactive
CD4+ T cell development (32, 34). The coincidence of high CLIP
expression might be a general indicator of poor DM editing func-
tion with T1D-associated DQ molecules, and it is also plausible
that high levels of CLIP select CD4 T cells are cross-reactive and
autoreactive. Interestingly, Ii deficient NOD mice are protected
from T1D (35), providing further evidence for the potential role
of CLIP in autoreactive T cell development; however, there is no
direct evidence currently supporting this hypothesis.

STRUCTURAL CHARACTERISTICS OF T1D-ASSOCIATED DQ
MOLECULES
The structure of the T1D sensitive, neutral, and protective DQ
molecules, including DQ2 (PDB ID: 1S9V) (36), DQ8 (1JK8,
2NNA, and 4GG6) (37–39), DQ8-2 (4D8P) (40), DQ1 (3PL6)
(41), and DQ6 (1UVQ) (42), have been recently solved. These DQ
molecules share the general structural characteristics of MHCII
with an open peptide-binding groove interacting with variable
length peptides through a nine-residue binding “core”. In the core,
preferred amino acids anchor the peptide at positions 1, 4, 6, 7, and
9 (32). However, the conformations of the 310-helix region (43),
which is in the DM-MHCII contact surface (25) and affects the
sensitivity of DM-MHCII interaction (43), are apparently variable
among the different DQ structures (Figures 1A,B). Interestingly,
there are 3 H-bonds formed between the two helices in the α and
β chains of DQ8 and 1 H-bond in DQ8-2, but no H-bond in the
low T1D risk DQ1 or DQ6 molecules (Figure 1C). The conforma-
tion of the two helices and the number of inter-helix H-bonds in
DQ8 are not dependent on the sequence specificity of bound pep-
tide (37–39). Sequence comparison of the helical regions of the
α and β chains among these DQ molecules shows that, in T1D-
associated DQ2 and DQ8, the 310 helix of the α chain includes
several positively charged residues and the helix of the β chain has
some negatively charged or uncharged hydrophilic residues with
the potential to form H-bond(s); while in DQ1 and DQ6, those
residues are hydrophobic (Figure 1D). The structure differences
between DQ8 and other DQ molecules indicates that H-bond(s)
might play a role in regulation of the sensitivity to DM editing
by further stabilizing the DM contact region, providing an ener-
getic barrier to formation of the DM-bound conformation. The
structural differences between DQ8 and DQ2 suggest that differ-
ent mechanisms might be responsible for the relative inefficiency
of DM-mediated peptide editing in these molecules (33). The sen-
sitivity of the T1D-associated DQ8 and DQ8-2 molecules to DM
editing, and the potential inter-helix H-bond(s) or other structural
features that might impact DM catalytic potency warrant further
investigation.

It is still unclear why heterozygosity for DQ2/8 confers excep-
tionally high risk for T1D. APC in individuals with this haplo-
type co-express four distinct DQ molecules, including the trans-
encoded DQ2-8 and DQ8-2 mixed haplotype molecules and the
parental DQ2 and DQ8 proteins. Peptides eluted from the 293T
cells expressing different DQ molecules show that the peptide-
binding motifs of these DQ molecules are unique (8), supporting
the hypothesis that the trans-dimers in heterozygotes might confer

risk through independent presentation of specific self-peptides
(44, 45). However, it is also possible that the higher risk of DQ2/8
heterozygous is due to an expanded repertoire of presented self-
peptides by the combination of four DQ molecules. A study
comparing gluten-specific T cells from Celiac disease patients
demonstrated the potential for T cells to cross-react with DQ8
and the DQ2-8 trans-dimer (46), raising the possibility that T
cell cross-reactivity might somehow contribute to the etiology
of autoimmunity associated with DQ2/8 heterozygosity. Further
studies are needed to explore these various possibilities.

THE DEVELOPMENT OF T1D-ASSOCIATED AUTOREACTIVE T
CELLS
A big challenge in this field is to understand how autoreactive T
cells develop, survive negative selection, and become activated to
mediate tissue damage. In the thymus, the autoimmune regula-
tor (Aire) regulates the ectopic expression of “tissue-restricted”
antigens in medullary thymic epithelial cells (mTECs). The fate
of thymocytes is determined by the affinity of expressed T cell
receptor (TCR) for self-peptide-MHC complexes (47). Theoreti-
cally, the T cell precursors that bind strongly to self-peptide-MHC
complex on thymic dendritic cells (DCs) and mTECs will be
deleted, and all remaining mature T cells are self-tolerant. How-
ever, the identification of autoreactive T cells in T1D patients, and
even in healthy subjects, indicates that negative selection in the
thymus is incomplete (48). Several mechanisms have been pro-
posed for inefficient deletion of autoreactive T cells in the thymus,
including differences in autoantigen expression in the thymus and
periphery, autoantigen posttranslational and posttranscriptional
modification, autoantigen polymorphisms (49), and mechanisms
through which key self-peptides can be presented on the cell sur-
face through alternative pathways (34), or as a result of poor DM
editing function (32). In addition, T cell cross-reactivity between
microbial and self-antigens may also play an important role in the
development of autoimmunity (50).

Based on current findings, we postulate that the T1D-associated
DQ molecules (DQ2, DQ8, and the DQ2/8 trans-dimers) share a
common feature, a relative resistance to DM-mediated peptide
exchange, and editing. This impacts antigen presentation in two
ways (Figure 2). A substantially increased fraction of MHCII mol-
ecules escape even one round of peptide exchange, resulting in high
levels of CLIP presentation in the periphery and presumably also
in the thymus. Secondly, a reduction in the efficiency of further
peptide editing may lead to presentation of an array of relatively
unstable peptide complexes. High levels of CLIP in the thymus
might result in positive selection of T cells that cross-reactive
with autoantigens in the periphery, or a reduction in the negative
selection of self-reactive T cells, as is seen in the extreme case in
mice with targeted deletion of DM (51). Increased presentation of
unstable self-peptide complexes might also lead to inefficient neg-
ative selection and survival of T cells with a capacity to be activated
in the periphery under conditions where the concentration of pan-
creatic β cell antigens is high. Alternatively, unstable complexes
may be more susceptible to DM-independent peptide exchange in
the periphery, promoting the activation of “type B” T cells that
recognize β cell peptides bound to MHCII through an alternative
register or conformation generated through alternative presenta-
tion pathways (34). These potential mechanisms may contribute
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Zhou and Jensen HLA-DQ in type-1 diabetes

FIGURE 2 | Model of autoreactive CD4+T cell development inT1D. In
the thymus, Aire regulates tissue-specific autoantigen expression.
Autoantigen peptides are processed in the late endosomal compartment
and loaded in the peptide-binding groove of MHCII by DM editing. In case of
inefficient DM editing, the pre-bound CLIP peptide may escape peptide
exchange, resulting high levels of CLIP presentation (1). Secondly, the
inefficient DM editing may lead to presentation of both low affinity and high
affinity peptides on the cell surface (2). The stable MHCII-peptide complex

will deliver strong signal through the T cell receptor (TCR) and induce the
deletion of CD4+T cells by negative selection, while the unstable
MHCII-peptide complex will deliver weak signal and this signal may induce
the positive selection of CD4+T cells. Alternatively, the unstable complexes
presented on the cell surface may be more susceptible to DM-independent
peptide exchange (3). Those escaped CD4+T cells will migrate into the
periphery and initiate the β cell destruction in pancreas under certain
conditions.

to the pathogenesis of T1D but further elements are needed to
explain the specificity for β cells as opposed to other tissues. This
is presumably related to the capacity of the T1D-associated DQ
molecules to bind and present key β cell self-peptides.

CONCLUSION
Type-1 diabetes is a chronic autoimmune disease affected by both
environmental and genetic factors. The mechanism(s) responsible
for the high genetic risk associated with HLA genotype, and

especially DQ2, DQ8, and DQ2/8 heterozygosity, remains poorly
understood despite the obvious role of these molecules in antigen
presentation. Reduced DM editing of T1D-associated DQ-peptide
complexes combined with T cell cross-reactivity may contribute.
Further analysis of structural and functional characteristics that
distinguish disease-associated DQ molecules from neutral or pro-
tective alleles is likely to provide insights into the fundamental
question of why HLA haplotype is such an important factor in
determining risk for T1D.
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