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Abstract

Objectives To develop and validate a radiomics nomogram for timely predicting severe COVID-19 pneumonia.

Materials and methods Three hundred and sixteen COVID-19 patients (246 non-severe and 70 severe) were retrospectively

collected from two institutions and allocated to training, validation, and testing cohorts. Radiomics features were extracted from

chest CT images. Radiomics signature was constructed based on reproducible features using the least absolute shrinkage and

selection operator (LASSO) logistic regression algorithm with 5-fold cross-validation. Logistic regression modeling was

employed to build different models based on quantitative CT features, radiomics signature, clinical factors, and/or the former

combined features. Nomogram performance for severe COVID-19 prediction was assessed with respect to calibration, discrim-

ination, and clinical usefulness.

Results Sixteen selected features were used to build the radiomics signature. The CT-based radiomics model showed good

calibration and discrimination in the training cohort (AUC, 0.9; 95% CI, 0.843-0.942), the validation cohort (AUC, 0.878;

95% CI, 0.796-0.958), and the testing cohort (AUC, 0.842; 95% CI, 0.761-0.922). The CT-based radiomics model showed

better discrimination capability (all p < 0.05) compared with the clinical factors joint quantitative CT model (AUC, 0.781; 95%

CI, 0.708-0.843) in the training cohort, the validation cohort (AUC, 0.814; 95% CI, 0.703—0.897), and the testing cohort (AUC,

0.696; 95% CI, 0.581-0.796). Decision curve analysis demonstrated that in terms of clinical usefulness, the radiomics model

outperformed the clinical factors model and quantitative CT model alone.

Conclusions The CT-based radiomics signature shows favorable predictive efficacy for severe COVID-19, which might assist

clinicians in tailoring precise therapy.

Key Points

* Radiomics can be applied in CT images of COVID-19 and radiomics signature was an independent predictor of severe COVID-19.

» CT-based radiomics model can predict severe COVID-19 with satisfactory accuracy compared with subjective CT findings and
clinical factors.

* Radiomics nomogram integrated with the radiomics signature, subjective CT findings, and clinical factors can achieve better
severity prediction with improved diagnostic performance.
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NGTDM Neighboring gray tone difference matrix
NSD Non-severe disease

ROC Receiver operating characteristic

SD Severe disease

Introduction

Corona Virus Disease 2019 (COVID-19) has spread out in the
world, posing a critical threat to public health [1]. Initial report
of the disease indicated that from November 16, 2019, to
November 5, 2020, there were 47,596,852 confirmed cases
of COVID-19, including 1,216,357 deaths, with a global fa-
tality of approximately 2.56% [2].

According to the “Diagnosis and Treatment Program of
Pneumonia of New Coronavirus Infection (Trial 7" Edition)”
recommended by China’s National Health Commission, severe
COVID-19 patients were more likely to develop poor clinical
outcomes including acute respiratory distress syndrome
(ARDS), acute cardiac/kidney injury, and multiple organ failure
[3]. Current epidemiological data also suggests that the mortal-
ity rate of severe COVID-19 is about 20 times higher than that
of non-severe COVID-19 [4]. Therefore, it is very crucial for
early identification of severe cases, which prevent disease pro-
gression and reduce the mortality.

Computed tomography (CT) is widely used to diagnose,
evaluate, and monitor COVID-19 pneumonia in high-risk areas
[5]. However, the evaluation of these conventional CT features
depends heavily on the radiologist’s experience and is non-ob-
jective. Furthermore, some scholars have tried using quantitative
CT method to assess the severity of lung injury in COVID-19
pneumonia, such as visual CT severity score (CTSS) [6] and the
CT lesion percentage (CTLP) [7] in each lung lobe, which were
alternative ways to stratify COVID-2019 cases. The radiomics
approach has drawn increased attention in recent years, which
may help the detection, diagnosis, monitoring, and prognostic
assessment of lung disease [8]. To our knowledge, there has
been rarely radiomics study for the accurate prediction of the
clinical severity of COVID-19 pneumonia to date.

Therefore, the aim of our study is to (1) investigate the role
of radiomics features for predicting severe patients with
COVID-19 pneumonia, and (2) examine whether the addition
of quantitative CT characteristics and/or clinical factors can
improve the performance of the predictive model.

Materials and methods
Patient population and groups

Our institutional review board approved this retrospective
study, and the requirement for informed consent was waived.
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We searched the electronic database at two institutions ((I)
Renmin Hospital of Wuhan University, (II) Central Hospital
of Wuhan optical valley) and retrospectively reviewed records
for patients between January 30, 2020, and April 30, 2020,
and identified 449 patients infected with COVID-19. All pa-
tients with COVID-19 were proven using real-time reverse
transcriptase—polymerase chain reaction. The whole pipeline
of our study was shown in Fig. 1.

According to the “Diagnosis and Treatment Program of
Pneumonia of New Coronavirus Infection (Trial 7th
Edition)” recommended by China’s National Health
Commission, all patients are classified as having minimal,
ordinary, severe, and critical type [9]. In our study, ordinary
cases were included in the non-severe disease (NSD) group,
while severe and critical cases were merged into the severe
disease (SD) group. All patients in the SD group should meet
any of the following criteria: (1) respiratory rate > 30 breaths
per minute; (2) finger of oxygen saturation < 93% in a resting
state; (3) arterial oxygen tension (PaO,)/inspiratory oxygen
fraction (FiO,) < 300 mmHg (1 mmHg = 0.133 kPa); (4)
respiratory failure occurred and mechanical ventilation re-
quired; (5) shock; (6) other organ failure needing intensive
care unit (ICU) monitoring treatment.

Image acquisition and lesion segmentation

Non-enhanced chest CT scans of 316 patients were carried out
from the lung apex to the lung base using multi-detector CT
(MDCT) scanners (Brightspeed CT or Optima 680 CT, GE
Healthcare) at the end of inspiration. Breath-hold training was
carried out before each examination. Parameters for chest CT
scanning were listed as follows: field of view (FOV), 36 cm;
tube voltage, 120 kV; tube current adjusted automatically; noise
index, 13; section thickness, 5 mm; slice interval, 5 mm; pitch,
1.375; collimation 64 x 0.625 mm; gantry rotation speed, 0.7 s;
matrix, 512 X 512; the mediastinal window: window width of
200 HU with a window level of 35 HU, and the lung window:
window width of 1500 HU with a window level of - 700 HU.
All images were segmented on the commercial segmentation
software (Lung Intelligence Kit 2.1, LK 2.1, GE Healthcare)
[10]. First, pre-processing was executed and included the fol-
lowing steps: resampling adjust the x-spacing, y-spacing, z-spac-
ing size (spatial resolution = 1 mm x 1 mm X 1 mm). Gaussian
filter with a standard deviation of 0.5 was applied for signal
smoothing. Then, the lung was automatically segmented into
five lobes; the volumes of interest (VOIs) were automatically
contoured for each lobe. The segmentation results are manually
corrected by a radiologist (Z.K., 2 years of experience in radiol-
ogy) and then confirmed by another radiologist (F.Z., 5 years of
experience in radiology). CTLP was defined as the volume of
the lesions (including ground-glass opacity (GGO), consolida-
tion, and reticulation) divided by the volume of the entire lung.
CTSS was used to estimate pulmonary involvement of all
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316 patients with confirmed COVID-19 from two institutions
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r

Testing dataset
(Institution II, n=87)

A4

Spearman analysis

A 4

A 4

Radiomics signature

Multivariate Logistic Regression
analysis

A 4

CTSS and CTLP
Mann-Whitney U test quantification
Lasso Logistic Regression Clinical Internal validation
characteristic

External validation

Building a radiomics nomogram

Fig. 1 Flowchart of the study

abnormalities on the basis of the area involved [11]. Each of the
five lung lobes was visually scored from 0 to 5 as follows: 0, no
involvement; 1, less than 5% involvement; 2, less than 25%
involvement; 3, 26-49% involvement; 4, 50-75% involvement;
or 5, more than 75% involvement [12].

Collection of clinical data and evaluation of CT
radiological features

Clinical data were recorded, including the following 10
characteristics: age, sex, duration of onset, comorbidity,
clinical type, treatments, respiratory support strategies
(RSS), ICU admission, length of ICU stay, and length of
hospital stay. We also recorded other clinical parameters,
such as oxygen saturation and temperature, but which
were not used in the clinic’s model, because the former
was one of the known diagnostic criteria for severe
COVID-19, and the latter was a variable parameter due
to uncertain medical history. Comorbidities included hy-
pertension, diabetes, chronic obstructive pulmonary dis-
ease (COPD), chronic kidney disease (CKD), malignant
tumors, and surgery history (on any part of the body in
the last 10 years). The number of comorbidities was from

0 to 4; 0 means no complications, and 4 means there are 4
kinds of diseases. Treatments included antiviral therapy,
antibiotic therapy, glucocorticoid therapy, immunoglobu-
lin therapy, and Chinese medicine therapy. RSS included
nasal catheter, high-flow nasal cannula oxygen therapy,
non-invasive mechanical ventilation, invasive mechanical
ventilation, and extracorporeal membrane oxygenation
(ECMO).

All CT images were evaluated by 2 radiologists (Z.K. and
L.L.) who were blinded to each subject’s clinical data. For
disagreement between the two primary radiologist interpreta-
tions, a third experienced thoracic radiologist with 25 years of
experience (Y.Z.) adjudicated a final decision. Ten CT radio-
logical features were assessed, namely GGO, consolidation,
reticular pattern, interlobular septal thickening, air
bronchogram sign, lesion location, distribution, involved lobe,
thickening of pleura, and pleural effusion.

Radiomics feature extraction
A total of 851 radiomics features were extracted from the VOIs

segmented based on the L. K software, including first-order sta-
tistics parameters (n = 18), morphological parameters (n = 14),
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gray-level co-occurrence matrix (GLCM) parameters (n = 24),

gray-level run length matrix (GLRLM) parameters (n = 16),
gray-level size zone matrix (GLSZM) parameters (n = 16),
gray-level dependence matrix (GLDM) parameters (n = 14),

neighboring gray tone difference matrix (NGTDM) parameters
(n = 5), and wavelet parameters (n = 744). All the features
defined were in compliance with feature definitions as described
by the Imaging Biomarker Standardization Initiative (IBST) [13].
The detailed workflow of radiomics analysis can be found in
Fig. 2. Intra- and interclass correlation coefficients (ICC) were
used to assess the intra- and inter-observer reproducibility of
radiomics feature extraction.

Radiomics features selection and radiomics signature
construction

The outlier values were replaced by the median value of the
particular variance vector once the values were beyond the
range of the mean and standard deviation. And standardization
was performed to scale the data in a specific interval.
Spearman correlation, generalized linear model (GLM), and
least absolute shrinkage and selection operator (LASSO) were
used to reduce the redundancy or selection bias of the features,
thereby removing a high correlation. A radiomics score (Rad-
score) was calculated for each patient via a linear combination
of selected features that were weighted by their respective
coefficients.

Development of predictive models

The most significant features were investigated to construct
radiomics model based on logistic regression. The likelihood
ratio test with backward step-down selection was applied to
the multivariate logistic regression model. We grouped the
selected features into seven models—the radiomics model

Imaging acquisition, registration, and
segmentation

Feature extraction

(radiomics features), the CTSS model (semi-quantitative
CTSS), CTLP model (quantitative CTLP), the clinical model
(clinical features), the integrated A model (CTSS + CTLP +
clinical features), the integrated B model (clinical features +
radiomics features), and the integrated C model (radiomics
features + CTSS + CTLP + clinical features). The calibration
curves were used to investigate the performance characteris-
tics of the nomograms.

Statistical analysis

Statistical analyses were performed with the Institute of Precision
Medicine Statistics (IPMs, version 1.1, GE Healthcare). The dif-
ferences in all variables between NSD and SD groups were
assessed using the Mann-Whitney U test or independent samples
t test for continuous variables, and the chi-square test or Fisher’s
exact test for categorical variables. Univariate analysis was used
to estimate the relationship between clinical factors and the iden-
tification of the two subtypes. The performances of the seven
models were assessed by area under the receiver operating char-
acteristic curve (AUC), specificity, and sensitivity. The optimal
cut-off points to predict the severity of COVID-19 were deter-
mined by Youden’s index. The DeLong test was used for
pairwise comparisons among the seven models using the R soft-
ware (v. 3.6.0; http://www.Rproject.org). A two-sided p < 0.05
was considered statistically significant throughout the study.

Results
Clinical and CT radiological features

The detailed distribution of clinical characteristics in the NSD and
SD group was summarized in Table 1. Clinical factors (gender
and duration of onset) were found not significantly different
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Fig. 2 Radiomics framework of predicting the severe patients with COVID-19
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Table 1 Clinical and CT features of training, validation, and testing datasets in two groups

Characteristic Training cohort (institution I, n = 159) Validation cohort (institution I, n = 70) Testing cohort (institution I1, n = 87)

NSD (n=129) SD (n=30) pvalue NSD (n=56) SD(n=14) pvalue NSD@®m=61) SD (n=26) p value

Age, year 54.00 57.00 0.003* 50.50 54.50 0.602 56.58 63.96 0.029*
(32.00,60.00)  (39.00,72.00) (36.90,60.65)  (39.55,62.10) (43.73,59.11)  (49.34,71.00)

Male (%) 67 (51.94%) 15 (50.00%) 0.848 38 (67.86%) 8 (57.14%) 0.659 37 (60.66%) 11 (42.31%) 0.115
Comorbidity no.

0 80 (62.02%) 10 (33.33%) 0.006* 32 (57.14%) 4 (28.57%) 0.069" 31 (50.82%) 8 (30.77%) 0.023*
1 33 (25.58%) 9 (30.00%) 20 (35.71%) 6 (42.86%) 20 (32.79%) 13 (50.00%)

2 10 (7.75%) 6 (20.00%) 3 (5.36%) 3(21.43%) 8 (13.11%) 1 (3.85%)

3 5 (3.88%) 3 (10.00%) 1 (1.79%) 1 (7.14%) 1 (1.64%) 4 (15.38%)

4 1 (0.78%) 2 (6.67%) 0 (0.00%) 0 (0.00%) 1 (1.64%) 0 (0.00%)
Days onset (%)

1-3 days 16 (12.40%) 6 (20.00%) 0424  4(7.14%) 3(21.43%) 0.051 3 (4.92%) 2 (7.69%) 0.484
4-7 days 47 (36.43%) 12 (40.00%) 21 (37.50%) 8 (57.14%) 20 (32.79%) 5 (19.23%)

> 7 days 66 (51.16%) 12 (40.00%) 31 (55.36%) 3(21.43%) 38 (62.30%) 19 (73.08%)

L1-CTSS (%)

0 31 (24.03%) 1 (3.33%) 0.001* 13 (23.64%) 2 (14.29%) 0.229 9 (14.75%) 3 (11.54%) 0.591
1 61 (47.29%) 10 (33.33%) 24 (43.64%) 3(21.43%) 34 (55.74%) 12 (46.15%)

2 29 (22.48%) 11 (36.67%) 11 (20.00%) 5(35.71%) 15(24.59%) 8 (30.77%)

3 5 (3.88%) 3 (10.00%) 3 (5.45%) 1 (7.14%) 3 (4.92%) 3 (11.54%)

4 2 (1.55%) 4 (13.33%) 3 (5.45%) 2 (14.29%) 0 (0.00%) 0 (0.00%)

5 1 (0.78%) 1 (3.33%) 1 (1.82%) 1 (7.14%) 0 (0.00%) 0 (0.00%)

L2-CTSS (%)

0 13 (10.08%) 0 (0.00%) 0.057°  4(7.27%) 0 (0.00%) 0.119 2 (3.28%) 0 (0.00%) 0.516
1 30 (23.26%) 3 (10.00%) 17 (30.91%) 1 (7.14%) 14 (22.95%) 7 (26.92%)

2 42 (32.56%) 13 (43.33%) 14 (25.45%) 4 (28.57%) 29 (47.54%) 9 (34.62%)

3 29 (22.48%) 6 (20.00%) 11 (20.00%) 3(21.43%) 12 (19.67%) 9 (34.62%)

4 12 (9.30%) 7 (23.33%) 8 (14.55%) 4 (28.57%) 4 (6.56%) 1 (3.85%)

5 3 (2.33%) 1 (3.33%) 1 (1.82%) 2 (14.29%) 0 (0.00%) 0 (0.00%)
RI1-CTSS (%)

39 (30.23%) 3 (10.00%) 0.001* 9 (16.36%) 0 (0.00%) 0.129 6 (9.84%) 0 (0.00%) 0.016%*

1 44 (34.11%) 11 (36.67%) 21 (38.18%) 4 (28.57%) 33 (54.10%) 9 (34.62%)

2 29 (22.48%) 8 (26.67%) 15 (27.27%) 4 (28.57%) 19 (31.15%) 11 (42.31%)

3 15 (11.63%) 2 (6.67%) 5(9.09%) 3(21.43%) 3 (4.92%) 6 (23.08%)

4 1 (0.78%) 5(16.67%) 4 (7.27%) 1 (7.14%) 0 (0.00%) 0 (0.00%)

5 1 (0.78%) 1 (3.33%) 1 (1.82%) 2 (14.29%) 0 (0.00%) 0 (0.00%)
R2-CTSS (%)

0 59 (45.74%) 5(16.67%) 0.01* 21 (38.18%) 1 (7.14%) 0.04* 20 (32.79%) 8 (30.77%) 0.068
1 40 (31.01%) 9 (30.00%) 17 (30.91%) 4 (28.57%) 31 (50.82%) 8 (30.77%)

2 23 (17.83%) 11 (36.67%) 10 (18.18%) 5(35.71%) 9 (14.75%) 7 (26.92%)

3 6 (4.65%) 4 (13.33%) 6 (10.91%) 2 (14.29%) 1 (1.64%) 3 (11.54%)

4 1 (0.78%) 1 (3.33%) 1 (1.82%) 2 (14.29%) 0 (0.00%) 0 (0.00%)

5 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
R3-CTSS (%)

0 16 (12.40%) 1 (3.33%) 0.05%* 4 (7.27%) 0 (0.00%) 0.008* 3 (4.92%) 0 (0.00%) 0.435
1 32 (24.81%) 4 (13.33%) 12 (21.82%) 0 (0.00%) 13 (21.31%) 5(19.23%)

2 41 (31.78%) 7 (23.33%) 19 (34.55%) 3(21.43%) 24 (39.34%) 7 (26.92%)

3 24 (18.60%) 10 (33.33%) 12 (21.82%) 5(35.71%) 18 (29.51%) 11 (42.31%)

4 13 (10.08%) 5(16.67%) 7 (12.73%) 2 (14.29%) 3 (4.92%) 3 (11.54%)
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Table 1 (continued)

Characteristic Training cohort (institution I, n = 159)

Validation cohort (institution I, n = 70)

Testing cohort (institution 11, n = 87)

NSD (n=129) SD (n=30) pvalue NSD @ =56) SD((n=14) pvalue NSD#r=61) SD (n=26) p value
5 3(2.33%) 3 (10.00%) 1(1.82%) 4 (28.57%) 0 (0.00%) 0 (0.00%)
Total CTSS 7.00 10.00 <0.001* 8.00 13.00 0.005* 7.00(5.00,9.30) 10.00 0.068
(3.00,10.30) (7.00,15.05) (4.00,10.00) (8.90,18.00) (6.00,12.00)
Quantitative CTLP
L1-CTLP 1.00 (0.00, 7.75 <0.001* 0.25 6.70 0.013* 2.90 335 0.243
6.03) (2.67, 25.70) (0.00, 3.55) (1.06, 21.02) (0.17, 5.72) (0.69,15.13)
L2-CTLP 11.20 21.55 0.006* 6.20 29.90 0.003* 10.70 22.50 0.241
(1.54,31.49)  (15.89,50.4- (1.30,18.21) (15.87,54.2- (4.62,27.64) (4.38,32.82)
7) 6)
R1-CTLP 1.10 8.05 0.003* 1.15 13.35 0.016* 1.40 10.00 0.006*
(0.00,11.52)  (1.09, 34.70) (0.04, 5.13) (1.72, 25.51) (0.30, 9.24) (1.49,18.60)
R2-CTLP 0.10 6.65 <0.001* 0.00 7.00 0.004* 0.30 2.10 0.143
(0.00,4.70) (1.29, 16.04) (0.00, 3.64) (0.57,37.11) (0.00, 2.45) (0.00, 6.93)
R3-CTLP 11.40 32.10 0.004* 7.85 40.20 <0.001* 13.90 28.30 0.067
(1.37,32.32) (14.53,50.6- (1.94,19.45) (25.16,50.2- (4.43,30.42) (7.96,44.04)
9) 9)
Total CTLP 5.20 15.70 0.001* 3.35 21.65 0.001* 5.70 14.05 0.069
(1.54,18.43) (7.77, 35.99) (1.24,10.68) (8.76, 33.91) (3.07,14.56) (4.35,24.47)

Note—Age, total CTSS, and CTLP are interquartile range; other data are the number of patients with the percentage in parentheses. C7SS, CT severity score;
CTLP, CT lesion percentage; L/, left upper lobe; L2, left lower lobe; R/, right upper lobe; R2, right middle lobe; R3, right lower lobe; NSD, non-severe disease
group; SD, severe disease group; IQR, interquartile range. 0, no involvement; 1, less than 5% involvement; 2, less than 25% involvement; 3, 26-49%
involvement; 4, 50-75% involvement; or 5, more than 75% involvement. Comorbidities included hypertension, diabetes, COPD, CKD, malignant tumors,

and surgery history. The number of comorbidities from 0 to 4, as follows: 0, no comorbidity; 4, 4 comorbidities. *Data with statistical significance

between the two groups in all cohorts, while the comorbidities
and age were the only similarity between the two groups in the
validation cohort.

Three hundred sixteen patients (NSD, 246 vs. SD, 70)
from two hospitals were included in the study. The patients
in both groups showed GGO with mainly peripheral distri-
bution; there was no statistical difference (78% vs. 84%,

p > 0.05). In the SD group, 45% of patients had consoli-
dation, and 60% had multiple lung lobes involved, but only
35% and 50% in the NSD group (p < 0.05). More patients
had pleural effusions in the SD group compared to that in
the NSD group (54.28% vs. 7.72%, p < 0.05). More imag-
ing details between the two groups in different hospitals
are shown in Table 2.

Table 2 CT radiological features of training, validation, and testing datasets in two groups

CT features Training cohort (n = 159)

Validation cohort (n = 70)

Testing cohort (n = 87)

NSD (n=129) SD (n=30) pvalue NSD (n=56) SD (n=14) pvalue NSD (n=61) SD (n=26) p value
GGO 111 (86.05%) 25(83.33%) 0.077 49 (87.5%) 12 (85.71%) 0.122 54 (88.52%) 22 (84.62%) 0.163
Consolidation 66 (51.16%) 26 (86.67%) 0.004* 25 (44.64%) 11 (78.57%) <0.01* 25 (40.98%) 21 (80.77%) < 0.01*
Reticular pattern 34 (26.36%) 17 (56.67%) 0.031* 14 25%) 6(42.56%) 0.017* 18(29.51%) 11 (42.31%) 0.025*
Interlobular septal thickening 55 (42.64%) 13 (43.33%) 0.069 23 (41.07%) 8 (57.14%) 0.042* 23 (37.7%) 13 (50%) 0.059
Air bronchogram sign 43 (33.33%) 19(63.34%) <0.01* 16 (28.57%) 7 (50%) <0.01* 19(31.15%) 15(57.7%) <0.01*
Bilateral involvement 108 (83.72%) 26 (86.67%) 0.141  50(89.29%) 13 (92.86%) 0.192 54 (88.52%) 23 (88.46%) 0.299
Peripheral distribution 92 (71.32%) 24 (80%) 0222 42 (75%) 12 (85.71%) 0.257 47 (77.05%) 19 (73.08%) 0.184
Multilobar involvement 88 (68.22%) 20 (66.67%) 0.178 40 (71.43%) 11 (78.57%) 0.199 41 (67.21%) 20 (76.92%) 0.208
Adjacent pleura thickening 69 (53.49%) 16 (53.34%) 0.454 28 (50%) 8(57.14%) 0.577 26 (42.62%) 18 (69.23%) 0.049
Pleural effusion 7 (5.43%) 17 (56.67%) <0.01* 4 (7.14%) 7 (50%) <0.01* 8 (13.11%) 14 (53.85%) <0.01*

Note—Except where indicated, data are numbers of patients, with percentages in parentheses. GGO, ground-glass opacity; NSD, non-severe disease
group; SD, severe disease group. *Data with statistical significance
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Radiomics features selection and radiomics signature
building

In total, 99 features with statistical significance (p < 0.05)
between the NSD and SD groups were selected in the train-
ing dataset. A radiomics signature was further constructed
based on sixteen features with respective non-zero coeffi-
cients selected from these 99 features. One first-order fea-
ture and fifteen wavelet-based features were used to repre-
sent the radiomics signature. Details of the procedure for
the construction of the radiomics signature are showed in
Fig. 3a, b. The lists of the selected features and their asso-
ciated coefficients in the logistic regression model are il-
lustrated in Fig. 3c. The intra-observer ICCs ranged from
0.822 to 0.957 and the inter-observer ICCs ranged from
0.769 to 0.936, indicating favorable intra- and inter-
observer feature extraction reproducibility. Figure 4 shows
representative images and lesion segmentation result of
severe COVID-19

The utility of severity prediction using developed
radiomics signature

The developed initial CT-based radiomics signature model
showed a favorable result in predicting the severity (NSD vs.
SD) that produced an AUC of 0.9 in the training set (95% CI,
0.843 to 0.942), 0.878 in the internal validation set (95% ClI,
0.796 t0 0.958), and 0.842 in the testing set (95% CI, 0.761 to
0.922).

As shown in Fig. 5, predictive nomogram and correlation
coefficients were built by combining Rad-score, age, comor-
bidity, L1-CTSS, L1-CTLP, R1-CTLP, and R2-CTLP. The
predictive nomogram had the best differentiation ability of
the severe cases with an AUC of 0.918 (95% CI, 0.864—
0.956) in the training set, an AUC of 0.934 (95% CI, 0.848—
0.979) in the validation set, and an AUC of 0.854 (95% ClI,
0.762-0.92) in the testing set, as shown in Fig. 6a—c. The
calibration curves of the nomogram also showed that the pre-
dictions agreed well with the observations in Fig. 6d—f.
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Fig. 3 Texture feature selection using the least absolute shrinkage and
selection operator (LASSO) binary logistic regression model. a LASSO
coefticient profiles of the radiomics features. Vertical line was drawn at
the value selected using 5-fold cross-validation in the In(alpha) sequence,
and 16 non-zero coefficients are indicated. b The tuning parameter A

10 1 2 3

selection in the LASSO model used 5-fold cross-validation via the min-
imum criteria. Mean square error was plotted vs. log (A). The dotted
vertical lines were drawn at the optimal values using the minimum criteria
and the 1-SE criteria. ¢ Multivariate logistic of the predictive radiomics
features. OR, odds ratio
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Fig.4 A case of confirmed severe
COVID-19. A 62-year-old female
presented with a 7-day history of
fever and cough. First CT imag-
ing revealed diffuse pure GGO
with mainly peripheral distribu-
tion in the bilateral lobes (a). The
area of the lesions was delineated
on the axial, coronal, and recon-
structed three-dimensional im-
ages (b, ¢, d). CTSS = total 10
scores, predicted probability for
severe COVID-19 = 90.1%

Evaluation of models and comparison of predictive
model performance

The diagnostic performance of each model is shown in
Table 3 and the results of ROC curve analysis are
shown in Fig. 6. In all cohorts, the integrated C model
achieved the best performance and radiomics model
outperformed clinic’s model for predicting severe

COVID-19. Moreover, the AUC of the integrated B
model was better than CTSS model and CTLP model
(all p < 0.05). In the training set, although the integrat-
ed C model showed the highest AUC (0.918) among the
seven predictive models, no statistical difference was
found between any of the two models using the
DeLong test (p = 0.832 for CTSS vs. CTLP; p =
0.165 for CTSS ws. clinics; p = 0.323 for CTLP wvs.

a b
_ 0 10 20 30 40 50 60 70 80 90 100
Points : ; ; : ; ; ; ; ; ; ! Variable Coefficient P Value
Radscore —r—— T Age -0.094 0.047
9 8 7 6 5 4 3 2 4 0 1 2 3 4 5
Age L L S R S R S Comorbidities 1.940 0.010
85 75 65 55 45 35 25
Comorbidities ! T ! L1-CTSS 1.141 0.253
0 2
1 5
L1-CTSsS 0 ' ; ' K ' L1-CTLP -0.076 0.315
L1-CTLP T T T T T T T T T !
90 80 70 60 50 40 30 20 10 0 R2-CTLP 0.110 0.077
R2-CTLP T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 RI-CTLP -0.053 0.344
R1-CTLP — T
20 50 . 20 0 Radscore 0.669 0.003
Total points r T T T T T |
TR 0 50 100 150 200 250 300 Constant 2.225 0.262
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001 0103 0.70.9

Fig. 5 Radiomics-based nomogram (a) and their correlation coefficients (b) were developed in the training set, including the Rad-score, age,

comorbidities, CTSS, and CTLP
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Fig. 6 The ROC curves of the seven prediction models that indicate
severe COVID-19 cases in the training cohort (a), validation cohort (b),
and testing cohort (¢). Calibration curves of the combined nomogram in
the training cohort (d), internal validation cohort (e), and testing cohort

clinics). No statistical difference in AUC was also found
between any of the two models (p = 0.09 for CTSS wvs.
integrated A; p = 0.137 for CTLP vs. integrated A; p =
0.751 for clinics vs. integrated A), but a statistical

Predicted Probability

Predicted Probability

Mean absolute emor=0.05 n=70 B=2000 repetitions, boot Mean absolute error=0.068 n=87

(f). Calibration curves depict the calibration of the nomogram in terms of
agreement between the predicted risk and actual probability for severe
COVID-19

difference in AUC was found between the radiomics
model and the integrated A model (p = 0.017), and
between radiomics model and clinics model (p =
0.00075)

Table 3 Comparison of predictive model performance for identifying severe COVID-19 pneumonia
Model Training cohort (n = 159) Validation cohort (n = 70) Testing cohort (n = 87)
AUC (95% CI)  Sensitivity Specificity AUC (95% CI)  Sensitivity Specificity AUC (95% CI)  Sensitivity Specificity

Radiomics model  0.90 (0.84-0.94) 0.80 0.85 0.88 (0.80-0.96) 1.00 0.70 0.84 (0.76-0.92) 0.92 0.71
CTSS model 0.77 (0.70-0.83) 0.93 0.54 0.82 (0.71-0.90) 0.79 0.82 0.67 (0.56-0.77) 0.73 0.56
CTLP model 0.71 (0.63-0.78) 0.68 0.77 0.84 (0.74-0.92) 0.71 0.91 0.68 (0.57-0.77) 0.88 041
Clinical model 0.72 (0.64-0.78) 0.50 0.84 0.78 (0.66-0.87) 0.79 0.79 0.67 (0.54-0.76) 0.52 0.87
Integrated A model 0.78 (0.71-0.84) 0.73 0.77 0.82 (0.70-0.90) 0.79 0.82 0.70 (0.58-0.80) 0.70 0.67
Integrated B model 0.91 (0.85-0.95) 0.97 0.69 0.93 (0.84-0.98) 0.93 0.82 0.84 (0.75-0.91) 0.92 0.71
Integrated C model 0.92 (0.86-0.96) 0.73 0.95 0.93 (0.85-0.98) 0.79 0.95 0.84 (0.76-0.92) 0.92 0.72

Note—The integrated A model contained CTSS, CTLP, and clinical features. The integrated B model contained the selected radiomics features and
clinical features. The integrated C model contained the selected radiomics features, CTSS, CTLP, and clinical features. CTSS, CT severity score; CTLP,
CT lesion percentage; AUC, area under the receiver operating characteristic curve
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Treatment and prognosis in the patients with COVID-
19

All 316 patients with COVID-19 received hospitalization, and
their treatment information was recorded. Compared with the
non-severe group, severe patients have more comorbidities
and longer ICU and hospital length of stay (p < 0.05). Most
patients received antibiotics (166 [52.53%]), antiviral treat-
ment (276 [87.34%]), and glucocorticoids (178 [56.33%)]).
One hundred twenty-nine (40.82%) patients received intrave-
nous infusions of immunoglobulin. Two-thirds of the patients
had oxygen therapy. Treatment and prognosis information of
all three cohorts are provided in Table 4.

Discussion
In this study, statistical analysis was performed in comparing

clinical data, quantitative CT, and radiomics features between
non-severe and severe COVID-19 patients. Two clinical

features, four quantitative CT features, and sixteen radiomics
features were identified to be significantly different between
the two groups (p < 0.05). Furthermore, CT-based radiomics
model had a significantly high area under the curve (AUC),
sensitivity, and specificity to distinguish individuals with se-
vere COVID-19 from non-severe COVID-19. The radiomics
model alone was also validated with the independent dataset
from the other institutions, suggesting the reliability and re-
producibility of our new prediction model.

In general, the most common CT features for COVID-
19 included GGO and consolidation involving the bilateral
lungs in a peripheral distribution [14, 15]. In the early
diagnostic stage, it is difficult for clinicians to judge
whether it is COVID-19 pneumonia. Meanwhile, for non-
severe and severe COVID-19, CT features are often highly
overlapping and non-specific. Recently, some literatures
reported that the proportion of lesions (GGO/consolida-
tion) is different between NSD and SD patients [16—18].
Non-severe patients are more likely to have more GGO,
while severe patients tend to have more consolidation in

Table 4 Treatments and outcomes of all patients with COVID-19 in two groups

Characteristic Training cohort (n = 159)

Validation cohort (n = 70)

Testing cohort (n = 87)

NSD (n=129) SD (n=30) p value

NSD (n=56) SD (n=14) p value

NSD (n=61) SD (n=26) p value

Hospitalization information

ICU admission (%) 13 (10.08%) 26 (86.87%) <0.001* 7 (12.5%) 11 (78.57%) <0.001* 9 (14.75%) 24 (92.31%) < 0.001*
ICU length of stay, days 12 (9,20) 21(18,29) <0.001* 15(9,19) 20 (16,28) <0.001* 16 (9,20) 19 (13,27) <0.001%*
Hospital length of stay, 25(21,30) 39 (30,48) 0.001*  24(21,30) 36 (3247) <0.001* 26(22,31) 37 (3047) <0.001*
days
Treatments, n (%)
Antibiotic treatment 65 (50.38%) 20 (66.67%) 0.031* 26 (46.43%) 11 (78.57%) 0.022* 30 (49.18%) 14 (53.85%) 0.011*
Antiviral treatment 110 (85.27%) 29 (96.67%) 50 (89.29%) 13 (92.86%) 50 (81.97%) 24 (92.31%)
Glucocorticoid therapy 70 (54.26%) 21 (70%) 27 (48.21%) 10 (71.42%) 32 (52.46%) 18 (69.23%)
Intravenous 39 (30.23%) 20 (66.67%) 21 (37.5%) 9 (64.29%) 23 (37.7%) 17 (65.38%)
immunoglobulin
Chinese medicine 110 (85.27%) 19 (63.33%) 46 (82.14%) 9 (64.29%) 52 (85.25%) 16 (61.54%)
treatment
Respiratory support strategies, 7 (%)
Nasal catheter 88 (68.22%) 12 (40%) 0.007*  32(57.14%) 7 (50%) 0.012*  34(55.74%) 11 (42.31%) 0.044*
High-flow nasal cannula 31 (24.03%) 9 30%) 20 (35.71%) 4 (28.57%) 17 27.87%) 7 (26.92%)
oxygen therapy
Non-invasive mechanical 10 (7.75%) 4 (13.33%) 4 (7.14%) 1 (7.14%) 10 (16.39%) 3 (11.54%)
ventilation
Invasive mechanical 0 (0%) 2 (6.67%) 0 (0%) 1 (7.14%) 0 (0%) 2 (7.69%)
ventilation
ECMO 0 (0%) 3 (10%) 0 (0%) 1 (7.14%) 0 (0%) 3 (11.54%)
Outcomes, n (%)
Survival 129 (100%)  28(93.33%) 0.033* 56 (100%) 13 (92.86%) 0.042* 61 (100%)  25(96.15%) 0.496*
Death 0 (0%) 2 (6.67%) 0 (0%) 1 (7.14%) 0 (0%) 1 (3.85%)

Note—ICU length of stay and hospital length of stay are interquartile range; other data are the number of patients with the percentage in parentheses.
NSD, non-severe disease group; SD, severe disease group; ECMO, extracorporeal membrane oxygenation; /CU, intensive care unit. *Data with statistical

significance
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CT imaging. Although we have also observed this phe-
nomenon, no statistical difference was found (p > 0.05).
Therefore, it is also very difficult for the radiologist to
judge whether it is severe pneumonia [19, 20].

Radiomics has great potential to capture useful medical in-
formation and to enhance the accuracy of clinical differential
diagnosis. In this study, 851 candidate radiomics features were
extracted from CT images and were reduced to only 16 poten-
tial predictors by using a LASSO regression model to develop
the radiomics signatures. The selected radiomics features were
divided into two types (first-order and wavelet features) and
varied significantly between NSD and SD groups. These fea-
tures reflect intrinsical information from the distribution of pixel
intensity and the texture morphology that cannot be detected by
radiologists [21]. For example, first-order features mainly re-
flect the internal texture of lesions. Wavelet features mainly
reflect the change of time domain and frequency domain inside
the lesion. Among the selected radiomics features in this study,
Wavelet-HHL glcm Imc2 and Wavelet-LHL _
glrlm_ShortRunLowGrayLevelEmphasis were the most signif-
icant and robust features associated with severe cases, which
reflect lesion’s intensity and textural features within the high-
intensity CT voxels.

Several studies have reported and analyzed the value of
traditional CT characteristics and clinical features in the diag-
nosis of COVID-19. Chen et al [22] developed and validated a
diagnostic model for COVID-19 based on CT imaging and
clinical manifestations. Kang et al [23] introduced an Al-
assisted model based on the radiological and clinical features
to estimate the clinical progression to critical illness. In addi-
tion, in order to quantify the severity of COVID-19, CT quan-
tification of pneumonia lesions is also used in clinical practice.
The CTSS and CTLP are the two most common CT quantifi-
cation methods, but the differences among observers are still
inevitable [7, 16, 22]. In our model, L1-CTSS, L1-CTLP, R1-
CTLP, and R2-CTLP were selected as independent risk fac-
tors for severe COVID-19 cases. The possible explanation is
that the SARS-CoV-2 mainly invades the bilateral lower lobes
in patients with COVID-19, so the difference in the distribu-
tion of lesions in the upper or middle lobe is often more sta-
tistically different among different patients with COVID-19.

The integrated C model composed of radiomics, quantitative
CT, and clinical features had the highest AUC (0.92, 0.93, 0.84)
in all three cohorts. The model with radiomics features alone
reached an AUC of 0.9, 0.878, and 0.842, which is not inferior
to the integrated B or C model (all p > 0.05). In other words, the
addition of quantitative CT and clinical features to the integrat-
ed model did not increase the model’s efficacy, suggesting the
strong efficacy of radiomics as a tool to predict the severity of
COVID-19. Furthermore, the predictive power of the radiomics
model also outperformed that of integrated A model (clinics +
quantitative CT) (p < 0.05). In fact, radiomics features and
clinical or quantitative CT features were highly correlated.

This result was in accordance with that in other similar studies
in gliomas [24], pancreatic neuroendocrine tumor (PNET) [23],
lung adenocarcinoma [21], and breast cancer [25].

Several studies reported single or multiple risk factors of lung
injury for severe COVID-19. Dong et al [26] found that under-
lying comorbidity, older age, higher LDH, and lower lympho-
cyte count were independent high-risk factors associated with
COVID-19 progression in a multicenter study. Guan et al [27]
reported that increasing age and comorbidity were associated
with the disease. Zhou et al [28] showed that older age, high
SOFA score, and D-dimer value are potential risk factors to
identify patients with poor prognosis at an early stage. Chen
et al [29] proposed the MuLBSTA score as an early warning
indicator for predicting 90-day mortality in patients with
COVID-19. Among the clinical features in our study, age and
comorbidity were the most powerful factors to predict severe
COVID-19. A possible reason is that poor immunosenescence
of older patients with comorbidities could have higher levels of
angiotensin-converting enzyme 2 in their alveoli [30], which
was regarded as a receptor for novel coronaviruses [31].

Some limitations in this study should also be acknowl-
edged. The biggest limitation is that no blood samples or some
other clinical parameters are considered in the risk model. We
believe that a reliable and robust multi-modality prediction
model should be further developed to address this issue. In
addition, the sample size was relatively small in order to build
up a stable predicting model and the cases outside of Hubei
province are not included. However, in this study, we tried to
adopt a multicenter research method, including internal and
external validation sets, subjective and objective CT evalua-
tion, all of which ensure that the conclusions are reasonable.
Furthermore, with the retrospective design, there may be po-
tential biases in identifying and recruiting participants.
Increasing a large number of different regional populations
and imaging-pathologic control studies is needed in the future
study.

In conclusion, initial CT-based radiomics features provide
an excellent performance for the prediction of severe COVID-
19. Sixteen features were significantly different between the
two groups. This prediction model based on the radiomics
features was developed and validated on the training, valida-
tion, and testing cohorts, which may have broad clinical
applications.
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