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Abstract

We present an enzyme protein function identification algorithm, Catalytic Site Identification (CatSId), based on identification
of catalytic residues. The method is optimized for highly accurate template identification across a diverse template library
and is also very efficient in regards to time and scalability of comparisons. The algorithm matches three-dimensional residue
arrangements in a query protein to a library of manually annotated, catalytic residues – The Catalytic Site Atlas (CSA). Two
main processes are involved. The first process is a rapid protein-to-template matching algorithm that scales quadratically
with target protein size and linearly with template size. The second process incorporates a number of physical descriptors,
including binding site predictions, in a logistic scoring procedure to re-score matches found in Process 1. This approach
shows very good performance overall, with a Receiver-Operator-Characteristic Area Under Curve (AUC) of 0.971 for the
training set evaluated. The procedure is able to process cofactors, ions, nonstandard residues, and point substitutions for
residues and ions in a robust and integrated fashion. Sites with only two critical (catalytic) residues are challenging cases,
resulting in AUCs of 0.9411 and 0.5413 for the training and test sets, respectively. The remaining sites show excellent
performance with AUCs greater than 0.90 for both the training and test data on templates of size greater than two critical
(catalytic) residues. The procedure has considerable promise for larger scale searches.
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Introduction

Given the success of the structural genomics efforts (1125 PDB

entries) and many genome sequencing efforts, automated protein

function annotation is now critical [1]. Annotation is the next step

in turning the copious amounts of sequence and structural data

into useful information in a biological context. At the core of many

automated methods is the principle that sequence and structure

dictate function. There are many perspectives and approaches to

the application of this principle.

One approach is to infer function by focusing on global

sequence or structural similarity. Global structural alignment

procedures, e.g. LGA [2], PINTS [3,4], and CE [3,4], and

sequence annotation approaches that indicate a structural or

functional context, e.g. SCOP [5], CATH [6], GO [7,8], or

KEGG [9], successfully provide an enhanced annotation of the

sequence of interest. In cases of high sequence similarity, sequence

alignment methods such as BLAST [10] and CLUSTALW

[11,12] also enjoy wide success in inferring function in regimes

of sequence similarity of .30% or more, with some high accuracy

methods recommending 60% identity [1,13]. Other approaches,

which are largely phylogenetic in nature, include Hidden Markov

Model (HMM) methods [14,15], Evolutionary Trace [16],

INTREPID [17], Phylofacts [18,19], and Bayesian Monte Carlo

inference [20]. Methods that combine sequence and structural

information include EFICAz [21,22], SOIPPA [23–25], DIS-

CERN [26], PevoSOAR [27], and AnnoLite [28] and can provide

improvements to sequence based methods alone. The success of

global similarity-based techniques depends largely on the ability to

distinguish conservation patterns that correspond to functional or

catalytic portions of a protein sequence or structure. In general,

enzymes tend to display motifs, or sites, which are very highly

conserved in sequence and geometry, with the remainder of the

protein displaying divergent global features, both in sequence and

structure. The approach we present in this work is specifically

designed to leverage the knowledge of specific catalytic site

residues rather than to infer the functional features from global

comparisons.

Other methods focus on those highly conserved regions

associated with catalysis and biological function and have led to

the development of protein function annotation algorithms that

specifically focus on matching catalytic residue geometries. This

more reduced description of a binding site led naturally to thinking

of binding sites as a graphical object, consisting of nodes and edges

that correspond to objects and distances (or other relations)

between the objects. Graph comparison algorithms can then be

developed that can rapidly locate a template pattern graph in a

larger, target graph. This technique, known as the subgraph

isomorphism problem, was originally proposed by Ullman [29] in

a general context. Artymiuk et al. [30] appear to be the first to

apply such a procedure to enzymatic site detection. Their work

used the subgraph isomorphism procedure originally proposed by

Ullman [29]. Later work by Artymiuk et al. expanded this

approach beyond catalytic sites to other structural applications,

such as the identification of tertiary structures [31,32]. At the same
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time, Kleyvegt developed a site matching procedure originally

designed to identify patterns in distance matrices determined by

NOE peaks [33]. Later, Kleyvegt introduced a program called

DEJAVU that detects protein motifs [34], using a depth-first

searching procedure. This approach was later generalized to

identify enzymatic sites with SPASM [35]. Other groups have used

graph searching procedures, with specialized atom typing, such as

Cavbase [36], PINTS [37,38], and Query3D [39], or surface

features as descriptors, such as eF-site [40], SuMo [41], and

SiteEngine [42], whereby complex and physically motivated

descriptors are used as nodes for the graph comparisons.

Other approaches to the template matching problem use a

procedure known as geometric hashing [43,44], which differs from

the graph based approaches. Geometric hashing uses a cartesian

grid to bin similar coordinates while graph based procedures use

nodes and edges, independent of Cartesian coordinates. Geomet-

ric hashing is used widely in image processing and has been

successfully adapted to structural approaches because it is well

suited for comparing systems with incomplete feature sets, which

require special handling in the graph comparison cases. However,

geometric hashing is dependent on the frame of reference, and

additional overhead is required to accomplish optimal translations

and rotations for comparison. The Thornton group proposed a

template matching procedure, named TESS [45], built on such a

procedure. A later iteration, known as JESS [46] incorporated

recursive ideas and threshold constraints to improve searching

procedures. The JESS algorithm has been successfully incorpo-

rated as part of more comprehensive approaches to studying

catalytic sites, such as the SABER method [47]. More recently, the

Kavraki group developed a series of procedures built on a match

augmentation procedure, MASH [48], that iteratively grows a

template match from pairwise matches obtained through geomet-

ric hashing. Later developments from this group include the

addition of residue hash matching, the LabelHash algorithm

[49,50], along with impressive optimizations at the hardware and

software level to improve performance, and is among the fastest

procedures reported. Other geometric hashing approaches include

SitesBase [51,52] and GIRAF [53]. The success of template

matching methods led to the important recognition that a high

quality database of enzymatic sites is needed. This recognition

motivated the development of the Catalytic Site Atlas (CSA) [54],

which is a manually curated table of enzymes and binding site

residues and Enzyme Commission (EC) numbers [55]. The CSA,

which we use in our work, has somewhat limited coverage of

enzyme space, and the scale of such a database will always be

strictly limited to the capacity of expert manual curators. As a

result, many approaches have been developed which attempt to

automatically locate structural features that may be used as

templates. These approaches include physics based approaches

[56,57], statistical modeling of measures [58–60], dynamical

considerations [61], and combinations of structural and sequence

based measures. While all of these methods have met with varying

degrees of success at interpolating known phenomena, there are

always unexpected patterns of binding site architecture for which

careful manual curation and characterization is needed. Other

valuable resources related to this effort, including the MACiE

database [62], the ProFunc [63] server, and metaservers like

ProKnow [64], resulted from the success and utility of structure

based approaches to understanding function. These approaches

have not only been used to locate motifs in known structures, but

also to design new motifs into proteins, as is done with SABER

[47], which has opened new avenues to protein design [65].

The Babbitt and Gerlt groups have gone beyond matching

catalytic residues to matching enzymes by their chemical

mechanism. They established the concept of a mechanistically

diverse superfamily, where the similarity among members is

governed by the conservation of partial reactions within the

protein family, rather than by sequence or structure conservation

alone [66–68]. This approach is in contrast to a sequence based

approach, which relies on global sequence similarity with the

expectation that conservation patterns can point to residues of

functional interest. It also presents an alternative to the Enzyme

Commission (EC) based classification scheme [69], which builds a

hierarchy based on the substrate reaction chemistry. This

alternative approach to classification, with the emphasis on

binding site architecture and conservation of partial reactivity,

led to the development of the Structure Function Linkage

Database SFLD [70,71] and the Enzyme Function Initiative

[68,72–76], whose goal, among others, is to develop structural

templates in a superfamily context.

We focus here on the optimization of a graph-based pattern

matching algorithm, called the Catalytic Site Identification

(CatSId), using catalytic residues templates as defined by the

CSA. The CSA provides high quality and essential data for

catalytic site studies and allows for a direct mapping of known

structure to enzymatic function. The present procedure is

optimized for best performance against a large library of diverse

catalytic sites, as is present in the Catalytic Site Atlas. The input is

a protein with unknown function, and the output is a list of

candidate templates. The present work is designed to address the

challenge of rapidly identifying motifs from a diverse catalog of

sites, such as the CSA. Future work will address the issue of

developing additional template libraries.

Methods

Figure 1 describes the overall workflow, which takes a target

(query) PDB structure and returns a list of catalytic sites that best

match the target. The workflow contains two main processes, which

are numbered and shown in yellow. Process 1 is a highly efficient

template comparison routine that rapidly scans a library of

catalytic sites geometries to generate an initial list of the best fitting

sites for the template structure. Process 2 is a refinement procedure

that quantitatively incorporates a number of structural features

that are thought to be most descriptive of the binding sites. The

coverage and quality of the search is primarily limited by the

quality of the reference library of catalytic sites. We describe the

preparation of this library in the next section.

Construction of Site Catalog using Catalytic Site Atlas
The Catalytic Site Atlas [54], version 2.2.12, contains a list of

manually curated catalytic sites based on published enzyme

studies. Specifically, critical residues are listed for each binding site

in the corresponding PDB structure. The complete Atlas also

contains lists of related proteins based on sequence similarity.

Figure 2 shows a diagram explaining the annotation for both

literature based entries (LIT) and entries related through

homology (PSIBLAST). Note, every PSIBLAST entry is associated

with a particular LIT entry. While we use the PSIBLAST entries

to identify possible amino acid substitutions (described in a later

section), we use only the literature-curated entries as templates in

the structural similarity comparisons.

From the table of literature-based templates, a residue-residue

(Ca distance matrix is constructed for the critical residues

identified by the CSA. The CSA was modified somewhat to

account for curation errors, and additional annotations were

included, as will be described. The resulting database has 736

unique EC numbers, each of which may have multiple PDB
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structures and multiple binding sites. In total, 2244 binding sites

form the final database. Each of these sites can have multiple

critical residues, and the distribution of template sizes is given in

Figure 3. The majority of templates have 2, 3, and 4 residues, but

templates as large as 15 residues are retained for the study; more

than half of the sites contain either 3 or 4 residues. The single

critical residue sites are kept in the table for completeness, but are

not used in the present study, as the template matching procedure

requires that there be at least two critical residues in the site. For

each input (template/query) structure of interest, the template

comparison routine performs a total of 1993 comparisons to the

target structure, so that the template search process is the most

time-critical operation.

Annotations of Nonstandard Residues, Cofactors and
Ions

Non-standard amino acids, ions and co-factors are also listed as

catalytic residues in the CSA. To account for all of these additional

groups in the CSA, we compiled a list of all of these molecules that

require additional annotation. For the initial template matching

algorithm, a unique Cartesian atomic coordinate is assigned to

each residue. Figure 4 illustrates how the protein coordinates are

Figure 1. Flowchart for catalytic site search process. The main processes that were developed are highlighted in yellow. The structure (target
PDB) is the input to the process. The initial template search stage is a fast search procedure that produces a set of site candidates. From this set,
additional descriptors are calculated, including alignment binding site properties, which enhance the prediction quality through a logistic regression
procedure.
doi:10.1371/journal.pone.0062535.g001
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transformed into a collection of atomic coordinates and, ultimate-

ly, a distance matrix for rapid comparison. While the template

matching approach could be readily generalized to incorporate the

notion of multiple atoms (or pseudoatoms) for each residue, the

approach presented here uses a one-to-one mapping of each

residue to a single atomic coordinate, typically that of the Ca-

carbon. If the amino acid considered is nonstandard, it is assigned

to have an equivalent standard amino acid identity. For example,

in Figure 4, nonstandard amino acid CSE (selenocysteine) is

treated as equivalent to a cysteine for all purposes. For both

standard and nonstandard residues, the atomic coordinate of the

Ca carbon of the residue is used. For ions, there is only one atom

to consider, which is used directly for the coordinate. For

cofactors, the relevant atoms were identified manually, based on

either known reactivity sites or proximity to binding region. For

example, the nitro group of the FAD molecule adjacent to the

hydride donor group is identified as the donor. For the heme

groups, the central iron is used. For the MGD cofactor in Figure 4,

the sulfur (S13) closest to the molybdenum coordination site was

selected, as its position is thought to be highly conserved.

Additional Catalytic Site Atlas Annotations
We anticipate the need to locate a binding site in a monomeric

target structure that may in fact be a member of a dimeric binding

site. For example, the PDB ID 1fug protein forms a binding site in

the interface between chains A and B. Trimeric binding sites are

also observed in the CSA LIT entries.

Incidences where sites in the CSA are nestled at the interface of

multimeric proteins are challenging to annotate properly. In these

cases, all LIT sites within the CSA were thus analyzed to

determine which sites were indeed located at a multichain

interface. Sites containing anomalously large distances (.20 Å)

were inspected manually. As an example of the annotation, a site

1xyz-0 (structure 1xyz, site 0) that occurs in a dimeric interface of

chain A and B is relabeled as three sites: 1xyz-0cx for the original

complex, and 1xyz-0A and 1xyz-0B for the portions of the site

specific to chain A and B, respectively. Special care was taken to

ensure that the chains and residues identified in the CSA

corresponded to those identified in the PDB. There are also cases

where there appear to be multiple, distinct binding sites within the

same protein. Each such case is identified as a ‘multifunctional

monomer’, or mfm, and each of the sites is identified by the chain

and a unique index. For example, a multifunctional monomer

with two sites on chain A would be labeled as 1xyz-0mfm, 1xyz-

0A1, and 1xyz-0A2. Given that many input proteins are

monomers with one putative catalytic site, this additional

annotation helps to identify and filter anomalous cases.

Allowance for Substitutions in Comparisons
The template comparison procedure, which is described in a

later section, allows for residue identity substitutions when

comparing binding sites by using a substitution matrix, much like

a standard BLOSUM matrix [77,78]. The essential difference in

the present work is that the substitution matrix is specific to each

template that is being compared. It also is of a binary form, which

simply means that a substitution is allowed if the matrix entry has a

value of 1, and not allowed if the entry has a value of zero. For all

cases, forward and reverse substitution allowances are equivalent,

such that the substitution matrices are symmetric.

The PSIBLAST entries in the CSA, while not used to construct

the site library, are used to identify possible substitutions that can

be allowed during the template matching procedure. To construct

a substitution list, the PSIBLAST entries are screened for 2

criteria: 1) the number of residues in the PSIBLAST entry must

match the number of standard residues in the LIT entry; and 2)

the EC number as annotated in the PSIBLAST entry’s PDB

Figure 2. Diagram of Catalytic Site Atlas example entries and EC number lookup. Each site has a list of critical residues associated with it.
Two entries associated with protein 132 l are listed. The literature based entry is shown in bold, and is what is used to populate the template catalog
used for the present study. The EC number is listed in a separate table, and associated with the literature entry PDB id. The PSIBLAST entry shown is 1
of 45 PSIBLAST entries associated with 132 l.
doi:10.1371/journal.pone.0062535.g002

Figure 3. Distribution of template sizes for reannotated CSA.
doi:10.1371/journal.pone.0062535.g003
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header must match the complete four-digit EC number of the

corresponding literature entry’s PDB header. Each PSIBLAST site

is then compared to the literature entry site, and the observed

substitutions are recorded in a tabulated form for each of the LIT

entries. An example of observed substitutions for LIT entry 1alk as

well as the resulting template specific matrix is shown in Figure 5.

Figures 6a and 6b (lower diagonals) show all observed

substitutions in all of the templates studied. For comparison, the

BLOSUM62 matrix is shown in Figure 6a (upper diagonal), which

is modified such that a value greater than 21 is set to 1, and 0

otherwise. While this summary matrix is not used in the search, it

is shown here for comparison.

The full summary substitution matrix was found to be too

general in most binding site comparisons, since each template

family tends to favor a far more limited range of substitutions.

Figure 7 shows the distribution of the number of observed point

substitutions in the CSA. Out of 967 families, only 302 family

members displayed substitutions. Of these 302 substitutions, more

than half (181) are single point substitutions. The observed

substitutions include those which are likely to conserve catalytic

function, such as ASPRGLU, but also contain many substitutions

that are not easily explained in a catalytic context, and appear to

be family specific determinants of function. The substitution

matrix procedure is used during the template search procedure

(Process 1), which is described in the next section.

Cofactor substitutions were not considered in the present study.

Ion substitutions were treated uniquely in that any ion can be

substituted for any other ion, if it appears in the nonstandard list.

This reflects the fact that ions of different identity often appear in a

binding site as a result of experimental considerations. There are

currently 22 allowed ion identities in the table.

All of the data tables described are available at http://catsid.

llnl.gov.

Process 1: matching atomic distances using a template

search procedure. The basic search algorithm is designed to

scan rapidly through a very large library of templates representing

catalytic sites. As such, catalytic sites are described as a reduced set

of coordinates – one coordinate for each critical residue, cofactor,

or ion, as described above – in a distance matrix format (see

Figure 4). Each of these distance matrices is identified as a

Figure 4. Example template distance matrix construction from PDB structure 1aa6, site 1 (E.C. 3.40.50.720). a) The CSA entry has a
corresponding EC number, as well as a list of residues that comprise the site. Each residue has a centroid associated with it, which is shown in
parentheses and represented as a balls in both a) and b). Cofactors and ions have a specific centroid assigned to them, while standard and
nonstandard residues have the Ca as the centroid. B) a distance matrix with 28 elements is constructed from the resulting site coordinates and stored
as for rapid comparison to a target structure.
doi:10.1371/journal.pone.0062535.g004
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template graph T. An example of a template with residue types A,

B, C, and D is shown in Figure 8. For each target protein structure

of interest to be studied, a distance matrix is computed for all

atomic coordinates in the protein that have a residue (or an

allowed substitution) that corresponds to one of the residues

(including cofactors and ions) in the template structure. In the

example shown, all residues of types A, B, C, or D would be

included in the structure of interest (S) distance matrix calculation.

The general challenge, as illustrated in Figure 8, is to locate the

subgraph in S that best matches template T. This is the subgraph

isomorphism problem, first solved by Ullman [29,31] The basic

idea behind the subgraph isomorphism search is to systematically

prune all possible subgraphs for which any edge does not meet a

threshold requirement. The remaining list of allowed edges can

then be used to construct all allowable candidate graphs. The

problem is known to scale in nonpolynomial (NP) time with

respect to the size of the subgraph to be compared. In many cases,

however, careful pruning in the search procedure results in a more

tractable scaling, as will be discussed. Ullman’s approach relies on

the effectiveness of the threshold requirement to reduce the

complexity. While this approach is vastly more efficient than an

enumerative approach, it can still result in nonpolynomial scaling

if the threshold requirement is too lenient. The approach

presented here uses a similar in situ pruning technique, but adds

additional screening and ranking procedures to further constrain

the search space while maintaining a controllable degree of

breadth to the search.

The procedure is described here briefly. We construct a list of

sequences, or paths, through the structure protein. As this path is

constructed, it is ranked according to the similarity to the template.

For example, in the template given by Figure 8, we start by

studying all sequences in the protein consisting of residue types A

and B. As is done in the Ullman approach, we screen based on a

distance threshold requirement. We found that a threshold of

1.5 Å allows for the detection of sufficiently similar catalytic sites.

We then take the full list of eligible candidate sequences of residue

Figure 5. Template specific substitution matrix example. a) list
of observed substitutions for the 1alk LIT entry family. All allowed
substitutions are stored in a table (supplementary material) b) The
family specific substitution matrix as constructed from entry in a) that is
used as an input to template matching procedure.
doi:10.1371/journal.pone.0062535.g005

Figure 6. Summary of substitutions found in CSA dataset. a)
Lower diagonal binary matrix indicates substitutions found in CSA
matrix (gray if any substitutions are observed, white if none are
observed), and upper diagonal is the binary form of BLOSUM 62 with
gray indicated for values greater than 21 and white otherwise. B) Lower
diagonal matrix identical to CSA binary matrix in a) for reference. Upper
diagonal matrix shows differences between substitution matrices: (gray:
no difference, black: CSA only, white: BLOSUM 62 only ).
doi:10.1371/journal.pone.0062535.g006
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types A and B, and compute the similarity between each

constructed subgraph of the structure distance matrix and the

template distance matrix formed by considering only A and B in

the sequence. The top Pmax scores are retained, where Pmax is the

maximum number of allowed paths per iteration. For each A-B

sequence in the resulting list, the procedure is repeated when

building a list of candidates with residue types A, B, and C. This

additional screening process of keeping the top Pmax scores at each

step, rather than exploring all possible paths through allowed

nodes, reduces the scaling substantially, as will be shown.

Appendix S1 in File S1 provides pseudocode for this procedure.

Scaling of Graph Search
The full subgraph search procedure scales in nonpolynomial

(NP) time with regard to template size and is a large order

polynomial with regard to target size. To see this, we compute the

complexity of the problem as roughly corresponding to the

number of distance matrix comparisons that are required during

the buildup procedure. For a given target structure S, we compute

the total number of possible candidate sites for comparison against

the template T structure. This is given as

Pfull~ P
nT

i~1
VS(ri) ð1Þ

Where Pfull is the total number of nonredundant sequences that

can be constructed with a sequence composition that matches the

sequence of the target structure, nT is the total number of sites in

the template structure, and VS(ri) is the number of instances of

residue type r (at template site i) that appears in the structure. As

an example, Figure 8 shows a template with nT~4 residues, and

site i~1 has residue type ri~
0A0, and this appears in the structure

template VS(A)~6 times. The number of times that the residue

appears in the template affects the calculation. For the example in

Figure 8, VT (r)~1 for all residues, but in general, the number of

combinations is computed with the binomial coefficient,

P
VT (r)

i~1
VS(r)~

VS(r)

VT (r)

� �
ð2Þ

which simply accounts for the fact that the resulting distance

matrices constructed for the template comparison are invariant

under the change of order when there are multiple residues with

the same identity in the template. By default, all sequences are

arranged first by alphabetical order and then by residue number.

The total number of residues in the structure distance matrix is

given as the sum over all unique residue counts in the distance

matrix nS~
X

r
VS(r):

If we make a simple assumption that all sequences in the

template are unique and the structure contains the same number

of each sequence �VVS (assumed to scale with number of residues in

the protein), then the number of distance matrix comparisons

(neglecting any distance filter metric) would be �VVS
nT

, which is

nonpolynomial with regard to the number of residues in the

template distance matrix and a polynomial of order nT with regard

to target distance matrix size. Both scaling arguments are

significant to consider (not just the NP scaling), as we are likely

to encounter arbitrarily large target distance matrices, while our

template libraries tend to be of a more limited size.

For the graph search, the scaling is vastly reduced, while still

maintaining a user controlled variable to account for breadth in

the search. The sequence is constructed iteratively, so subgraphs

are constructed at each step to generate a distance matrix

comparison to the template structure. If we disregard distance

filters for the present discussion, the first set of subgraphs would

contain the full complexity of the calculation, as given in Equation

1. Since only the top Pmax paths are retained, the total number of

(partial and complete) distance matrix comparisons computed is

Pfast~ P
2

i~1
VS(ri)zPmax

XnT

i~3

VS(ri), ð3Þ

and if we make the same assumption as above, we see that the

scaling becomes �VVS
:( �VVSzPmax(nT{2)), which is quadratic with

regard to target size and linear in template size. A full discussion of

the scaling properties using model systems is presented in

Appendix S4 in File S1. Note, if Pmax were set to the full number

of possible paths at each node construction, then we would recover

the NP scaling of the complete subgraph search. Figure 9 shows

timings for searching for all templates (approximately 2000)

against target distance matrices built from a representative protein,

PDB ID 1 eus. Each reported time represents only the time to

execute the actual subgraph search. While protein 1 eus has 356

residues in total, the size of the structure distance matrix varies

with each template comparison, as the critical residue sequence

composition is different for each template. There is considerable

variability in both nS and nT in this data set, but the overall scaling

appears to conform to the predicted scaling behavior with regard

to target size. Scaling with regard to target size is not as clearly

visible for this dataset and is thus not shown. Data in Appendix S4

in File S1 is provided to demonstrate scaling properties in a more

controlled way, while this dataset represents actual expected

behavior for the present template library. Typical times for this

search are well under 50 ms when run on a single core, and even

the largest of sites is easily completed under 200 ms. The scaling is

clearly quadratic and nearly linear with respect to nS . The

quadratic fit produces a correlation coefficient of.956. Notably, the

size of the template also affects the scaling, which is one source of

Figure 7. Distribution of number of substitutions per template.
A total 302 family members (out of 967 total) display at least one
substitution.
doi:10.1371/journal.pone.0062535.g007
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variability. For example, the outlier data point at

(nS,time)~(305,0:09s) corresponds to a set of sites in family

2 sqc consisting of 15 template residues. The data plotted are for

the setting of Pmax~100, which was found to be sufficient to

identify all templates (without losing the template in the pruning

procedure) in both the training and test set studied. As is shown in

Figure 2b, the influence of the value of Pmax on the time scaling

was found to be minimal. The present scaling properties point to

the possibility of a vastly larger database of sites that could be

readily searched.

Process 2: logistic regression to refine scoring. The

graph search procedure (Process 1) used a minimal description of

the binding site to facilitate a fast search. This representation,

however, did not always unambiguously locate template matches,

and further analysis was ultimately required, particularly for

templates of 4 residues or less. The process of refining this initial

list relies on a set of manually derived empirical approaches that

were found to provide useful information about the binding site.

These calculations are not as time intensive, but provide essential

value added information that helps to select the correct binding

site among a list of candidates.

While there are many variations to this approach, including

many regularization strategies for a large number of descriptors,

we use a standard procedure known as logistic regression, which

relies on a sigmoidal multivariate indicator function to identify a

result as being a positive match to the reference template. See

Appendix S2 in File S1 for the definition of the logistic function as

it is used in the present work. The parameters for this function fit

using a maximum likelihood regression procedure, and the

training set is described in detail in the Results and Discussion

section. The descriptors were elucidated based on observations

from the output of Process 1 and were selected based on goodness

of fit. The descriptors that were considered are described in detail

here.

1) Distance Matrix Similarity
The distance matrix similarity is computed directly from the site

search procedure as the root mean squared difference between the

template distance matrix and the Ca distance matrix constructed

from the given sequence within the structure (rmsddm). The

rmsddm is computed as:

rmsd(dT ,dS)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnT

iwj~1

dT (i,j){dT (i,j)ð Þ2

eT

vuut ð4Þ

where dT and dS are the Ca distance matrices of the template and

substructure (built from the target structure), respectively, and

eT~nT (nT{1) is the number of elements (or edges) in the target

distance matrix consisting of nT residues. It is a simple metric that

is a direct output of the template matching procedure of Process 1.

2) Number of Distance Elements within a Threshold
Value

During the comparison of the structure distance matrix to the

template, each distance of the substructure, or edge, is compared

to the corresponding template edge to determine whether it is

within a certain inclusion threshold. If so, it is counted as an

included edge. The current inclusion criterion setting is 0.5 Å.

Note that this value is not the same as the screening threshold used

in the template search procedure (1.5 Å) for the current study. The

number of edges that meet this requirement is designated as eINC .

A related value that is more expressive of the number of

corresponding residues within the inclusion threshold is developed

in the next section. Note that descriptor 2 was used initially, but

only as an interaction parameter in the final parameter set. The

parameters used for the initial fit are given in Table 1 for

completeness.

3) Fraction of Correctly Placed Residues
The goal is to develop a metric that estimates the number of

residues that are considered to be included in the template by

counting the number of distances that fall within a certain

threshold. In order to do this, we derive the relation between the

number of edges that fall within a nominal tolerance (0.5 Å, as

above) and the corresponding number of nodes that are correctly

placed. We consider a template having nT residues, or nodes, and

the search-result graph of the corresponding structure residues

having nINC nodes that are considered to be within tolerance and

nEXC nodes that are considered to be outlying residues. The total

expression is.

nT~nEXCznINC : ð5Þ

Figure 8. Diagram for template search procedure. The template
distance matrix is shown for reference. The structure contains a
supermatrix of distances, and the template search procedure searches
for the sequence whose distance matrix best corresponds to the
template. This is a variant of the Ullman subgraph isomorphism
problem.
doi:10.1371/journal.pone.0062535.g008
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The total number of edges can be written, correspondingly, as

eT~eEXCzeINC~
1

2
nT
:(nT{1), ð6Þ

where eINC is measured directly from the search procedure. For a

graph of nT nodes, we assume that nT{1 edges are lost by

removal of one node, nT{2 by removal of the second node, and

so on. We count the number of excluded edges as

eEXC~
XnEXC

i~1

nT{1~nT
:nEXC{

1

2
nEXC

:(nEXCz1): ð7Þ

Substituting Equation 7 into Equation 6 gives

eT~eINCznT
:nEXC{

1

2
nEXC

:(nEXCz1): ð8Þ

Solving Equation 8 for the number of excluded nodes is a

quadratic equation. Taking only the physically meaningful root

gives

nEXC~nT{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nT

2{nTz2eINC{2eTz1=4

q
{1=2: ð9Þ

This expression has a minimum value of 0 when all edges are

within the cutoff threshold and a maximum of nT{1 when no

edges are within the threshold, since the final node is not counted

in the exclusion.

In either case, we can estimate the fraction of residues that are

included by the simple form given as

fINC~1{
nEXT

nT{1
ð10Þ

4) Number of Residues Removed from Target
There are many cases where a residue that is part of the

template sequence is not present in the target structure. Rather

than exclude these from the search altogether, the method used

here is to construct a template with a sequence with only those

residues that appear within the structure. Accounting for missing

residues in the analysis is particularly important for Process 1 to

work correctly. If a residue is entirely absent from the target, the

graph search procedure rebuilds the template with the residue

removed so that the subgraph search works correctly. The

removed residue can be either standard or nonstandard. The

number of missing standard residues is recorded as a descriptor.

For example, if the structure in Figure 8 contained no ‘D’ residues,

the procedure would be to construct the template with only ‘ABC’

residues and locate the best fit to the ABC graph. The calculation

of Eq. 10 would be then recorded as 1.0, but the number of

missing standard residues would be recorded as 1 if D were a

standard residue, and 0 if it were a cofactor or ion. While this

descriptor was not ultimately used in the final parameter set, it was

used in an intermediate parameter set and is reported here for

completeness.

5) Backbone RMSD of Aligned Residues
Once a substructure is identified, an alignment can be

performed. For all standard and nonstandard residues, the atomic

coordinates are selected from the backbone of the template and

structure proteins, which includes the N, Ca, and carbonyl

carbons of the residues. For cofactors and ions, only the centroid

atom is used for the alignment coordinates. Since the atoms to be

aligned are always in a one-to-one mapping, a least-squares

quaternion alignment procedure [79–81] is used to align the atoms

and compute the root mean square distance between the aligned

coordinates. This metric is intended to capture more structural

information about the relation between the binding sites, since the

Ca metric is a simpler metric designed to facilitate the library

search procedure.

6) Average Distance to SiteMap Pocket Center
The Schrodinger SiteMap package [56,57] is used to generate a

list of binding pocket candidates which are rank ordered according

to physical properties that determine the druggability of the

pocket. All pockets that are identified are considered. The

SiteMap procedure is very reliable at identifying protein surface

concavities, or pockets, that often correspond to the catalytic

center. There are some exceptions in the CSA that do not conform

to this model, however. Trypsin, for example, has catalytic

residues on the protein surface to facilitate cleavage of a protein

upon forming a protein-protein interaction. In general, however, a

catalytic region is thought to exist within what is typically

identified as a pocket, and the sitemap prediction provides

valuable additional information about the binding site of interest.

It is also based entirely on physical properties alone and is

completely independent of any information-based approach.

Figure 9. Typical calculation times for subgraph matching
calculation. A) Data plot shown for Pmax = 100. Timings are reported
for pre-constructed distance matrices of protein 1 eus for comparison
with 1980 templates from author curated CSA. nS is the number of sites
in the distance supermatrix constructed for each template comparison.
B) Polynomial coefficients of fits to data for Pmax = 100 and 50, with
correlation coefficients.
doi:10.1371/journal.pone.0062535.g009
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The center of each pocket identified by SiteMap is computed

from the simple average of the coordinates of the ‘gridpoints’ that

populate each pocket. The average distance to the center is then

computed as the average of each of the distances from the residue

centroid coordinates to the pocket center and recorded as dC . The

closest average distance is selected as the descriptor for the binding

site candidate, and (dCz0:1){1 is computed so that the metric is

larger for more favorable distances, with the constant of 0.1 added

to the denominator to prevent singularities.

7) Interaction Descriptor: Number of Correctly Placed
Residues and Site Center Distance

The use of interaction descriptors is a standard practice in

logistic regression [82]. For the present case, the descriptor

originates from the observation that a favorable configuration

around the binding site is more significant if there are more

residues in the binding site described. Many of the descriptors are

intrinsic variables, as they are normalized to either the number of

residues or the number of edges in the related graph. All of the

descriptors listed are intrinsic except Descriptor 2, which is

extrinsic with regard to the number of edges eT . However,

Descriptor 2 is not used as a final parameter (see Table 1). To

provide another extrinsic descriptor, the quantity

nT
:fINC=(dCz0:1), is used, which combines Descriptors 3 and 7.

Size Specific Parameterization of Descriptors
The size of the template site affected the character of the site

search and characterization, particularly for templates with fewer

than 4 residues. For example, a site with few residues will produce

predictions of a lower certainty from the template matching

procedure, simply because there is less information in the distance

matrix of smaller templates. As a result, the parameterization of

many of the descriptors was treated as being dependent on the

number of residues in the template. To achieve this, a Heaviside-

like switching function was used that allowed for different

parameters to be fit for templates having different numbers of

residues. The descriptors for which this appeared to provide

improvements were 1, 4, 5, and 6. For all cases given except

descriptor 6, the residue-dependence was parsed as template sizes

of 2, 3, and 4–7 residues. Table 1 lists all parameters and the fitted

values from an initial scoring function, a ‘‘minimal’’ regression that

illustrates the discriminatory value of a limited descriptor set, and

the final logistic scoring function used in this study. The total time

to completion for the full analysis, including SiteMap and all

postprocessing, was under an hour running on one compute node,

comprising of 16 compute cores (2.3 GHz AMD Opterons) and

32 Gb of shared RAM. This runtime includes additional

overheads that were not specifically optimized, as the focus here

was in optimizing the core routine.

Results

We developed an automated protein function identification

method based on the hypothesis that catalytic residues and their

geometric arrangement are key determinants for enzymatic

chemical activity. Our approach transfers function to a query

protein structure if the query structure displays amino acid

Table 1. Initial parameters are from a preliminary fit as described in Appendix S3 in File S1.

Estimated coefficients by regression

Descriptor Initial minimal Inter-mediate Final

0. Intercept 17.74 23.09 218.86 24.8

1. Distance similarity - rmsd(dT,dS) 22.1a 1.35a –

2-residue templates – – 20.60 0.21

3-residue templates – – 20.92 20.91

4–7-residue templates – – 20.45 20.01

2. Number of distances within threshold 0.94a – – –

3. Fraction of residues within threshold 218.18a 20.84a 19.15 21.73a

4. Number of residues removed from template – – 22.764 –

5. Backbone rmsd of aligned residues 23.94a – –

2-residue templates – – 0.49 0.55

3-residue templates – – 3.15 5.33

4–7-residue templates – – 0.50 1.84

6. Average distance to SiteMap center 20.15a,b – –

1–3-residue templates – – –

4–7-residue templates – – 244.89c 18.61c

7. Interaction parameter (f ? ninc ? (dc+0.1)21 ) – – –

2-residue templates – – 23.80 2.83

3-residue templates – – 211.47 212.63

4–7-residue templates – – 14.81 3.18

The minimal parameter set is plotted as (f,Ca) in Figure 7. Initial and intermediate parameter sets are used for preliminary rankings, as described in the text. Final
parameters as used for remaining data analyses.
aConstrained to be equal across 2, 3, and 4–7-residue templates.
bComputed as dC.
cComputed as (dC+0.1)21.

doi:10.1371/journal.pone.0062535.t001
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positions and identities consistent with structures of experimentally

annotated enzymes. The procedure performs geometric matching

of putative catalytic residues on a query structure to a library of

experimentally annotated catalytic residue positions. The refer-

ence structures library came from the original CSA (Table of

Thornton version 2.12.12), as is found on the Thornton site

http://www.ebi.ac.uk/thornton-srv/databases/CSA/. In addi-

tion, we use other descriptors, based on both geometric and

physical properties, to improve the predictions and use these

descriptors in a logistic regression scoring procedure. Table 1 lists

these descriptors, which include a variety of geometric descriptions

and quantifications of both the reduced representation of the

binding sites and the full backbone coordinates of the binding sites.

The average SiteMap distance, which is a more physical

descriptor, is also included.

Selection of the Training Set
As mentioned earlier, the CSA contains two categories of

entries, consisting of literature verified entries (labeled as LIT) and

PSIBLAST labeled entries, where each PSIBLAST entry is related

to a LIT entry via sequence homology. For the training set, only

PSIBLAST entries were selected as inputs for the search

procedure. In this exercise, the input structures play the role of

query sequences. A ‘‘correct’’ search result (true positive) is defined

as a template whose four digit EC number matches the target EC

number as it appears in the protein databank file.

To assemble the training data set, 108 CSA PSIBLAST entries

were randomly chosen from the CSA. This list was further down-

selected by eliminating:

N Targets (remaining PSIBLAST entries) that did not have the

same full four-digit EC number – as given in the protein

databank file – the corresponding LIT entry.

N Targets that contain only one residue in the binding site or that

have a related LIT entry with only one residue. Single-residue

entries are retained in the CSA literature table for complete-

ness, but such templates are not used in the search procedure,

as they have no distance matrix.

N Targets for which there was no search procedure result for the

related LIT template. This can occur when one of the residues

to be compared falls outside of the 1.5 Å threshold, or when

the correct substructure does not fall within the top Pmax scores

in the search procedure at any step in the iteration. The

original setting of Pmax~50 was later adjusted to have a value

of 100 to address this limitation.

After applying these criteria, 66 structures remained. The list of

PDB codes in the training and test data sets are given in Table 2.

Building the Logistic Regression Model based on the
Training Set

The search procedure (Process 1) was performed for each of

these target structures. The results for each structure – that is,

template ‘‘hits’’ – were ranked by their score based on an initial,

exploratory logistic regression run on a more limited data set (see

Table 1 for initial parameters). To ensure that ‘‘difficult’’ cases are

present in the training data set, the top 20 hits were retained for

each of the 66 PSIBLAST targets. We searched for correct results

within the top 20 hits for each template. In cases where the correct

template was not among the top 20 hits, the correct hit was added

to the data set. During the course of estimating potential scoring

functions, tests were conducted on the effects of rescoring and re-

ranking all of the hits for selected targets. These tests showed that

the training sample hits did not sufficiently represent the universe

of negative cases. To remedy this, additional negative cases were

randomly selected from the search procedure result and included

in addition to the top 20 hits as described above.

The training set, comprised of this list of data points,

descriptors, and positive/negative annotations, was provided as

an input to the logistic regression procedure in the R statistical

package [83]. A series of parameter combinations were tried,

including different combinations of template size dependence.

This process was guided generally by selecting combinations of

parameters that lower Akaike Information Criterion (AIC) and

which ultimately result in a high value of the AUC (for the training

set alone). Table 1 lists the final combinations of parameters that

were deemed to give best performance overall.

Validation of the Model against a Test Set
The test set was constructed in a similar manner to the training

set. From the CSA, 106 PSIBLAST entries were randomly

selected, excluding those which were templates, single-residue

sites, or which did not have matching EC entries in the PDB

record, as was previously described. In addition two entries that

had very poor structural similarity to the related LIT entry were

also removed from the test set. One of these two removed entries

was a member of the 1 gim family, 1 hop, which has rmsddm of

3.25 Å compared to the 1 gim template, and a member of the

PDB ID 1fr8 family, 1j8w, which has rmsddm of 2.15 Å compared

to the 1fr8 template. The final test set contains 67 PSIBLAST

entries as targets.

To select a list of known negatives and positives, we used an

intermediate iteration parameter set to generate scores and

rankings. The parameter set is in Table 1 and labeled as an

intermediate. This parameter set was ultimately refined for

performance, but the test set data, did not change during this

Table 2. List of PDB codes used in test and training sets.

Training Set

1b7g,1bwk,1cla,1cy1,1d6n,1dbz,1dv7,1f4c,1g02,1ge6,1gin,1gzg,1hqd,1hzz,1i2o,1igw,1jiu,1jp7,1kgq,1krc,1l5w,1lmz,1mj5,1nwc,1ojp,1p5g,1q2e,1rrj,1rsm,1rwp,1s70,1t2a,
1t3z,1t4d,1ucl,1w23,1w3y,1wkl,1wo8,1wow,1wyi,1yai,1ykn,1ytn,1z83,1z8x,2aad,2bcd,2be7,2brv,2g22,2hb1,2ido,2j4s,2ori,2p9e,2qll,2qmo,2v6s,2vel,2vf5,2vmn,3c80,3cn9,
3cuf,3d4z,3dt2,3dzc,3eju,3fpd,3gxf,3hh4,3i4c, 3i9l,4fua

Test Set

1ado,1ajb,1blm,1cib,1d4e,1e2r,1ep9,1eus,1f3x,1f49,1fdv,1g1y,1g87,1ggf,1i45,1ib4,1iu8,1jol,1k3t,1kak,1kg4,
1khn,1kvy,1l7a,1nto,1nwr,1p07,1rry,1ru1,1tsl,1wdd,1xpt,1xv8,1xww,1yja,2a3t,2ayl,2ayo,2c0h,2cba,2cnh,2ewn,
2ez9,2fbp,2fpt,2nu8,2nze,2o3q,2otc,2pov,2ppy,2qd4,2qu9,2veg,2wfp,2whr,2zj3,2zyd,3bbf,3c52,3czn,3dhe,
3ehb,3fgd,3gtd,3it1,3pf

doi:10.1371/journal.pone.0062535.t002
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process. As was the case in the training set, the top 20 hits against

each target were selected, with positives not in the top 20 included

in the analysis.

To assess the quality of both the training set and the test set, a

standard Receiver Operating Curve (ROC) analysis was per-

formed, with the area under the curve (AUC) treated as a quality

metric. See Appendix S2 in File S1 for a definition of the statistical

terms used. In general, a ‘perfect’ ROC curve would be a step

function, and the area under the ROC (AUC) would be 1. By

comparison, a ROC plot that falls on the diagonal would be

considered no better than random with an AUC of 1/2.

Before the receiver-operator characteristic (ROC) curves were

constructed, ‘‘duplicate results’’ were deleted from the test data set.

That is, occasionally there were multiple correct hits (‘‘positives’’) –

typically, additional binding sites on a multimeric template.

Similarly, there were multiple incorrect hits (‘‘negatives’’). We

did not want to overstate either the true positive rate or the false

positive rate in constructing the ROC curves, so only the highest-

scoring of such duplicate results were retained in the test data set.

To judge the improvement due to adding the various

descriptors, a regression was performed using a minimal param-

eter set, which corresponds roughly to the information provided by

Process 1 alone. The AUC is vastly improved from 0.877 to 0.971,

when the final parameter set is included (Figure 10). Figure 10

clearly shows that the descriptors improve the predictive capacity

of the procedure. Thornton also reported a multistage procedure,

with the second stage consisting of a statistical procedure [46] but

with a less comprehensive descriptor set, and we were able to

achieve higher AUCs.

The overall performance of the regression model is shown for

both the training set (Figure 11) and the test set (Figure 12).

Figures 11a and 12a show the ROC plots with the overall

performance plotted in black. The AUCs for the complete training

and test set are 0.9714 and 0.8951, respectively, which is very good

performance overall, both in terms of the quality of the fitting to

the training set, as well as its ability to correctly predict the test

data points.

Discussion

Our main interest here is to evaluate the performance of our

template identification approach. A unique quality of our

procedure is that it is able to detect binding sites with a diverse

template library (the CSA). Particular attention was given to a

procedure that could identify templates of varying size. To better

understand the influence of binding site size on the ability to

correctly locate the template within the targets, the performance

was partitioned by the size of the template corresponding to the

particular target studied. The performance dependence on

binding site size is most evident in Table 3. We note first that

the two-critical-residue cases perform poorly on the test data. The

two-residue cases are extraordinarily difficult to detect in general

because there are many false positives particularly in the graph

searches. The three-residue cases are difficult to detect using the

template matching algorithm alone. For these cases, the logistic

regression procedure provides a markedly better performance.

Since catalytic triads, or sites consisting of three critical residues,

make up such a large component of the CSA (roughly one-quarter

of the CSA are triads), the addition of the postprocessing steps

provide good performance on what would otherwise be considered

as marginal performance cases. The choice of descriptors for the

second stage scoring also provided a significant improvement in

performance. Figure 10 shows the improved AUCs obtained by

the incorporation of the final, optimized descriptor set relative to a

minimal descriptor set.

The level of sensitivity is difficult to directly compare between

our algorithm and those which are widely used. The original JESS

development study [84] provides some statistical measures that can

be compared. The dataset used by Torrance et al excluded a larger

fraction of the CSA than our present study. The Torrance dataset

[84] included only families with at least three catalytic residues,

and family members (PSIBLAST entries) that did not have residue

substitutions compared to the family parent (LIT entry). We

developed a similar dataset (listed in Table S1) for a more direct

comparison. With this dataset, our overall AUC is improved from

0.976 (see Figure 10) to 0.981 (see Figure S1a). The Torrance

study does not report AUCs, but they do report MCCs and

corresponding sensitivities, or TPRs, which can also be regarded

as fitness measures. For their best template matching approach,

they report a maximum MCC of 0.84 and a TPR of 0.75. Our

broader dataset study reports an MCC of 0.75 with a TPR of 0.75.

The MCC is a measure of efficiency in distinguishing positives

from negatives, while the TPR is the fraction of correctly identified

positives. While our MCC is less than the Torrance measure, our

TPR is comparable. Most importantly, the metrics measure

performance relative to the dataset studied. Since our dataset

includes more challenging cases, the difference in performance is

not entirely unexpected. The performance of the training set on

two residue site templates alone can explain this discrepancy.

Figure 11 shows that the MCC of the two residue site set peaks at

0.65, giving a TPR of only 0.6, which is substantially lower than

any of the other templates considered. When we compare the

performance of our approach on a dataset that more closely

follows the Torrance study, we obtain a broad maximum MCC of

better than 0.80 with TPRs ranging from 0.84–0.92 (see Figure

S1b). The MCC values here are comparable, and our TPRs are

clearly better. We also note that some of the earlier work from

Wallace [85], when using JESS, reported an AUC of 0.82, as

compared to our challenging training set AUC of 0.976 (Figure 10).

The Kavraki group reports AUCs that are similar to ours [4949]

Figure 10. Comparison of performance on training data using
minimal (naı̈ve) descriptor set and final parameter set. Curve in
gray is generated using descriptors resulting from analysis of process 1
output only. Final regression contains full descriptor set as described in
the text.
doi:10.1371/journal.pone.0062535.g010
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but also uses a small subset of the CSA, excluding three residue site

templates. To our knowledge, our study uses one of the most

comprehensive libraries of sites for training and testing. Our first

generation performance measures are comparable to the work of

the Thornton and Kavraki groups, which are representative of the

state of the art in catalytic template matching.

Catalytic sites involving four or more critical residues can often

be unambiguously identified using graph comparison results,

procedure, and the addition of the descriptor procedure provides

an additional enhancement. The performance in identifying sites

of this size range is likely to be affected by the size of the dataset

concomitant fitting procedures, such that it may be a guideline for

constructing future catalytic annotations to include at least four or

more critical residues as a catalytic site definition. For most cases,

the true positive rate rises to a value close to 1 for logistic

thresholds greater than 0.75, suggesting that a threshold value of

approximately 0.75 is a good indicator of a positive. Thus, we can

determine the quality of the match not only by the ranking, but by

the value of the scoring function relative to the threshold. Sites of

four residues provide high quality matches and do not present

scaling challenges. Thus, the four residue sites could be regarded

as an ideal template size for the purposes of designing template

libraries.

For larger templates (5–15), more pressure is placed on a

scalable search than on the false positive rates. The number of

coordinates in the template is sufficient to define the site uniquely,

but the large number of possible comparisons to construct can

result in NP scaling. Our approach has been shown to scale

linearly with template size, which allows for a nearly arbitrarily

Figure 11. Performance of training dataset. a) ROC plots b) True Positive Rate (TPR) vs. logistic score (threshold) c) Matthews Correlation
Coefficient versus logistic score.
doi:10.1371/journal.pone.0062535.g011

Rapid Searching of Proteins for Catalytic Motifs

PLOS ONE | www.plosone.org 13 May 2013 | Volume 8 | Issue 5 | e62535



large template to be compared with relatively modest computing

resources.

We believe the method has great promise for scalability because

of the very efficient graph search algorithm presented. The

postprocessing steps provide an additional increase in perfor-

mance, and the overall procedure is very robust with regard to

template size as a result. Future work will incorporate searches

across the entire protein databank.

Conclusions
We have developed an automated procedure for protein

function prediction based on the identification of catalytic site

residues, called the Catalytic Site Identification (CatSId). The

Figure 12. Performance of test dataset. a) ROC plots b) True Positive Rate (TPR) vs. logistic score (threshold) c) Matthews Correlation Coefficient
vs logistic score.
doi:10.1371/journal.pone.0062535.g012

Table 3. Area under ROC curves (AUR) for templates of
differing sizes, as well as full dataset.

AUC(train) AUC(test)

nT = 2 0.9411 0.5413

nT = 3 0.9821 0.9040

nT = 4 0.9932 0.9935

nT = 5,6,7 0.9622 0.9369

All 0.9714 0.7989

doi:10.1371/journal.pone.0062535.t003
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procedure hinges on matching residue arrangements in a query

series and comparing (matching) to a library of manually curated

catalytic residue templates. The initial template matching proce-

dure is an extremely rapid subgraph search method, while not

sacrificing the necessary breadth in the search to locate all

candidate sites. The scaling properties of this template search

procedure suggest that much larger libraries of catalytic sites can

be searched readily without catastrophic limitations on library or

template size. Since the template matching procedure has

excellent scaling properties, the overall procedure will be able to

very accurately identify templates with a larger number of critical

residues without scaling difficulties. The logistic regression

procedure provides improvement over the template matching

procedure alone by incorporating a number of empirically derived

descriptors to enhance the prediction. The success of this approach

provides a foundation for many structural approaches to enzyme

functional annotation. For example, a particular enzyme motif can

now be readily used as a template to search against the entire

protein databank for viable protein structures that may or may not

be annotated. The detection procedure does not rely on global

structural features in the way that many structural similarity

procedures do and could open new directions in enzyme

annotation and design. As a general procedure, however, the site

identification procedure is of course strongly limited by the quality

and quantity of the catalytic site library. While the CSA is an

invaluable resource, a significantly expanded database of catalytic

sites is clearly needed to advance the field. The scaling of the

search of an expanded library is easily within current computing

capacity. The performance of the present approach is sufficiently

impressive as to recommend the development of a larger database

in the future.
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41. Jambon M, Imberty A, Deléage G, Geourjon C (2003) A new bioinformatic
approach to detect common 3D sites in protein structures. PROTEINS:

Structure, Function, and Bioinformatics 52: 137–145.

42. Shulman-Peleg A, Nussinov R, Wolfson HJ (2004) Recognition of functional
sites in protein structures. Journal of Molecular Biology 339: 607–633.

43. Wolfson HJ, Rigoutsos I (1997) Geometric hashing: An overview. Computa-

tional Science & Engineering, IEEE 4: 10–21.

44. Brakoulias A, Jackson RM (2004) Towards a structural classification of

phosphate binding sites in protein–nucleotide complexes: An automated all-
against-all structural comparison using geometric matching. PROTEINS:

Structure, Function, and Bioinformatics 56: 250–260.

45. Wallace AC, Borkakoti N, Thornton JM (1997) TESS: a geometric hashing
algorithm for deriving 3D coordinate templates for searching structural

databases. Application to enzyme active sites. Protein Science 6: 2308–2323.

46. Barker JA, Thornton JM (2003) An algorithm for constraint-based structural

template matching: application to 3D templates with statistical analysis.

Bioinformatics 19: 1644–1649.

47. Nosrati GR, Houk K (2012) SABER: A computational method for identifying

active sites for new reactions. Protein Science 21: 697–706.

48. Chen BY, Fofanov VY, Bryant DH, Dodson BD, Kristensen DM, et al. (2007)

The MASH pipeline for protein function prediction and an algorithm for the

geometric refinement of 3D motifs. Journal of Computational Biology 14: 791–
816.

49. Moll M, Bryant DH, Kavraki LE (2010) The LabelHash algorithm for
substructure matching. BMC bioinformatics 11: 555.

50. Moll M, Kavraki LE. LabelHash: A flexible and extensible method for matching

structural motifs; 2008.

51. Gold ND, Jackson RM (2006) Fold independent structural comparisons of

protein-ligand binding sites for exploring functional relationships. Journal of

Molecular Biology 355: 1112–1124.

52. Gold ND, Jackson RM (2006) SitesBase: a database for structure-based protein–

ligand binding site comparisons. Nucleic acids research 34: D231–D234.

53. Kinjo AR, Nakamura H (2007) Similarity search for local protein structures at
atomic resolution by exploiting a database management system. Biophysics 3:

75–84.

54. Porter CT, Bartlett GJ, Thornton JM (2004) The Catalytic Site Atlas: a resource

of catalytic sites and residues identified in enzymes using structural data. Nucleic

acids research 32: D129–D133.

55. Bairoch A (1994) The ENZYME data bank. Nucleic acids research 22: 3626–

3627.

56. Halgren T (2007) New Method for Fast and Accurate Binding-site Identification

and Analysis. Chemical biology & drug design 69: 146–148.

57. Halgren TA (2009) Identifying and characterizing binding sites and assessing
druggability. Journal of chemical information and modeling 49: 377–389.

58. Liang MP, Banatao DR, Klein TE, Brutlag DL, Altman RB (2003)
WebFEATURE: an interactive web tool for identifying and visualizing

functional sites on macromolecular structures. Nucleic acids research 31:

3324–3327.

59. Brylinski M, Skolnick J (2008) A threading-based method (FINDSITE) for

ligand-binding site prediction and functional annotation. Proceedings of the
National Academy of Sciences 105: 129.

60. Skolnick J, Brylinski M (2009) FINDSITE: a combined evolution/structure-

based approach to protein function prediction. Briefings in bioinformatics 10:
378–391.

61. Yang LW, Bahar I (2005) Coupling between catalytic site and collective
dynamics: a requirement for mechanochemical activity of enzymes. Structure

13: 893–904.

62. Holliday GL, Almonacid DE, Bartlett GJ, O’Boyle NM, Torrance JW, et al.
(2007) MACiE (Mechanism, Annotation and Classification in Enzymes): novel

tools for searching catalytic mechanisms. Nucleic Acids Research 35: D515–
D520.

63. Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting

protein function from 3D structure. Nucleic Acids Research 33: W89–W93.

64. Whisstock JC, Lesk AM (2003) Prediction of protein function from protein

sequence and structure. Quarterly reviews of biophysics 36: 307–340.
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