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To the Editor:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a
coronavirus identified as the cause of an outbreak of coronavirus
disease (COVID-19), which now causes death in over 6% of infected
individuals worldwide (1–5). Patients with confirmed infection
have reported respiratory illness, such as fever, cough, and
shortness of breath (6). Once contacted with the human airway, the
spike proteins of this virus can associate with the surface receptors
of sensitive cells, which mediate the entrance of the virus into target
cells for further replication. Xu and colleagues first modeled the
spike protein to identify the receptor for SARS-CoV-2 and
indicated that ACE2 (angiotensin-converting enzyme 2) could be
the receptor for this virus (7). ACE2 is previously known as the
receptor for severe acute respiratory syndrome coronavirus (SARS-
CoV) and human coronavirus NL63 (HCoV-NL63) (8–10). Studies
focusing on the genome sequence and structure of the receptor-
binding domain of the spike proteins further confirmed that the
new coronavirus can efficiently use ACE2 as a receptor for cellular
entry, with an estimated 10- to 20-fold higher affinity to ACE2
than SARS-CoV (11, 12). Zhou and colleagues conducted virus
infectivity studies and showed that ACE2 is essential for SARS-
CoV-2 to enter HeLa cells (13). These data indicate that ACE2 is
the receptor for SARS-CoV-2.

The tissue expression and distribution of the receptor decide
the tropism of the virus infection, which has a major implication for
understanding its pathogenesis and designing therapeutic strategies.
Previous studies have investigated the RNA expression of ACE2 in
72 human tissues and demonstrated its expression in lung and
other organs (14). The lung is a complex organ with multiple types
of cells, so such real-time PCR RNA profiling based on bulk tissue
could mask the ACE2 expression in each type of cell in the
human lung. The ACE2 protein level was also investigated by
immunostaining in lung and other organs (14, 15). These studies
showed that in the normal human lung, ACE2 is mainly expressed
by type II alveolar (AT2) and type I alveolar (AT1) epithelial
cells. Endothelial cells were also reported to be ACE2 positive.
Immunostaining detection is a reliable method for the
identification of protein distribution, yet accurate quantification

remains a challenge for such analysis. The recently developed
single-cell RNA-sequencing technology enables us to study the ACE2
expression in each cell type and provides quantitative information
at a single-cell resolution. Previous work has built up the online
database for single-cell RNA-sequencing analysis of eight normal
human lung transplant donors (16). In the current work, we used the
updated bioinformatics tools to analyze the data. Some of the results
of these studies have been previously reported in the form of a
preprint (https://doi.org/10.1101/2020.01.26.919985) (16).

We analyzed 43,134 cells derived from the normal lung tissue of
eight adult donors (Figure 1A). We performed unsupervised graph-
based clustering (Seurat version 2.3.4), and for each individual, we
identified 8–11 transcriptionally distinct cell clusters based on their
marker gene expression profile. Typically, the clusters include AT2
cells, AT1 cells, airway epithelial cells (ciliated cells and club cells),
fibroblasts, endothelial cells, and various types of immune cells.
The cell cluster map of a representative donor (a 55-yr-old Asian
man) was visualized using t-distributed stochastic neighbor
embedding (tSNE), as shown in Figure 1B.

Next, we analyzed the cell type–specific expression pattern
of ACE2 in each individual. For all donors, ACE2 is expressed
in 0.64% of all human lung cells. The majority of the ACE2-
expressing cells (83% in average) are AT2 cells. Other ACE2-
expressing cells include AT1 cells, airway epithelial cells,
fibroblasts, endothelial cells, and macrophages. However, their
ACE2-expressing cell ratio is relatively low and is variable among
individuals. For the representative donor (Asian male, 55 yr old),
the expressions of ACE2 and cell type–specific markers in each
cluster are demonstrated in Figure 2A.

There are 1.46 0.4% of AT2 cells expressing ACE2. To further
understand the special population of ACE2-expressing AT2, we
performed a gene ontology (GO) enrichment analysis to study
which biological processes are involved with this cell population
by comparing them with the AT2 cells not expressing ACE2.
Surprisingly, we found that multiple viral life cycle–related
functions are significantly overrepresented in ACE2-expressing
AT2 cells, including those relevant to viral replication and
transmission (Figure 2B). We found an upregulation of CAV2
and ITGB6 genes in ACE2-expressing AT2. These genes are
components of caveolae, which is a special subcellular structure
on the plasma membrane critical to the internalization of
various viruses, including SARS-CoV (17–19). We also found
an enrichment of multiple ESCRT (endosomal sorting complex
required for transport) machinery gene members (including
CHMP3, CHMP5, CHMP1A, and VPS37B) in ACE2-expressing
AT2 cells that were related to virus budding and release (20, 21).
These data showed that this small population of ACE2-expressing
AT2 cells is particularly prone to SARS-CoV-2 infection.

We further analyzed each donor and their ACE2-expressing
patterns. As the sample size was very small, no significant
association was detected between the ACE2-expressing cell number
and any characteristics of the individual donors. But we did notice
that one donor had a five-fold higher ACE2-expressing cell ratio
than average. The observation on this case suggested that ACE2-
expressing profile heterogeneity might exist between individuals,
which could make some individuals more vulnerable to SARS-CoV-2
than others. However, these data need to be interpreted very
cautiously because of the very small sample size of the current
dataset, and a larger cohort study is necessary to draw conclusions.
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Altogether, in the current study, we report the RNA expression
profile of ACE2 in the human lung at single-cell resolution. Our
analysis suggested that the expression of ACE2 is concentrated in a
special small population of AT2 cells, which also expresses many
other genes favoring the viral infection process. It seems that SARS-
CoV-2 has cleverly evolved to hijack this population of AT2 cells for
its reproduction and transmission. Targeting AT2 cells explained
the severe alveolar damage and minimal upper airway symptoms
after infection by SARS-CoV-2. The demonstration of the distinct
number and distribution of the ACE2-expressing cell population in
different cohorts can potentially help to identify the susceptible
population in the future. The shortcomings of the study are the
small sample number and the fact that the current technique can
only analyze the RNA level and not the protein level of single cells.
Furthermore, although previous studies reported abundant
ACE2 expression in pulmonary endothelial cells (14, 22), we did
not observe high ACE2 RNA levels in this population. This
inconsistency may be partly due to the fact that the cell number and
portion of endothelial cells in the current dataset is relatively
smaller than expected. Indeed, because the limitation of sample
collection and processing, the analyzed cells in this study may not
fully represent the whole lung cell population. Future quantitative
analysis at the transcriptomic and proteomic level in a larger total
population of cells is needed to further dissect the ACE2 expression
profile, which could eventually lead to novel anti-infective strategies,
such as ACE2 receptor blockade (23, 24), ACE2 protein
competition (25), or ACE2-expressing cell ablation.

Methods

Public datasets (Gene Expression Omnibus GSE122960) were used
for bioinformatics analysis. First, Seurat (version 2.3.4) was used to
read a combined gene-barcode matrix of all samples. Low-quality

cells with less than 200 or more than 6,000 detected genes were
removed; cells were also removed if their mitochondrial gene
content was,10%. Only genes found to be expressed in more than
three cells were retained. For normalization, the combined gene-
barcode matrix was scaled by the total unique molecular identifier
counts, multiplied by 10,000, and transformed to log space.
The highly variable genes were identified using the function
FindVariableGenes. Variants arising from number of unique
molecular identifiers and the percentage of mitochondrial genes
were regressed out by specifying the vars.to.regress argument in
Seurat function ScaleData. The expression level of highly variable
genes in the cells was scaled, centered along each gene, and
conducted to principal component (PC) analysis.

Then the number of PCs to be included in downstream
analysis was assessed by 1) plotting the cumulative SDs accounted
for each PC using the function PCElbowPlot in Seurat to identify
the “knee” point at a PC number after which successive PCs
explain the diminishing degrees of variance and 2) by exploring
primary sources of heterogeneity in the datasets using the PC
Heatmap function in Seurat. Based on these two methods, the first
top significant PCs were selected for two-dimensional tSNE,
which was implemented by the Seurat software with the default
parameters. FindClusters was used in Seurat to identify cell
clusters for each sample. After clustering and visualization with
tSNE, the initial clusters were subjected to inspection and
merging based on the similarity of marker genes and a function
for measuring phylogenetic identity using BuildClusterTree in
Seurat. The identification of cell clusters was performed on the
final aligned object, guided by marker genes. To identify the
marker genes, differential expression analysis was performed by
the function FindAllMarkers in Seurat with the Wilcoxon rank
sum test. Differentially expressed genes that were expressed at
least in 25% of cells within the cluster and with a fold change of
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Figure 1. Single-cell RNA-sequencing analysis of normal human lungs. (A) Characteristics of lung transplant donors for single-cell RNA-sequencing
analysis. (B) Cellular cluster map of the Asian male donor. All eight samples were analyzed using the Seurat R package. Cells were clustered using a
graph-based, shared nearest-neighbor clustering approach and visualized using a t-distributed stochastic neighbor embedding plot. AT1= type I alveolar;
AT2= type II alveolar; tSNE= t-distributed stochastic neighbor embedding.
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Figure 2. Gene expression analysis in ACE2 (angiotensin-converting enzyme 2)-expressing type II alveolar (AT2) cell population. (A) Violin plots of
expression for ACE2 and select cell type–specific marker genes significantly upregulated in distinct lung cell clusters from an Asian male donor. AGER is a
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.0.25 (log scale) were considered to be marker genes. tSNE plots
and violin plots were generated using Seurat.

For GO enrichment analysis, differentially expressed genes of
the ACE2-expressing AT2 cells were calculated for each donor
when they were expressed in at least 25% of cells within the cluster
and had a fold change of . 0.25 (log scale) compared with all AT2
cells. All differentially expressed genes were combined to a gene list
for GO analysis by the ClusterProfiler R package. GO terms with a
corrected P value of less than 0.05 were considered significantly
enriched by differentially expressed genes. Dot plots were used to
visualize enriched terms by the enrichplot R package. n
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