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Tree structured modeling is a data mining technique used to recursively partition a dataset into relatively homogeneous subgroups
in order to make more accurate predictions on generated classes. One of the classification tree induction algorithms, GUIDE,
is a nonparametric method with suitable accuracy and low bias selection, which is used for predicting binary classes based on
many predictors. In this tree, evaluating the accuracy of predicted classes (terminal nodes) is clinically of special importance. For
this purpose, we used GUIDE classification tree in two statuses of equal and unequal misclassification cost in order to predict
nonalcoholic fatty liver disease (NAFLD), considering 30 predictors. Then, to evaluate the accuracy of predicted classes by using
bootstrap method, first the classification reliability in which individuals are assigned to a unique class and next the prediction
probability reliability as support for that are considered.

1. Introduction

Logistic regression and classification tree (CT) are two dif-
ferent techniques used to consider the relationship between
a set of independent variables and binary response variable
[1]. However, in logistic regression, by increasing the inde-
pendent variables, some problems such as multicollinearity
among the variables and their interactions may be serious in
investigating the nature of each covariate relation. For these
reasons, CTwould be a suitable case for analysis of these types
of variables. CT is a nonparametric method which is suitable
whenwe aim to consider the effects of risk factors on complex
diseases directly or indirectly [2, 3].

However, one of the weaknesses of classification trees is
that they are very sensitive to small revision in the training
set, and CT is built upon them, so that with small changes
in this set the entire structure of the tree may be reformed.
On the other hand, in traditional decision trees, CT analysis
provides only a classification and a probability estimate.
The classification results from assigning an observation to
a unique class and probability estimate is the support for
that classification. Due to employing this tree structure for
decision-making in the clinical and applicational situation,

reviewing the reliability of predicted classes is of special
importance.

In order to increase the prediction accuracy and reliability
of the classification tree, ensemble methods like random
forests [4], bootstrap aggregation (bagging) [5, 6], and boost-
ing [7, 8] are used. Although these methods are so suitable
instruments for identifying the risk factors associated with
classified response, there is no tree structure for decision-
making in these methods and classes will just be determined
on the basis of their majority voting [9, 10]. In studies,
where CT is used for prediction and diagnosis of outcomes
such as death and survival, health, and diseases based on
identification of related factors, the original tree structure
is usually used and the decision is done based on it. In
medical research, for instance, For example, in application
of CT in clinical research, we could refer to classification of
heart patients according to the disease etiology [11], diagnosis
of liver diseases based on its risk factors [12], detection
of activity intensity in the youth with cerebral palsy [13],
prediction of severe acute pancreatitis [14], and so on.

On the other hand, it would be of great worth in clinical
situation if we are able to employ CT with appropriate
accuracy of prediction and also be able to assess the reliability
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of prediction classes.The tree used in this study is theGUIDE
(Generalized, Unbiased, InteractionDetection and Estimation)
tree presented by Loh. He showed that through reducing bias
selection of variables for split and employing techniques for
selecting more effective variables for specified predicted class
[15]. This tree in comparison with other algorithms like CART
[3], QUEST [16], and CRUISE [17] has a reasonable predictive
accuracy and suitable depth.

In order to evaluate the classification reliability of pre-
dicted classes few studies have been done [18]. But Kuhnert
and Mengersen [19] offered a general study for measuring
the reliability of terminal nodes of the CART tree, based on
the bootstrap. Also, Graham et al. used this method with
similar CT for assessment of local terminal nodes to improve
the quality of patients care [18]. Therefore the terminal
nodes with low accuracy can be identified by using Kuhnert’s
method on modern CT.

For this purpose, the GUIDE classification tree [15] is
used in this study to recognize and predict the individuals’
NAFLD based on many risk factors on training set. Then, by
using the bootstrap, the samples were chosen by replacing
of training set and new CTs would be formed and based on
the observations of the test set the unreliable terminal nodes
would be recognized. The main importance in this study is
that, in addition to the modern tree with suitable accuracy
used for predicting NAFLD, classification reliability and the
probability of prediction of its terminal nodes (predicted
classes) are evaluated. So this method can be considered as
a process of development of a screening and clinical support
tool, where reliability of predicted classes depends on the
utility or values placed on the errors so that the researcher
determines sensitivity and specificity.

2. Methods

2.1. The Dataset. The present research was a cross-sectional
study conducted from January to August 2013 in Kavar city
of Fars province located in the south of Iran. A total of 1600
individuals were selected randomly using cluster random
sampling method from the family registration data available
in Health Care Center of Kavar city and related villages.

Thirty attributes including demographic and clinical
characteristics were studied to predict the binary outcome
variable presenting the existence of NAFLD (with/without
NAFLD). The variables used in the analysis are described in
the Appendix.

Diagnosis of NAFLD was according to increased
echogenicity of liver parenchyma and attenuation of portal
vein or echogenicity of diaphragmatic area due to transab-
dominal sonography calibrated sonography machine. The
sonographers were trained before the study with unique
instruction [20].

2.2. Classification Trees. A CT is composed of root, internal,
and leaf nodes. The root node is on the top of the tree
and the observations are passed down the tree until they
reach the internal nodes that represent a question on which
a split is based. In the following step, they reach the leaf or

terminal nodes which represent a classification or decision
[10].

Many of the early CT algorithms, includingCART [3] and
C4.5 [21], by using Gini index and entropy orderly, search for
a split of a node exhaustively in order tominimize the amount
of node heterogeneity. As a result, if all other things were
equal, variables with more values would have great chance
for choosing. So, overly large or small tree structures could
be produced by this bias selection and the importance of the
variables would be obscure [15]. By using 𝐹 and Chi-squared
tests firstly at each node, CRUISE [17] algorithms avoid the
bias in order to select the variable to split on. But a weakness
of CRUISE is that the number of interaction tests is more
compared to the main effect tests. As a result, CRUISE has
a greater tendency to split on variables identified through
interaction tests [22].

But GUIDE method, by increasing the strengths and
correcting the weakness, improves upon the mentioned
algorithms. In this method, when there is an interaction
between𝑋𝑖 and𝑋𝑗 at a node 𝑡, two-level searchwould be used
for splits. In order to yield the most reduction in impurity,
firstly, the split of 𝑡 should be found on 𝑋𝑖 and the splits of
its two children nodes on 𝑋𝑗. Then, by reversing the roles of𝑋𝑖 and𝑋𝑗, the corresponding splits would be found.The one
reducingmore impurities is used to split 𝑡. Besides, univariate
splits and bivariate linear splits of two 𝑋 variables can be
used by GUIDE at one time. The bivariate linear splits can
be given higher or lower preference over univariate splits.
Finally, if there was no significant interaction tests Bonferroni
correction, the linear splits would be considered [23].

In this study, the whole set was then divided into a
training set (almost 70% of all cases), which was used for the
induction of a CT that classified the individuals into “with”
or “without” risk of NAFLD, and a testing set (30%), which
was used to check the accuracy of an obtained solution.

The CT was built by using NAFLD as a response variable,
with the following steps: From each of the predictor variables
of interest, the variable that splits the data into two groups
(or nodes) with the most pure response, using prespecified
criteria, was chosen. These criteria included specification
of the minimum number of observations to enter each
node (5 observations), the minimum number in a node
before attempting to split (5 observations), and the “costs”
assigned to misclassify the items. Cost is measured in terms
of proportion of misclassified cases. In order to better predict
the classification of patients who actually have NAFLD,
different costs may be applied to the classification of the two
groups [3]. For this purpose, two different structures of the
tree were studied based on different misclassification costs.
The first case considered equal costs for individuals with and
without NAFLD and the second assigned a cost of 2 to the
classification of “high risk” so that 𝐶1 = 1 and 𝐶2 = 2. In
otherwords, the cost ofmisclassification of an individual with
a high risk “NAFLD” as low risk “NAFLD” is two times that
of the opposite.

Allocating unequal cost and giving high weight to high
risk persons increase the sensitivity of the built model in
recognizing patients who really suffer from NAFLD [18].
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Sensitivity is the power of a test ormethod to correctly classify
an individual as “diseased” [24].

The resulting tree will be large and complex, so 10-fold
cross-validation [15] and pruning are used to determine the
best tree with the smallest cross-validated error rate.

2.3. Estimation of Reliability. After making the final classifi-
cation tree based on GUIDE algorithm which are clinically
useful, in order to identify the factors affecting the prediction
of NAFLD, the method proposed by Kuhnert andMengersen
[19] was used to assess the reliability of the terminal nodes
(predicted classes).

The theory used for measuring the reliability proceeds is
as follows.

After splitting the data into two sets of training (70%)
and test (30%), we built the GUIDE classification tree, 𝑇,
based on training set. Then, �̂�(𝑡), the proportion of high risk
individuals, would be estimated in each terminal node based
on the test set. According to the estimated proportion and
comparing it with a priori threshold “𝑘,” the individuals were
allocated to two classes: individuals with NAFLD (�̂�(𝑡) = 1)
and those without NAFLD (�̂�(𝑡) = 0).

The value 𝑘 could be considered by misclassification cost,
so if this cost was considered equivalent for both those with
and those without NAFLD, it would be 0.5; otherwise, the
weighted average of priors probability (the proportion of
patients in each class) would determine the status of the
binary splits.

Now the question is “with what precision are �̂�(𝑡) and�̂�(𝑡) estimated?” In other words, the class in which the indi-
viduals are assigned as with/without NAFLD and probability
supported that class, how much is it stable?

For this purpose, using the bootstrap, 𝐵 samples were
chosen by replacing of training set and new classification
trees, 𝑇𝑏, 𝑏 = 1, . . . , 𝐵, would be formed by using the
same criteria used in generating the original trees. Then, the
observations of the test set on 𝑇𝑏 trees were classified as with
or without NAFLD.

Obviously, these bootstrapped trees have different struc-
tures and nodes compared to the original tree. However, these
structures are not our desire, but it is important to know
whether the individuals who enter from a test set to a specific
node of the original tree would have the same classification
in bootstrapped tree.

2.3.1. Refining of Prediction Probability of Terminal Nodes.
Estimated probability of success, �̂�(𝑡), in each terminal node
of the original tree, 𝑇, would be refined in the following way:

�̂�𝐵 (𝑡) = 1𝐵
𝐵∑
𝑏=1

�̂�𝑏 (𝑡) (1)

in which �̂�𝑏(𝑡) represents high risk individuals predicted by𝑇𝑏 in node 𝑡 of original classification 𝑇 by using test set.

2.3.2. Classification Reliability of Terminal Nodes. The first
aim of this study was to determine the reliability of terminal
nodes �̂�(𝑡), built based onGUIDE original tree (𝑇) in test set.

For this purpose, initially a probability threshold was
determined to specify the class at terminal node. Then,
this class was compared with the class produced based on
the original GUIDE tree. The calculated estimates of the
classification reliability, 𝑅𝑐(𝑡), show the proportion of times
the bootstrap probability �̂�𝑏(𝑡) leads to the same conclusion
about the classification of original tree 𝑇.

In other words,

𝑅𝑐 (𝑡) = 1𝐵
𝐵∑
𝑏=1

𝑐𝑏 (𝑡) × 100%, (2)

where

𝑐𝑏 (𝑡) = {{{
𝐼 (�̂�𝑏 (𝑡) ≻ 𝑘) , if �̂� (𝑡) = 1,
𝐼 (�̂�𝑏 (𝑡) ≤ 𝑘) , if �̂� (𝑡) = 0 (3)

in which 𝐼 represents an indicator function and 𝑘 is the
threshold.

If misclassification cost is the same for both outcomes, we
will consider 𝑘 equal to 0.5 so that if �̂�(𝑡) > 0.5 then obser-
vations will be assigned to the “with NAFLD” class and con-
versely they will be assigned to the “without NAFLD” class
if �̂�(𝑡) ≤ 0.5. Obviously, unequal misclassification cost will
change the value of this threshold through weighted average
of probabilities. In fact, this is a rule used as base criteria for
assigning classes to the terminal nodes in construction of the
original tree.

Determining the value of 𝑘 threshold for 𝑅𝑐(𝑡) is arbi-
trary and, due to the importance of the study, it can adopt
different values, as the larger value indicates that the decision
should be stricter. Whenever 𝑅𝑐(𝑡) gets closer to zero, it
indicates unreliability of the corresponding class. However,
we chose 𝑘 equal to 0.95 in this study. In other words, a
classification will be reliable if 𝑅𝑐(𝑡) > 0.95 and unreliable
if 𝑅𝑐(𝑡) ≤ 0.95.
2.3.3. Prediction Reliability of the Terminal Nodes. In order
to estimate the prediction reliability of terminal nodes, the
sampling errorwould be identified firstly and then a reference
will be constructed. For this purpose, based on idea of
Efron and Tibshirani [25], we considered the variance of the
standard error of the bootstrap prediction probability in each
terminal node (𝑠𝑒𝐵) of the original tree:

𝑉 (𝑠𝑒𝐵) = 𝑉{ 1𝐵
𝐵∑
𝑏=1

(�̂�𝑏 (𝑡) − 𝑝𝐵 (𝑡))2}
1/2

≅ 𝜇4/𝜇2 − 𝜇24𝑛2 + 𝜎2 (𝑘 + 2𝑛)4𝑛2𝐵 ;
(4)

where 𝑠𝑒𝐵 is standard error of the bootstrap prediction
probability in each terminal node and 𝑘 = 𝜇4/𝜇2 − 3
represents the standardized kurtosis, 𝜎2 is the variance of the
distribution of interest, 𝜇2 and 𝜇4 are second and fourth
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moments; with the expansion of the binomial distribution,
these values are as follows:

𝑘 = 1 − 6𝑝𝑞𝑛𝑝𝑞 ,
𝜇2 = 𝑛𝑝𝑞,
𝜇4 = 𝑛𝑝𝑞 (1 + 3𝑝𝑞 (𝑛 − 2)) .

(5)

With placement of formula (4), we find

𝑉 (𝑡) = 2𝑝𝐵 (𝑡) �̂�𝐵 (𝑡) (𝑛𝑡 − 3) + 14𝑛2𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Ι

+ 2𝑝𝐵 (𝑡) 𝑞𝐵 (𝑛2𝑡 − 3) + 14𝑛2𝑡𝐵⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ΙΙ

.
(6)

As observed,𝑉(𝑡) is separated into two components in whichΙ indicates sampling error and ΙΙ indicates resampling error
which is directly caused by the bootstrap.

In (6), the large number of bootstrap samples (𝐵) ensures
us that the resampling error is negligible. Kuhnert and
Mengersen [19] showed that if 𝐵 = 500, resampling error
would be ignored, so in this study, in order to determine the
number of 𝐵, we considered it as 500.

For prediction reliability 𝑅𝑃(𝑡), 𝑉(𝑡) should be compared
with a reference 𝑉𝑅(𝑡).

For this purpose 𝑉𝑅(𝑡) should be considered so that
the maximum possible variance (the worst case) could be
attained. In each node 𝑡, bootstrap prediction would be trans-
formed to the logit scale and multiplied by a small constant𝜀. This transformation shifts the probabilities close to 0.5,
because, with this value, 𝑉(𝑡) would have the maximum
variance whichmay be considered as a “worst case” situation:

𝑝𝑏 (𝑡) = exp {𝜀 log 𝑖𝑡 ( 𝑝𝑏 (𝑡))}1 + exp {𝜀 log 𝑖𝑡 ( 𝑝𝑏 (𝑡))} . (7)

Therefore, the maximum variance is defined as

𝑉𝑅 (𝑡) ≈ 2�̂�𝐵 (𝑡) �̂�𝐵 (𝑡) (𝑛𝑡 − 3) + 14𝑛2𝑡 . (8)

However, for predictions close to zero or one, more flexibility
would be achieved in selecting the “worst case” by choosing
of 𝜀. So, in this paper 𝜀 = 10−4.

To assess the prediction reliability of the terminal nodes,
Kuhnert and Mengersen [19] suggested three methods and
the easiest and mostly accepted one was comparison of the
observed prediction variance with the maximum variance at
a terminal node:

𝑅𝑃 (𝑡) = 𝑉 (𝑡)𝑉𝑅 (𝑡) . (9)

By considering 𝑉𝑅(𝑡) as the worst possible case, the value of𝑅𝑃(𝑡) would be larger by increasing 𝑉(𝑡) so that when 𝑅𝑃(𝑡)
is closer to 1, it indicates unreliability of the terminal node 𝑡.

We can evaluate the reliability of each terminal node by
comparison of 𝑅𝑃(𝑡) with the prespecified threshold 𝑘. The
threshold value was considered 95% in this study so that the
terminal nodes with 𝑅𝑃(𝑡) > 95% were unstable in terms of
prediction reliability.

2.4. Software Used to Build Classification Tree and to Deter-
mine the Reliability of the Terminal Nodes. According to
the method mentioned in the text, the package GUIDE
(http://www.stat.wisc.edu/∼loh/guide.html) and MATLAB 9
software were used to build the guide CT and to evaluate
the reliability of the terminal nodes. In this regard, firstly
the original CT in two equal and unequal cost states was
built with GUIDE package based on trained data.Then, using
batch program as the bootstrap, GUIDE algorithm was run.
After saving the results, the reliability of classification and
prediction probability of terminal nodes, according to the
methodology used in the paper, were implemented by using
MATLAB software.

3. Result

1600 individuals participated in this study, among whom 1120
were placed in trained dataset in order to build the CT and
480 were placed in test dataset in order to evaluate it. 30
predictor variables were used in the construction of the CT
to predict the risk of NAFLD. The built trees were analyzed
in two equal and unequal misclassification cost states. The
obtained results are shown in Figures 1 and 2.

3.1. Classification Tree with Equal Misclassification Costs.
Figure 1 illustrates the CT made with respect to equal
misclassification cost. The CT has 10 final nodes where each
terminal node indicates the classification of having or not
having NAFLD. Regarding the complex interaction between
independent variables, this CT can be useful in predicting the
risk of NAFLD.

For example, BMI at the top of the CT indicates that this
predictor is the most influential factor in NAFLD. In obese
and overweight people, if WHR is more than 9.0 and ALT
is more than 17.5, the probability of NAFLD is 80% and the
predicted class is “with NAFLD.” But the interesting issue
about this tree which is not usually observed in different CT
algorithms is the part which uses a linear combination of two
variables for prediction. As Figure 1 shows, among obese and
overweight people whose WHR is less than 9.0 and whose
triglyceride level is less than or equal to 247.5, while 0.22
CHO + DBP ≤ 130.8, then the risk of NAFLD is 20% and the
predicted classification is “without NAFLD.” Otherwise, the
process continues in accordance with the figure.

To test the validity of the trained CT, the test dataset
was used in the CT. Table 1 shows a cross tabulation of the
observed and predictedNAFLDof the CT for trained and test
samples.

The diagnostic accuracy of the original CT based on
trained and test datasets was 85% and 81%, respectively.
Moreover, according to the trained dataset, the sensitivity and
specificity were 59% and 93%, respectively.These values were

http://www.stat.wisc.edu/~loh/guide.html
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Figure 1: GUIDE classification tree with estimated priors probability (the proportion of patients in each class) and equal misclassification
costs for predicting NAFLD. At each intermediate node, an observation goes to the left branch if and only if the condition is satisfied. Dark
nodes represent predicted class “with NAFLD” and white nodes represent predicted class “without NAFLD.” Each terminal node has been
formed in boxes of 3 parts so that the specified section in the left side of the box represents the number of individuals in the trained dataset
who have been placed in this node. Specified percentages for this dataset are ratio of patients with NAFLD.Themiddle specified section of the
box exhibits the node’s number and specified percent below it shows the overall ratio of the test datasets which have been placed in this node.
The specified section in the right side of the box shows the number and percentage of the test datasets that have really high risk of NAFLD.

48% and 89% in test datasets. Although the specificity and
accuracy of the CT overall prediction are good based on these
two datasets, the diagnosis of this CT is not suitable for those
who really suffer from NAFLD.

3.2. Classification Tree with Unequal Costs. Figure 2 illus-
trates the CT made with unequal costs based on trained
dataset. In this tree, the cost of misclassification of an
individual with a high risk “NAFLD” as low risk “NAFLD”
is two times that of the opposite.

This CT has 7 final nodes and it is similar to Figure 1 in
which BMI and WHR, as the most important factors in the
diagnosis of NAFLD, are at the top of the CT, but the order of
later predictors is somewhat different so that the probability

of having NAFLD among obese individuals with WHRmore
than 0.9 is 60% and the predicted class is “with NAFLD.”
Among obese people with WHR less than 0.9, triglyceride
will be the next predictor and the next stages are shown in
Figure 2.

Contingency Table 2 shows that the accuracy of diagnosis
based on trained and test datasets is 81% and 75%, respec-
tively, and the sensitivity and specificity of the CT according
to trained dataset are 74% and 83%, respectively, while on the
basis of test dataset they are 73% and 76%, respectively.

As shown in Table 2, with a slight decrease in the total
accuracy of the CT, the sensitivity increases considerably. In
other words, this CT can better identify the patients with high
risk of NAFLD.
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Figure 2: GUIDE classification tree with estimated priors probability (the proportion of patients in each class) and unequal misclassification
costs for predicting NAFLD. At each intermediate node, an observation goes to the left branch if and only if the condition is satisfied. Dark
nodes represent predicted class “with NAFLD” and white nodes represent predicted class “without NAFLD.” Each terminal node has been
formed in boxes of 3 parts so that the specified section in the left side of the box represents the number of individuals in the trained dataset
who have been placed in this node. Specified percentages for this dataset are ratio of patients with NAFLD.Themiddle specified section of the
box exhibits the node’s number and specified percent below it shows the overall ratio of the test datasets which have been placed in this node.
The specified section in the right side of the box shows the number and percentage of the test datasets that have really high risk of NAFLD.

3.3. Reliability of Classification Tree with Equal and Unequal
Costs. In order to assess the reliability of the terminal nodes
of the CT in terms of prediction probability and its corre-
sponding classes, the methodology described in Section 2.3
was applied. The results of CT with equal misclassification
cost are given in Table 3.

As seen, nodes 51, 13, and 113 are unstable nodes. Node
51 is highly unreliable, in terms of both classification and
prediction probability. Analyzing this node, we can observe
that 3 patients of the test dataset are in this node. Low
number of samples in this node can be interpreted as a

reason for its being “unreliable.” Nodes 13 and 113 represent
a different rate of reliability so that both are unreliable in
terms of classification, but they are not unreliable in terms
of probability of prediction.

However, 𝑅𝑝(𝑡) of these two nodes reveals that these
values are less than 0.95 but the difference is very slight.
In other words, more caution is required in reporting the
accuracy and reliability of these two nodes.

Moreover, results of Table 4 show the reliability of
the terminal nodes for CT with unequal misclassification
costs (Figure 2). As seen, node 7 is unreliable in terms of
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Table 1: Cross tabulation of the observed and predicted NAFLD of the classification tree for training and test sample and the measures of
evaluating the classification tree with equal misclassification cost.

Observed
Predicted

Training sample Test sample
Yes No Total Yes No Total

Yes 157 (59%) 111 (41%) 268 43 (48%) 47 (52%) 90
No 58 (7%) 794 (93%) 852 42 (11%) 348 (89%) 390
Total 215 905 1120 85 395 480
Diagnosis accuracy 85% 81%

Table 2: Cross tabulation of the observed and predictedNAFLDof the classification tree for training and test sample unequalmisclassification
cost.

Observed
Predicted

Training sample Test sample
Yes No Total Yes No Total

Yes 197 (74%) 71 (26%) 268 66 (73%) 24 (27%) 90
No 144 (17%) 708 (83%) 852 94 (24%) 296 (76%) 390
Total 341 779 1120 160 320 480
Diagnosis accuracy 81% 75%

Table 3: Result from bootstrapping the classification tree with equal
costs for classification and prediction reliability of terminal nodes.

Node 𝑡 Information�̂�𝐵(𝑡)
Classification
reliability𝑅𝐶(𝑡)%

Prediction
reliability𝑅𝑃(𝑡)%

2 0.003 100 1.75
13 0.339 13.4 90.88
15 0.334 100 89.64
24 0.057 100 23.3
29 0.296 100 85.06
50 0.057 100 37.28
51 0.3 27.2 100
57 0.125 100 81.2
112 0.194 100 65.34
113 0.353 21 93.13
Unreliable nodes (those with classification reliability less than 95 percent or
prediction reliability more than 95 per cent) are in bold font.

classification, but it is reliable in terms of prediction. Anyway,
its𝑅𝑝(𝑡) value is near the threshold (95%) andwe should use it
cautiously for interpretation ofNAFLDprediction. In thisCT,
we cannot predict NAFLD based on BMI andWHR only and
it may be the reason for its unreliability. So, for its prediction,
recognition of more risk factors is needed.

As seen, the remarkable issue in this paper is that unreli-
able nodes all belong to classes which predict individuals with
NAFLD.

4. Discussion

The obtained results based on both trees are acceptable from
clinical point of view so that, according to the conducted

Table 4: Result from bootstrapping the classification tree with
unequal costs for classification and prediction reliability of terminal
nodes.

Node 𝑡 Information�̂�𝐵(𝑡)
Classification
reliability𝑅𝐶(𝑡)%

Prediction
reliability𝑅𝑃(𝑡)%

2 0.006 100 3.17
7 0.353 14.4 91.55
13 0.281 100 81.92
25 0.153 100 58.67
48 0.075 100 30.82
98 0.041 100 36.83
99 0.168 100 34.29
Unreliable nodes (those with classification reliability less than 95 percent or
prediction reliability more than 95 per cent) are in bold font.

studies based on univariate analysis, the selected variables for
constructing a tree are introduced as risk factors for NAFLD.
For example, like almost all studies in the field of NAFLD,
BMI has been introduced as the main risk factor for catching
and predicting NAFLD [26–29].

Similarly, in many studies waist circumference has been
shown as another risk factor for NAFLD [26, 27] while in
a study done by Ahad Eshraghian et al. [30] it has been
shown thatWHR is amore accurate risk factor for NAFLD in
comparison to waist circumference, where it was introduced
as a risk factor for making tree in this study.

Also, Bedongi et al. [31] showed that BMI, high TG,
and waist circumference are the three important risk factors
in diagnosing NAFLD. Our results showed these three risk
factors are the main ones and at the top of the tree.

Four risk factors including high SBP, WHR, BMI, and
high TG are the determiners of NAFLD, part of metabolic
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and anthropometric features of metabolic syndrome [32]. So
there is a close relationship between NAFLD and metabolic
risk factors. Interestingly, these metabolic risk factors have
been diagnosed in such a tree with high sensitivity (Figure 2)
and they could diagnose thosewho really suffer fromNAFLD.
Other variables like ALT and glucose that were diagnosed in
both trees have been introduced as risk factor for NAFLD
in different studies [33–35]. Anyway, the advantage of these
trees, in comparison with univariate analysis, is that interac-
tions between dependent variables were considered too.

Based on the obtained results in the present study,
equal misclassification costs in CT lead to a higher total
accuracy compared with unequal costs. Indeed, the accuracy
of prediction for the individuals with higher risk or with
“NAFLD” is relatively low whereas a CT with unequal
costs can considerably better predict patients with “NAFLD.”
In other word, this tree is more sensitive. In diagnosing
diseases particularly when late diagnoses has irreparable
consequences the power of diagnostic test is of great impor-
tance. So long as the sensitivity of a test increases its power
in diagnosing real patients will increase. For example, in
classification tree (Figure 1) the sensitivity of the training test
is 48% and it reaches 73% in Figure 2 with unequal cost. It
means that through tree Figure 1 we are able to detect only
48% of those who are really NAFLD infected while via tree
Figure 2 this ability increased to 73%. Anyway, proportional
to the variation of cost of incorrect classification we could
construct a tree with high sensitivity or specificity regarding
the importance of our study.

The misclassification error rates in both test and trained
datasets for both CTs with equal and unequal costs are
relatively close together. However, it is expected that the
method built based on trained dataset reports fewer errors
compared with the test dataset due to overfitting.

On the other hand, using reliability methods allows us
to recognize suitable diagnosis tools for predicting NAFLD
based on it. Individuals who enter unreliable nodes may need
to be more carefully monitored because there may be other
factors associated with the diseases which have not been
collected yet. If the focus is placed on the correct prediction
of risk NAFLD, analyses can reveal why there is insufficient
accuracy at these nodes.

Results of this study suggest the possibility of the other
independent variables needed to identify certain subgroups
of patients or further data needed for classification of sub-
groups.

The interesting point in this study was that in some cases,
for equal misclassification cost, the unreliable prediction
probabilities could produce stable classifications so that,
even in a case in which the classification was unstable, the
prediction probability with regard to the specified threshold
value was stable. 𝑅𝑝(𝑡) is high and close to 95% and it shows
that in these cases cautious decisions should be adopted.

It is also notable that the reliabilities of classification
and prediction probability were measured based on their
dependence on the threshold value in this study. Because
different interpretations of results are made by changing this
value, it would depend on decision-maker’s intention and the
design of the study. Basically, the more the threshold value is,

the tougher decision-making would be on the classification
validity.

One of the objectives of this study was to assess the
reliability of prediction in regard to the variance of the
standard error of the bootstrap probability. Also, Kuhnert
and Mengersen [19] used the standard error of prediction
Se(�̂�(𝐵(𝑡))), itself. Although in this study we could obtain the
right value of �̂�𝐵(𝑡) = 0.5 by considering 𝜀 = 10−4,<one of the
advantages of Se(�̂�(𝐵(𝑡)) is that if the selected 𝜀, �̂�𝐵(𝑡) ̸= 0.5,
the equality hypothesis of �̂�𝐵(𝑡) with 0.5 using 𝑡-test can be
studied.

One limitation of this study was the small sample size.
Naturally, if the sample size was larger, it would be possible
to build a more accurate tree. In addition, more individuals
could be assigned to the test group and the reliability of
the terminal nodes could be better predicted. Of course, it
seems that if the prevalence of the disease is to be further
investigated, the number of individuals with NAFLD in
subgroups would also be larger and therefore the reliability
of the terminal nodes could be estimated more accurately.

As one of the most useful features of the CT is the adapt-
ability of missing data through identifying alternative splits,
more comprehensive studies will be useful to investigate the
prediction and classification reliability of terminal nodes with
regard to the missing data.

This study used “GUIDE”CT to predictNAFLD.Anyway,
using different classification trees (e.g., CART, CRUST) and
comparing the accuracy, the reliability, and prediction’s prob-
ability of terminal nodes based on the mentioned method
could be useful.

One of the limitations of this study is that the variables
involved acute hepatitis and heart failure and autoimmune
causes were not considered, and by adding them to the
structure of the tree the value of the paperwould be increased.
It is suggestion that a general tree by regarding all risk
factors is being made and the classification reliability and the
probability of prediction are considered.

Furthermore, the CT can be built by considering different
grades of NAFLD as a response by using misclassification
costs with ordinal response and the accuracy and reliability
of their terminal nodes can be studied.

Also it is suggested that jackknife resampling method be
used in order to study the reliability of the terminal nodes
of the CTs made based on training sets and the reliability of
these nodes would be considered by a similar method.

5. Conclusion

The CT with unequal misclassification costs had higher
accuracy for recognizing individuals with NAFLD. Also
the predicted classes were more reliable. The final result is
that the low number of observations in terminal nodes of
CT increased the probability of node’s unreliability. So the
decision for predicted classes should be donemore cautiously.

Appendix

See Table 5.
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Table 5: Table of demographic and clinical characteristics of participants according to groups (number (%) or mean ± SD).

Risk factors Abbreviation Level Without NAFLD
(𝑛 = 1241) With NAFLD

(𝑛 = 359)
Sex SEX Male 361 (% 29.1) 110 (% 30.7)

Female 880 (% 70.9) 249 (% 69.3)

Marital status MS
Single 447 (36%) 27 (7.5%)
Married 726 (58.5%) 297 (83%)
Other 68 (5.5%) 35 (9.5%)

History of hepatitis B vaccine HEP Yes 538 (43.4%) 70 (19.3%)
No 703 (56.6%) 289 (80.7%)

History of blood transfusion BT Yes 22 (1.8%) 11 (3.1%)
No 1219 (98.2%) 348 (96.9%)

Thalassemia THAL Yes 2 (.2%) 1 (.3%)
No 1239 (99.8%) 358 (99.7%)

Hemophilia HEMO Yes 3 (.2%) 0 (.0%)
No 1238 (99.8%) 359 (100%)

Dialysis DI Yes 3 (.2%) 1 (.3%)
No 1238 (99.8%) 358 (99.7%)

Surgery SU Yes 3 (.2%) 1 (.3%)
No 1238 (99.8%) 358 (99.7%)

History of surgery HS Yes 356 (28.7%) 141 (39.4%)
No 885 (71.3%) 218 (60.4%)

History of dental surgery DE Yes 1002 (80.7%) 303 (84.6%)
No 239 (19.3%) 56 (15.4%)

History of phlebotomy PH Yes 94 (7.6%) 35 (9.8%)
No 1147 (92.4%) 324 (90.2%)

Tattoos TA Yes 38 (3.1%) 19 (5.3%)
No 1203 (96.9%) 340 (94.7%)

History of unsanitary piercing ears UPE Yes 541 (43.6%) 141 (39.4%)
No 700 (56.4%) 218 (60.6%)

Hookah HOO Yes 83 (6.7%) 28 (7.8%)
No 1158 (93.3%) 331 (92.2%)

Current smoking SMOK Yes 39 (3.1%) 19 (5.3%)
No 1202 (96.9%) 340 (94.7%)

History of drug using HDU Yes 28 (2.3%) 6 (1.7%)
No 1213 (97.7%) 353 (98.3%)

HBS Ag HBSAG Negative 1215 (98.1%) 353 (98.5%)
Positive 26 (1.9%) 6 (1.5%)

HBS Ab HBSAB Negative 1079 (88.5%) 307 (87.0%)
Positive 162 (11.5%) 52 (13.0%)

Body mass index BMI

Underweight (UW) 197 (15.9%) 1 (.3%)
Normal (N) 633 (51%) 62 (17.3%)

Overweight (OW) 320 (25.8%) 186 (51.7%)
Obese (OB) 87 (7%) 110 (30.7%)

Waist-hip ratio WHR 0.83 ± 0.09 0.92 ± 0.09
Systolic blood pressure SBP 100.05 ± 26.1 108.42 ± 31.86
Diastolic blood pressure DBP 82.14 ± 20.01 93.37 ± 23.85
High density lipoprotein HDL 50.95 ± 11.5 48.9 ± 9.73
Triglycerides TG 120.3 ± 68.52 193.89 ± 113.5
Alanine aminotransferase ALT 15.56 ± 10.92 19.11 ± 12.5
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Table 5: Continued.

Risk factors Abbreviation level Without NAFLD
(𝑛 = 1241) With NAFLD

(𝑛 = 359)
Cholesterol CHO 184.94 ± 42.58 207.62 ± 41.79
Aspartate aminotransferase AST 24.84 ± 11.66 28.06 ± 17.84
Glucose GLU 96.68 ± 26.86 108.45 ± 39.56
Albumin AL 4.32 ± 0.37 4.23 ± 0.4
Age AGE 34.85 ± 17.45 45.9 ± 13.34
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