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Abstract: Higher-order topological phases (HOTPs) are characterized by symmetry-protected bound
states at the corners or hinges of the system. In this work, we reveal a momentum-space counterpart
of HOTPs in time-periodic driven systems, which are demonstrated in a two-dimensional extension
of the quantum double-kicked rotor. The found Floquet HOTPs are protected by chiral symmetry
and characterized by a pair of topological invariants, which could take arbitrarily large integer values
with the increase of kicking strengths. These topological numbers are shown to be measurable from
the chiral dynamics of wave packets. Under open boundary conditions, multiple quartets Floquet
corner modes with zero and π quasienergies emerge in the system and coexist with delocalized
bulk states at the same quasienergies, forming second-order Floquet topological bound states in the
continuum. The number of these corner modes is further counted by the bulk topological invariants
according to the relation of bulk-corner correspondence. Our findings thus extend the study of
HOTPs to momentum-space lattices and further uncover the richness of HOTPs and corner-localized
bound states in continuum in Floquet systems.

Keywords: topological insulators; topological phase transition; floquet system

1. Introduction

Higher-order topological phases (HOTPs) in D spatial dimensions are characterized
by symmetry-protected states localized along its (D− n)-dimensional boundaries, where
1 < n ≤ D [1–8]. The presence of these unique topological matter is usually guaranteed
by the coexistence of crystal and non-spatial symmetries, and their classifications go
beyond the tenfold way of first-order topological insulators and superconductors [9–12].
Besides great theoretical efforts in the study of higher-order topological insulators [13–32],
superconductors [33–48] and semimetals [49–54], HOTPs have also been observed in solid
state materials [55–59], photonic waveguides [60–67], acoustic systems [68–75], electrical
circuits [76–80] and superconducting qubits [81], leading to potential applications such as
acoustic sensing [68,69] and holonomic quantum computation [48].

In recent years, the study of HOTPs has been generalized to nonequilibrium systems,
such as those subject to time-periodic drivings [82–94] or non-Hermitian effects [95–103].
The motivation behind the exploration of HOTPs in periodically driven systems is three-
fold. First, driving fields could induce symmetries and phase transitions that are unique
to Floquet systems [104,105], yielding Floquet HOTPs with topological properties that
go beyond any static counterparts [82,93]. Second, periodic driving fields could in gen-
eral enlarge the range of hoppings in a lattice [106], creating Floquet HOTPs with large
topological numbers and many topological corner/hinge modes [82], which have poten-
tial applications in the construction of topological time crystals and Floquet quantum
computing schemes [83]. Third, under appropriate conditions, certain Floquet systems
could form lattice structures in momentum space, whose topological properties are of
intrinsic dynamical origins. Intriguing phenomena related to such momentum space
topology including the quantized acceleration as an analog of the topological Thouless
pump [107] and the integer quantum Hall effects from chaos [108]. The first two aspects
have led to the discoveries of various Floquet HOTPs in both Hermitian and non-Hermitian
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systems [82–95]. However, the momentum-space counterpart of Floquet HOTPs and their
topological characterizations have rarely been explored.

In this manuscript, we investigate a periodically kicked rotor in two spatial dimen-
sions, whose momentum space could form a two-dimensional (2D) discrete lattice holding
rich Floquet HOTPs. In Section 2, we introduce the Hamiltonian of the system and obtain
its Floquet operator under the quantum resonance condition. Based on the symmetry
analysis of the model, we construct a pair of integer topological invariants (w0, wπ) in
Section 3, which could fully characterize the Floquet HOTPs that are protected by the chiral
symmetry of the system. These Floquet HOTPs are further shown to be able to possess
arbitrary large topological numbers with the increase of kicking strengths. In Section 4,
we show that these topological invariants could be dynamically probed by measuring the
time-averaged mean chiral displacements of wave packets in two-dimension. Under the
open boundary conditions, we find many quartets of Floquet corner modes at zero and
π quasienergies in Section 5. The numbers of these corner modes are predicted by the
bulk topological invariants (w0, wπ), yielding the bulk-corner correspondence of Floquet
HOTPs in momentum space. Moreover, the zero and π Floquet corner modes are found to
be embedded in the continuous bulk bands of delocalized states, forming corner-localized
Floquet bound states in the continuum that are originated from higher-order Floquet
topology. We summarize our results and discuss potential future directions in Section 6.

2. Model

In this section, we introduce a representative driven lattice model, which could
possess rich Floquet HOTPs in momentum space. Our system can be viewed as a two-
dimensional extension of the double kicked rotor (or lattice) model [109–112], which
describes a quantum particle kicked twice by a periodic potential at different times within
each driving period. The time-dependent Hamiltonian of the system takes the form

Ĥ = Ĥ0 + V̂ ∑
`∈Z

δ

(
t
T
− `

)
+ Ŵ ∑

`∈Z
δ

(
t− τ

T
− `

)
, (1)

where

Ĥ0 =
p̂2

x + p̂2
y

2
, (2)

V̂ = κ1 cos(x̂ + φx) + κ3 cos(ŷ + φy), (3)

and
Ŵ = κ2 cos(x̂) + κ4 cos(ŷ). (4)

Here, (x̂, ŷ) and ( p̂x, p̂y) are the position and momentum operators of the particle along
x and y directions. T is the driving period. τ ∈ (0, T) controls the time delay between
the two kicks inside a driving period. κ1,3 and κ2,4 are kicking strengths of the potentials
along x and y directions. φx,y ∈ [0, 2π) describe the phase differences between the kicking
potentials applied at t = `T and t = `T + τ in the `’s driving period. The quantities in
Equations (2)–(4) are all set in dimensionless units. In experiments, the model Hamiltonian
Ĥ may be realized in cold atom systems, where the kicking potentials could be implemented
by optical-lattice potentials with relative phase shifts [111,112]. Within a given driving
period (e.g., from t = 0− to t = T + 0−), the dynamics of the system is therefore governed
by a kick V̂ applied at t = 0, followed by the free evolution Ĥ0 from t = 0→ τ, a second
kick Ŵ at t = τ, and finally the free evolution Ĥ0 over a time duration T − τ. The Floquet
operator, which describes the evolution of the system over such a complete driving period,
is then given by

Û = e−i T−τ
h̄ Ĥ0 e−i T

h̄ Ŵe−i τ
h̄ Ĥ0 e−i T

h̄ V̂ . (5)

Due to the periodicity of kicking potentials V̂ and Ŵ in x̂ and ŷ, the eigenvalues of
momentum operators p̂x,y take the forms h̄(nx,y + kx,y), where nx,y ∈ Z, and kx,y ∈ [0, 1)
are the quasimomenta. A Floquet system with periodicity in momentum space is achieved
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by setting kx,y = 0, which maybe realized experimentally by a Bose–Einstein condensate
with large coherence width [113–116]. Under this condition, we can identify the momentum
operators p̂x,y in Equation (2) as h̄n̂x,y with integer eigenvalues nx,y. The Floquet operator
in Equation (5) then takes the explicit form

Û = e−ih̄(T−τ)
n̂2

x+n̂2
y

2 e−i[K2 cos(x̂)+K4 cos(ŷ)]e−ih̄τ
n̂2

x+n̂2
y

2 e−i[K1 cos(x̂+φx)+K3 cos(ŷ+φy)], (6)

where we introduce Kj = κjT/h̄ for j = 1, 2, 3, 4 as rescaled dimensionless kicking strengths.
Furthermore, under the quantum resonance condition h̄T = 4π that has been considered
experimentally [113–119], we obtain the two-dimensional extension of on-resonance double
kicked rotor (or lattice) model, whose Floquet operator reads

Û = eih̄τ
n̂2

x+n̂2
y

2 e−i[K2 cos(x̂)+K4 cos(ŷ)]e−ih̄τ
n̂2

x+n̂2
y

2 e−i[K1 cos(x̂+φx)+K3 cos(ŷ+φy)]. (7)

It is then clear that, once h̄τ = 2πp/q, with p and q being coprime integers, the Floquet
operator Û will have translational symmetries in both n̂x and n̂y with the common period q,
i.e., a periodic crystal structure in the momentum space of the two-dimensional on-resonance
double-kicked lattice. In one-dimensional (1D) descendant models of Equation (7), rich
first-order Floquet topological phases have been discovered, which are characterized by
large Chern (winding numbers), multiple chiral (dispersionless) edge modes and topologi-
cally quantized acceleration in momentum space [107,120–123]. These discoveries further
motivate us to explore HOTPs in the 2D on-resonance double-kicked lattice model.

To obtain a minimal version of our model with nontrivial higher-order topology, we
choose the time delay between the two kicks to be τ = T/4, which implies that h̄τ = π.
Moreover, fixing the phase differences at φx = φy = π/2, the Floquet operator of the 2D
on-resonance double-kicked lattice reduces to

Û = ei π
2 (n̂

2
x+n̂2

y)e−i[K2 cos(x̂)+K4 cos(ŷ)]e−i π
2 (n̂

2
x+n̂2

y)ei[K1 sin(x̂)+K3 sin(ŷ)]. (8)

Since [n̂x, ŷ] = [n̂y, x̂] = 0, the 2D on-resonance double-kicked lattice can be viewed as two
1D kicked lattice models lying along two different spatial dimensions, i.e.,
Û = Ûx ⊗ Ûy, where

Ûx = ei π
2 n̂2

x e−iK2 cos(x̂)e−i π
2 n̂2

x eiK1 sin(x̂), (9)

Ûy = ei π
2 n̂2

y e−iK4 cos(ŷ)e−i π
2 n̂2

y eiK3 sin(ŷ). (10)

By solving the Floquet eigenvalue equations Ûx|ψx〉 = e−iEx |ψx〉 and Ûy|ψy〉 = e−iEy |ψy〉,
we could obtain the eigenstates |ψ〉 = |ψx〉 ⊗ |ψy〉 of Û with eigenphases (quasienergies)
E = (Ex + Ey) mod 2π. This observation immediately allows us to deduce the possible
origin of higher-order topology in the 2D on-resonance double-kicked lattice. That is,
if |ψx〉 and |ψy〉 are edge modes of Ûx and Ûy with eigenphases (Ex, Ey) = (0, 0) or
(Ex, Ey) = (π, π), they will be coupled to form a corner mode of Û with eigenphase
E = Ex + Ey = 0, i.e., a Floquet corner zero mode. Similarly, if |ψx〉 and |ψy〉 are edge
modes of Ûx and Ûy with eigenphases (Ex, Ey) = (0, π) or (Ex, Ey) = (π, 0), they will be
coupled to form a corner mode of Û with eigenphase E = Ex + Ey = π, i.e., a Floquet corner
π mode. These are the two types of topological corner modes that could appear in Floquet
HOTPs of our model, and their numbers are determined by the numbers of edge modes
in the subsystems described by Ûx and Ûy, which are further determined by the winding
numbers of Ûx and Ûy according to the principle of bulk-edge correspondence [124,125].
In the following section, we construct the bulk topological invariants for Floquet HOTPs in
the 2D on-resonance double kicked lattice based on these analysis and establish the bulk
topological phase diagram of the system.
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3. Topological Invariants and Phase Diagram

Since the Floquet operator Û in Equation (8) possesses a tensor product structure,
its spectrum and eigenstates are known once the eigenvalue equations Ûj|ψj〉 = e−iEj |ψj〉
for j = x, y are solved. Inserting the identity operators Ij = ∑j |nj〉〈nj| in the momentum
space, and performing Fourier transforms from the momentum to quasiposition (the
conserved quantity due to the translational symmetry nj → nj + 2 in the momentum
lattice) representation, the Floquet operator Ûj can be expressed in the form of

Ûj = ∑
θj

|θj〉Uj(θj)〈θj|, (11)

where {|θj〉} is the eigenbasis of quasiposition with θj ∈ [0, 2π) and j = x, y. Explicitly, the
Floquet matrices Ux(θx) and Uy(θy) are given by

Ux(θx) = ei π
4 σz e−iK2(cos θx

2 σx+sin θx
2 σy)e−i π

4 σz eiK1(cos θx
2 σx+sin θx

2 σy), (12)

Uy(θy) = ei π
4 τz e−iK4

(
cos

θy
2 τx+sin

θy
2 τy

)
e−i π

4 τz eiK3

(
cos

θy
2 τx+sin

θy
2 τy

)
, (13)

with shorthand notations

K1 ≡ K1 sin
θx

2
, K2 ≡ K2 cos

θx

2
, (14)

K3 ≡ K3 sin
θy

2
, K4 ≡ K4 cos

θy

2
. (15)

Here, σx,y,z and τx,y,z are Pauli matrices acting on two sublattice degrees of freedom along
the x and y directions in the momentum lattice (see [121,122] for derivation details of Uj(θj)
for 1D descendant models of the 2D on-resonance double-kicked lattice). The standard
characterization of 1D Floquet topological phases is achieved by introducing a pair of
symmetric time frames upon similarity transformations [124,125]. For our model, there
are two symmetric time frames for both Ux(θx) and Uy(θy). Putting together, there are in
total four such time frames for the Floquet matrix U(θx, θy) = Ux(θx)⊗Uy(θy) of the 2D
system. In these time frames, U(θx, θy) takes the form

Uαβ(θx, θy) = Uα(θx)⊗Uβ(θy), (16)

where α = 1, 2, β = 3, 4, and

U1(θx) = FG, U2(θx) = GF, (17)

U3(θy) = F′G′, U4(θy) = G′F′. (18)

The auxiliary matrices F, G, F′ and G′ are explicitly given by (see [121,122] for derivation
details of these matrices for 1D descendant models of our system)

F ≡ eiK1
2 (cos θx

2 σx+sin θx
2 σy)ei π

4 σz e−iK2
2 (cos θx

2 σx+sin θx
2 σy), (19)

G ≡ e−iK2
2 (cos θx

2 σx+sin θx
2 σy)e−i π

4 σz eiK1
2 (cos θx

2 σx+sin θx
2 σy), (20)

F′ ≡ eiK3
2

(
cos

θy
2 τx+sin

θy
2 τy

)
ei π

4 τz e−iK4
2

(
cos

θy
2 τx+sin

θy
2 τy

)
, (21)

G′ ≡ e−iK4
2

(
cos

θy
2 τx+sin

θy
2 τy

)
e−i π

4 τz eiK3
2

(
cos

θy
2 τx+sin

θy
2 τy

)
. (22)

With these considerations, it is straightforward to verify that Uαβ(θx, θy) possesses the
chiral symmetry Γ = σz ⊗ τz for all α = 1, 2 and β = 3, 4, in the sense that Γ2 = 1 and

ΓUαβ(θx, θy)Γ = U†
αβ(θx, θy). (23)
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This symmetry then allows us to characterize the Floquet HOTPs of our system by integer
topological invariants [121,124,125].

To construct these topological numbers for our system, we take the Taylor expansion
for each term of the Floquet matrices in Equations (17) and (18), and recombine the relevant
terms. The resulting Floquet matrices take the forms

Uα(θx) = e−iEx(θx)[nαx(θx)σx+nαy(θx)σy], (24)

Uβ(θy) = e−iEy(θy)[nβx(θy)τx+nβy(θy)τy], (25)

where α = 1, 2 and β = 3, 4. The eigenphase dispersions Ex(θx) and Ey(θy) along the two
different dimensions are given by

Ex(θx) = arccos(cosK1 cosK2), (26)

Ey(θy) = arccos(cosK3 cosK4). (27)

The explicit expressions of unit vectors [nαx(θx), nαy(θx)] and [nβx(θy), nβy(θy)] are sum-
marized in Appendix B. In the quasiposition representation, the 2D on-resonance double-
kicked lattice then possesses four bulk eigenphase (quasienergy) bands, whose dispersion
relations are given by

Ess′(θx, θy) = sEx(θx) + s′Ey(θy), (28)

where s, s′ = ±. The system could undergo topological phase transitions when these bands
touch and separate at the quasienergies zero and π.

In previous studies [121,122], it has been demonstrated that a 1D system described by
the Floquet operator Uα(θx) or Uβ(θy) possesses a topological winding number

wν =
∫ 2π

0

dθj

2π
∂θj ϕν(θj), (29)

where ν = {α, β}, j = x, y and the winding angle ϕν(θj) in the ν’s time frame is defined as

ϕν(θj) ≡ arctan
[
nνy(θj)/nνx(θj)

]
. (30)

Using these winding numbers, we can further construct two pairs of invariants (w0x, wπx)
and (w0y, wπy) for the Floquet subsystems described by Ûx and Ûy, respectively [124,125].
They are related to the values of wν through the relations

w0x =
w1 + w2

2
, wπx =

w1 − w2

2
, (31)

w0y =
w3 + w4

2
, wπy =

w3 − w4

2
. (32)

These invariants always take integer quantized values. They provide a complete charac-
terization of the topological phases in 1D Floquet systems with chiral (sublattice) symme-
try [124,125]. Moreover, under the open boundary condition, the invariants w0x (w0y) and
wπx (wπy) could predict the numbers of topological edge modes with quasienergies zero
and π in the subsystem described by Ûx (Ûy) [121,122], and therefore also capturing the
bulk-edge correspondence of these Floquet subsystems.

For our 2D system, the Floquet HOTPs can be characterized by appropriate combina-
tions of these 1D topological numbers. Specially, referring to our analysis on how the zero
and π Floquet edge modes can be coupled to form corner modes in the last section, we
introduce a pair of topological invariants (w0, wπ) for the 2D on-resonance double-kicked
lattice, which are defined as

w0 ≡ |w0xw0y|+ |wπxwπy|, (33)
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wπ ≡ |w0xwπy|+ |wπxw0y|. (34)

It is clear that (w0, wπ) ∈ Z× Z due to the quantized nature of w0j and wπ j (j = x, y).
Furthermore, as demonstrated in Section 5, the values of w0 and wπ could correctly count
the numbers of Floquet corner modes with quasienergies zero and π in the momentum
space of our system. Therefore, the invariants (w0, wπ) could provide us with a complete
characterization of Floquet HOTPs in the 2D on-resonance double-kicked lattice and other
chiral symmetric 2D lattice models whose Floquet operators can be expressed in the form
of Û = Ûx ⊗ Ûy. We also notice that (w0, wπ) 6= (0, 0) only when the subsystems described
by Ûx and Ûy are both topologically nontrivial. The Floquet HOTPs of the 2D on-resonance
double-kicked lattice are thus originated from the nontrivial cooperation of topological
natures of the two subsystems in lower dimensions.

In the remaining part of this section, based on the evaluation of invariants w0 and wπ

in Equations (33) and (34), we present topological phase diagrams of the 2D on-resonance
double-kicked lattice for two typical situations. In the first case, we show the phase diagram
of the system with respect to the kicking strengths (K2, K4) in Figure 1. We observe that
with the increase of these kicking strengths, a series of topological phase transitions can
be induced, which each of them being accompanied by the quantized jump of w0 or
wπ . At large values of (K2, K4), we further obtain rich Floquet HOTPs characterized by
large values of (w0, wπ). It is not hard to verify that there is no upper bound for the
values of these invariants if the kicking strengths keep increasing. Therefore, the 2D
on-resonance double-kicked lattice serves as a good candidate to generate Floquet second-
order topological phases in momentum space with arbitrarily large topological invariants.
Besides, according to the tensor product structure of Floquet operator in Equation (16), the
boundaries separating different Floquet HOTPs are determined by the gapless conditions
along one dimension of the lattice. More explicitly, these phase boundaries are determined
by the conditions cos[Ex(θx)] = ±1 and cos[Ey(θy)] = ±1, or equivalently

m2
1

K2
1
+

m2
2

K2
2
=

1
π2 ,

m2
3

K2
3
+

m2
4

K2
4
=

1
π2 , (35)

with mi ∈ Z and |miπ/Ki| ≤ 1 for i = 1, 2, 3, 4. In Figure 1, our choice of system parameters
yield m1 = m3 = 0, and the phase boundaries are reduced to straight lines according to
Equation (35), which is also consistent with the numerical results.

In the second case, we present the phase diagram of the 2D on-resonance double-
kicked lattice versus kicking strengths (K3, K4) in Figure 2. With the increase of these kick-
ing strengths, we also observe rich Floquet HOTPs featured by large invariants (w0, wπ),
together with multiple transitions between these phases followed by quantized changes of
(w0, wπ). Numerically, we have also checked the phase diagrams of the system versus any
one pair of kicking parameters (Ki, Ki′), with the other pair being fixed for i, i′ = 1, 2, 3, 4,
and obtain similar patterns for the topological phases and phase transitions. Therefore,
we conclude that the 2D on-resonance double-kicked lattice indeed possesses rich Floquet
HOTPs, which are characterized by a pair integer topological invariants (w0, wπ). These
invariants could not only predict the numbers of Floquet zero and π corner modes in the
system under open boundary conditions, but also be detectable experimentally from the
dynamics of wavepackets, as presented in the following sections.
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Figure 1. Topological phase diagram of the 2D on-resonance double-kicked lattice versus the kicking
strengths K2 and K4. The other system parameters are set as K1 = K3 = 0.5π. Different Floquet
HOTPs are distinguished by different colors in each panel. The values of w0 (wπ) for different
topological phases are obtained from Equation (33) [(34)] and denoted explicitly in (a) [(b)].
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Figure 2. Topological phase diagram of the 2D on-resonance double-kicked lattice with respect to
the kicking strengths K3 and K4. The other system parameters are set as (K1, K2) = (0.5π, 3.5π).
Different Floquet HOTPs are distinguished by different colors in both figure panels. The values of w0

and wπ for each topological phase are obtained from Equations (33) and (34), which are presented
explicitly in figure panels (a) and (b), respectively.



Nanomaterials 2021, 11, 1170 8 of 20

4. Mean Chiral Displacements

In this section, we sketch a dynamical approach that can be used to probe the invariants
(w0, wπ) of Floquet HOTPs in our system. This approach is based on the detection of a 2D
extension of the time-averaged mean chiral displacement, which is introduced in [82,95].
In a 2D lattice (either in position or in momentum space), we define the chiral displacement
operator of the dynamical evolution in the time frame (α, β) as

Ĉαβ(t) = Û−t
αβ (N̂x ⊗ Γx)⊗ (N̂y ⊗ Γy)Ût

αβ. (36)

Here, t counts the number of evolution periods. The Floquet operator Ûαβ = Ûα ⊗ Ûβ,
as defined in Equation (16) for α = 1, 2 and β = 3, 4. N̂x and N̂y are unit-cell position
operators along x and y directions of the lattice. Γx and Γy describe chiral symmetries
of the descendant systems Ûα and Ûβ along x and y directions, respectively. For our 2D
on-resonance double-kicked lattice, we have Γx = σz and Γy = τz, whose tensor product
gives the chiral symmetry operator Γ of the system.

To extract the topological winding numbers of Ûαβ, we initialize the system in a fully
polarized state at the central unit cell of the lattice. The initial state vector then takes
the form

|ψ0〉 = |0x〉 ⊗ | ↑x〉 ⊗ |0y〉 ⊗ | ↑y〉, (37)

where |0x〉 (|0y〉) is the eigenstate of N̂x (N̂y) with eigenvalue Nx = 0 (Ny = 0). | ↑x〉 and
| ↑y〉 are the eigenvectors of Γx and Γy with eigenvalues +1. After the evolution over a
number of t’s driving periods in the time frame (α, β), the mean chiral displacement of
initial state |ψ0〉 is given by the expectation value

Cαβ(t) = 〈ψ0|Ĉαβ(t)|ψ0〉. (38)

Since |ψ0〉 is not an eigenstate of Ûαβ, Cαβ(t) is expected to be an oscillating function of
time. To extract the topological information from Cαβ(t), we take the average of Cαβ(t) over
many driving periods, which in the long-time limit yields the stroboscopic time-averaged
mean chiral displacement

Cαβ = lim
t→∞

1
t

t

∑
t′=1

Cαβ(t′). (39)

Following the derivation steps as detailed in [82], it can be shown that for α = 1, 2 and
β = 3, 4,

Cαβ =
wαwβ

4
. (40)

Here, wα and wβ are the winding numbers defined in Equation (29). With the help of
Equations (31) and (32), we can recombine the time-averaged mean chiral displacements
to obtain the products of winding numbers w0xw0y, w0xwπy, wπxw0y and wπxwπy, which
finally yield the invariants (w0, wπ) of the Floquet HOTPs. From now on, we denote the
recombined time-averaged mean chiral displacements that are related to w0 and wπ as C0
and Cπ , respectively (see Appendix C for their explicit expressions).

To verify the relations between the time-averaged mean chiral displacements and
the topological invariants of the 2D on-resonance double-kicked lattice, we compute and
compare (w0, wπ) and (C0, Cπ) for a typical case in the remaining part of this section. In
Figure 3, we present the topological invariants and mean chiral displacements with respect
to the kicking strength K4 for evolutions over t = 50 driving periods. We observe that the
time-averaged mean chiral displacements (C0, Cπ) indeed take nearly quantized values in
each Floquet HOTPs of the 2D on-resonance double-kicked lattice, which demonstrate the
relation between them and the topological invariants of the system, i.e., (C0, Cπ) = (w0, wπ)
(see Appendix C for derivation details of this relation). Besides, the values of (C0, Cπ) also
possess quantized jumps around all topological phase transition points (K4 = π, 2π, 3π, 4π
in Figure 3). Therefore, the mean chiral displacements could also serve as a dynamical prob
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to the phase transitions between different Floquet HOTPs. The deviations of (C0, Cπ) from
quantization are due to finite-time effects, which will gradually go to zero with the increase
of the number of driving periods t. Numerically, we checked that the time-averaged mean
chiral displacements (C0, Cπ) remain close to quantization for t = 20 driving periods,
which should be within reach in current or near-term experiments in photonic [126,127]
and cold atom [128,129] systems.

0 1 2 3 4 5
0

1

2

3

4

5

6

Figure 3. Topological invariants (w0, wπ) and time-averaged mean chiral displacements (C0, Cπ)

of the 2D on-resonance double-kicked lattice versus the kicking strength K4. The other system
parameters are set as K1 = 0.5π, K2 = 3.5π and K3 = 0.5π. The mean chiral displacements are
averaged over t = 50 driving periods to generate the results for (C0, Cπ).

In the following section, we demonstrate another topological signature of Floquet
HOTPs, i.e., the symmetry protected bound states localized around the corners of the
momentum-space lattice, and relate their numbers to the topological invariants (w0, wπ) of
the system.

5. Floquet Topological Corner Bound States in Continuum

A defining feature of HOTPs in D spatial dimensions is symmetry-protected states
localized along its (D− d)-dimensional boundaries, where d > 1. For a 2D lattice studied in
this work, such bound states could appear at the geometric corners of the system. Moreover,
since the Floquet bands of a chiral symmetric system come in positive and negative pairs
±E, they could touch and separate at the quasienergies zero and ±π. Therefore, in
principle, there could be two distinct types of Floquet corner modes appearing at these
quasienergies, which are called Floquet zero and π corner modes. In the 2D on-resonance
double-kicked lattice described by Û = Ûx ⊗ Ûy, since these corner modes are formed by
the coupling between doubly degenerate edge modes of 1D descendant systems Ûx and Ûy,
their numbers (N0, Nπ) are always integer multiples of four. Furthermore, the numbers
(N0, Nπ) of Floquet zero and π corner modes tend to be connected with the topological
invariants (w0, wπ) of the bulk through the relation

(N0, Nπ) = 4(w0, wπ). (41)
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Equation (41) thus establishes the bulk-corner correspondence of Floquet HOTPs in our
model and other chiral symmetric systems, whose Floquet operators can be expressed in
the tensor product form of Û = Ûx ⊗ Ûy. The implication of Equation (41) is demonstrated
in the following with explicit numerical examples.

To investigate the spectrum and states of the system under open boundary conditions,
we express the operators in Equations (9) and (10) in momentum lattice representations
as (see Appendix A for details)

Ûx = ei π
2 ∑nx n2

x |nx〉〈nx |e−i K2
2 ∑nx (|nx〉〈nx+1|+h.c.)

× e−i π
2 ∑nx n2

x |nx〉〈nx |ei K1
2i ∑nx (|nx〉〈nx+1|−h.c.), (42)

Ûy = ei π
2 ∑ny n2

y |ny〉〈ny |e−i K4
2 ∑ny (|ny〉〈ny+1|+h.c.)

× e−i π
2 ∑ny n2

y |ny〉〈ny |ei K3
2i ∑ny (|ny〉〈ny+1|−h.c.). (43)

The quasienergies E and Floquet eigenstates |ψ〉 of the system are then obtained by solving
the eigenvalue equation Û|ψ〉 = e−iE|ψ〉, where the diagonalization of Û can be performed
separately for Ûx and Ûy due to the tensor product structure of the Floquet operator
Û = Ûx ⊗ Ûy.

In Figure 4, we present the quasienergy spectrum E and number of Floquet corner
modes N0 and Nπ at zero and π quasienergies in the momentum space of our model. In
Figure 4a, we observe an almost continuous Floquet spectrum with no gaps around the
quasienergies E = 0 and E = π. This is different from the situations usually observed
in 2D static and Floquet HOTPs, where corner modes are separated from bulk states by
spectral gaps. However, by evaluating the inverse participation ratio

IPR ≡ ∑
nx ,ny

|ψ(nx, ny)|4 (44)

for all the Floquet eigenstates of Û, we find different numbers of corner modes N0 and Nπ

at the quasienergies zero and π in distinct Floquet HOTPs of the system. Their numbers
are presented together with the topological invariants w0 and wπ in Figure 4b. Note
that the inverse participation ratio of corner modes differ from bulk and 1D edge states
of the system in their order of magnitudes, and can thus be numerically distinguished
from one another. Furthermore, we observe that the relation (N0, Nπ) = 4(w0, wπ) holds
throughout the considered parameter regime, validating the bulk-corner correspondence
of our model as established in Equation (41). Besides, with the increase of K4, the system
undergoes a series of topological phase transitions, yielding Floquet HOTPs with more and
more zero and π corner modes. The 2D on-resonance double-kicked lattice thus provides
us with a nice platform to investigate Floquet HOTPs with multiple corner states and
strong topological signatures in momentum space. For completeness, we also checked the
quasienergy spectrum and corner modes in other parameter regions of the system and
obtained results that are consistent with the above descriptions.
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(a) (b)

Figure 4. Floquet spectrum E in panel (a) and number of corner modes (N0, Nπ) in panel b of the 2D
on-resonance double−kicked lattice versus the kicking strength K4. The other system parameters
are set as (K1, K2, K3) = (0.5π, 3.5π, 0.5π). The size of the lattice is Lx = Ly = 300. In panel (b),
N0 and Nπ are plotted together with the bulk topological invariants w0 and wπ as obtained from
Equations (33) and (34).

In Figure 5, we present the quasienergy spectrum, inverse participation ratio and
corner modes of the system for a typical situation. In Figure 5a, we observe that the Floquet
spectrum E spread throughout the first quasienergy Brillouin zone, and no gaps can be
observed around E = 0,±π. However, in Figure 5b, we find three clear peaks in the inverse
participation ratio versus the quasienergy E around E = 0 and E = ±π, which indicates the
existence of localized bound states in the system at these quasienergies. By investigating
the data, we obtain eight (four) such bound states at E = 0 (E = ±π), with their probability
distributions shown explicitly in Figure 5d,e [Figure 5c]. We see that all of these bound states
are indeed localized around the corners of the system, and their numbers are determined
precisely by the bulk-corner correspondence relation in Equation (41) for the given set of
system parameters. Therefore, these corner states originate from the higher-order topology
of our system. They represent topologically degenerate corner modes in momentum space
of the system, which are protected by the chiral symmetry Γ. Besides, these corner modes
coexist with extended bulk states at the same quasienergies. We therefore refer to them
as corner-localized Floquet topological bound states in continuum, in the sense that they
do not hybridize with the surrounding bulk states even without a bulk band gap. This
observation also extends the scope of bulk-corner correspondence of Floquet HOTPs to
more general situations, in which the symmetry-protected corner modes can not only
be found in spectral gaps, but also appear within topological Floquet bands. Note in
passing that the corner-localized bound states in continuum with zero energy have been
discovered before in static HOTPs [130–132]. By contrast, the corner-localized Floquet
bound states in continuum subject to different topological characterizations, and the corner
bound states in continuum with quasienergy E = π are unique to Floquet HOTPs found
in this work. Experimentally, the implementation of open boundary conditions might
be achieved in Bose–Einstein condensates by a setup similar to the one employed in
the realization of topological quantum walk in momentum space [129]. Meanwhile, by
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applying the mapping introduced in [121] from momentum to position space lattices, the
2D on-resonance double-kicked lattice may also be realized in real space, and the corner
modes may then be probed in setups such as photonic waveguide arrays [132].

(a) (b)

(c) (d) (e)

Figure 5. Quasienergy spectrum, inverse participation ratio and Floquet zero/π corner modes of
the 2D on−resonance double−kicked lattice. System parameters are set as K1 = 0.5π, K2 = 3.5π,
K3 = 0.5π and K4 = 1.5π. The size of the lattice is Lx = Ly = 300. (a) n denotes the index of the
state. The peaks around E = 0 (E = ±π) in (b) correspond to the inverse participation ratio of zero
(π) Floquet corner modes, whose probability distributions are shown in panels (c–e).

To demonstrate the robustness of Floquet second-order topological phases found in
our system, we add disorder to the nearest neighbor hopping amplitudes in the momentum
lattice, i.e., by letting the kicking strengths K1,2 → K1,2 + r1,2(nx) and K3,4 → K3,4 + r3,4(ny)
to be dependent on the lattice site indices nx and ny. Here, r1,2(nx) and r3,4(ny) are
uniformly distributed random numbers in the range [−W/2, W/2] at different site indices
(nx, ny). In numerical calculations, we set W = 0.1 as the strength of disorder and present
a representative example of the Floquet spectrum and corner states with such hopping
disorder in Figure 6. We observe that with disorder, the Floquet corner modes are still
preserved, as shown in Figure 6c–e, and their quasienergies are also pinned at E = 0 and
E = ±π. They are thus well-defined Floquet zero and π corner modes and their presence
demonstrate the robustness of Floquet second-order topological phases of our system
with disorder. Furthermore, the total number of corner modes with quasienergy zero (π)
is eight (four), as shown in Figure 6c–e, which is precisely predicted by the bulk-corner
correspondence relation in Equation (41). Therefore, the bulk topological invariants w0
and wπ introduced in Equations (33) and (34) could also describe the Floquet second-order
topological phases of our system in the presence of weak hopping disorder.
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Figure 6. Quasienergy spectrum, inverse participation ratio and Floquet zero/π corner modes of
the 2D on−resonance double−kicked lattice with hopping disorder. System parameters are set as
K1 = 0.5π + r1, K2 = 3.5π + r2, K3 = 0.5π + r3 and K4 = 1.5π + r4, where r1,2 (r3,4) take random
values in the range [−W/2, W/2] with W = 0.1 at different nearest neighbor bonds along nx (ny)
direction. The size of the lattice is Lx = Ly = 300. (a) n denotes the index of the state. The peaks
around E = 0 (E = −π) in (b) correspond to the inverse participation ratio of zero (π) Floquet corner
modes in the presence of disorder, whose probability distributions are shown in (c–e).

6. Conclusions

In this work, we find rich Floquet second-order topological phases in a two-dimensional
extension of the on-resonance double kicked rotor. Each of the Floquet phases is character-
ized by a pair of integer topological invariants (w0, wπ), which can be extracted from the
dynamics of the system in four distinct symmetric time frames. The values of invariants
w0 and wπ take quantized jumps whenever the system undergoes a transition between
different phases. Furthermore, Floquet second-order topological phases characterized by
arbitrarily large (w0, wπ) can be found in principle with the increase of kicking strengths.
Experimentally, the invariants (w0, wπ) could also be obtained by measuring the time-
averaged mean chiral displacements of initially localized wavepackets in different time
frames. Under open boundary conditions, corner-localized modes with quasienergies zero
and π are found to be coexisting with extended bulk states at the same quasienergies,
realizing second-order Floquet topological bound states in continuum. The numbers of
these corner modes are further determined by the bulk topological invariants (w0, wπ),
leading to the bulk-corner correspondence of Floquet second-order topological phases.
Experimentally, the proposed model may also be engineered in two-dimensional photonic
or cold atom systems, where the Floquet corner modes could be imaged either in real-
space [132] or in momentum space [129]. Putting together, we uncover a unique set of
Floquet second-order topological phases in momentum space, which are featured by large
topological invariants, rich phase diagrams and multiple Floquet topological corner bound
states in continuum. In future studies, it would be interesting to extend our results to
Floquet HOTPs in higher dimensions, different symmetry classes and superconducting
systems. The possibility of realizing topological time crystals by superposing the zero and
π Floquet corner modes and the potential applications of these corner bound states in
Floquet quantum computing tasks also deserve more systematic explorations.
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Appendix A. Floquet Operator in Momentum Representation

In this appendix, we give the expressions of Floquet operators Ûx and Ûy in
Equations (9) and (10) in the momentum-lattice representation and further derive their
forms in the symmetric time frames.

In the momentum basis {|nx〉}, we can express each term in Equation (9) of the main
text as

Ux± ≡ e±(π/2)n̂2
x = e±iπ/4e±i(π/4)∑nx∈Z(|2nx−1〉〈2nx−1|−|2nx〉〈2nx |), (A1)

Ux1 ≡ eiK1 sin(x̂) = ei(K1/2i)∑nx∈Z(|2nx−1〉〈2nx |+|2nx〉〈2nx+1|−H.c.), (A2)

Ux2 ≡ e−iK2 cos(x̂) = e−i(K2/2)∑nx∈Z(|2nx−1〉〈2nx |+|2nx〉〈2nx+1|+H.c.), (A3)

where we insert the identity Îx = ∑nx∈Z |nx〉〈nx| in order to arrive at each expression, as
well as write the basis with even and odd lattice indices separately.

Since Equation (9) is invariant under the translation over two sites in n̂x, we could
decompose the momentum space lattice into two chains containing only odd and even
sites, denoted by sublattice indices A (for odd sites) and B (for even sites). A unit cell of
the momentum space lattice now contains two sublattice sites. We can then introduce Pauli
matrices in the sublattice representation as

σx = |A〉〈B|+ |B〉〈A|, σy = i(|B〉〈A| − |A〉〈B|), σz = |A〉〈A| − |B〉〈B|. (A4)

The raising and lowering operators in sublattice basis can also be written as

σ± =
σx ± iσy

2
. (A5)

In such a bipartite lattice representation, Equations (A1)–(A3) can be expressed as

Ux± = e±iπ/4e±i(π/4)∑`x∈Z |`x〉〈`x |σz , (A6)

Ux1 = ei(K1/2i)∑`x∈Z(|`x〉〈`x |σ++|`x〉〈`x+1|σ−−H.c.), (A7)

Ux2 = e−i(K2/2)∑`x∈Z(|`x〉〈`x |σ++|`x〉〈`x+1|σ−+H.c.), (A8)

where `x is the unit cell index along n̂x-direction in momentum space, and we make the
identifications

|2nx − 1〉 → |`x, A〉 = |`x〉|A〉, |2nx〉 → |`x, B〉 = |`x〉|B〉 (A9)

for nx ∈ Z. In momentum space, we can then write Equation (9) as

Ûx = Ux+Ux2Ux−Ux1. (A10)

Following the same procedure, we can also express Equation (10) in momentum represen-
tation as

Ûy = Uy+Uy4Uy−Uy3, (A11)

where
Uy± = e±iπ/4e±i(π/4)∑`y∈Z |`y〉〈`y |τz , (A12)
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Uy3 = ei(K3/2i)∑`y∈Z(|`y〉〈`y |τ++|`y〉〈`y+1|τ−−H.c.), (A13)

Uy4 = e−i(K4/2)∑`y∈Z(|`y〉〈`y |τ++|`y〉〈`y+1|τ−+H.c.), (A14)

with τ± = (τx ± iτy)/2 and τx,y,z being Pauli matrices acting in the subspace of the two
sublattices along n̂y-direction. The Floquet operators in quasiposition representations, as
given by Equations (12) and (13) of the main text, can further be obtained by performing
the Fourier transform |`x,y〉 = (1/

√
Nx,y)∑θx,y e−iθx,y`x,y |θx,y〉, with Nx,y being the number

of unit cells along n̂x- and n̂y-directions.
To obtain the Floquet operators Ûα and Ûβ in symmetric time frames α = 1, 2, β = 3, 4

and in the momentum-lattice representation, which are used in the calculation of the
chiral displacement in Equation (36), one can simply perform similarity transformations to
Equations (A10) and (A11), yielding

Û1 = U1/2
x1 Ux+Ux2Ux−U

1/2
x1 , (A15)

Û2 = U1/2
x2 Ux−Ux1Ux+U

1/2
x2 , (A16)

Û3 = U1/2
y3 Uy+Uy4Uy−U

1/2
y3 , (A17)

Û4 = U1/2
y4 Uy−Uy3Uy+U

1/2
y4 . (A18)

Appendix B. Components of the Effective Hamiltonian

In this appendix, we summarize the explicit expressions of unit vectors [nαx(θx), nαy(θx)]
and [nβx(θy), nβy(θy)] for α = 1, 2 and β = 3, 4 in Equations (24) and (25) of the main text,
respectively. Following the derivation steps as sketched in the main text and detailed
in [121,122] for 1D descendant models of the 2D on-resonance double-kicked lattice, the
components of these unit vectors are found to be

n1x(θx) = −
cos θx

2 sinK1 cosK2 − sin θx
2 sinK2

sin[Ex(θx)]
, (A19)

n1y(θx) = −
sin θx

2 sinK1 cosK2 + cos θx
2 sinK2

sin[Ex(θx)]
, (A20)

n2x(θx) = +
cos θx

2 cosK1 sinK2 + sin θx
2 sinK1

sin[Ex(θx)]
, (A21)

n2y(θx) = +
sin θx

2 cosK1 sinK2 − cos θx
2 sinK1

sin[Ex(θx)]
, (A22)

and

n3x(θy) = −
cos θy

2 sinK3 cosK4 − sin θy
2 sinK4

sin[Ey(θy)]
, (A23)

n3y(θy) = −
sin θy

2 sinK3 cosK4 + cos θy
2 sinK4

sin[Ey(θy)]
, (A24)

n4x(θy) = +
cos θy

2 cosK3 sinK4 + sin θy
2 sinK3

sin[Ey(θy)]
, (A25)

n4y(θy) = +
sin θy

2 cosK3 sinK4 − cos θy
2 sinK3

sin[Ey(θy)]
. (A26)

Here, K1,2 and K3,4 are given by Equations (14) and (15) of the main text, respectively.
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Appendix C. Relations between Mean Chiral Displacements and Topological Invariants

In this appendix, we present the explicit relationship between the time-averaged
mean chiral displacements and the topological invariants of our model. Following
Equations (31), (32) and (40) in the main text, it is straightforward to verify the following
equalities between the time-averaged mean chiral displacements and winding numbers in
different combinations of symmetric frames

C13 + C14 + C23 + C24 = w0xw0y, (A27)

C13 − C14 − C23 + C24 = wπxwπy, (A28)

C13 − C14 + C23 − C24 = w0xwπy, (A29)

C13 + C14 − C23 − C24 = wπxw0y. (A30)

Combining these equations with the definitions of w0 and wπ in Equations (33) and (34) of
the main text, we find

C0 ≡ |C13 + C14 + C23 + C24|+ |C13 − C14 − C23 + C24| = w0, (A31)

Cπ ≡ |C13 − C14 + C23 − C24|+ |C13 + C14 − C23 − C24| = wπ . (A32)

Therefore, by measuring the time-averaged mean chiral displacements Cαβ for α = 1, 2 and
β = 3, 4, we could obtain the invariants (w0, wπ) of Floquet HOTPs from the wavepacket
dynamics in different time frames.
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