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Abstract 

Background:  Complex network theory based methods and the emergence of “Big Data” have reshaped the terrain 
of investigating structure-activity relationships of molecules. This change gave rise to new methods which need to 
face an important challenge, namely: how to restructure a large molecular dataset into a network that best serves the 
purpose of the subsequent analyses. With special focus on network clustering, our study addresses this open question 
by proposing a data transformation method and a clustering framework.

Results:  Using the WOMBAT and PubChem MLSMR datasets we investigated the relation between varying the 
similarity threshold applied on the similarity matrix and the average clustering coefficient of the emerging similarity-
based networks. These similarity networks were then clustered with the InfoMap algorithm. We devised a systematic 
method to generate so-called “pseudo-reference” clustering datasets which compensate for the lack of large-scale ref‑
erence datasets. With help from the clustering framework we were able to observe the effects of varying the similarity 
threshold and its consequence on the average clustering coefficient and the clustering performance.

Conclusions:  We observed that the average clustering coefficient versus similarity threshold function can be char‑
acterized by the presence of a peak that covers a range of similarity threshold values. This peak is preceded by a steep 
decline in the number of edges of the similarity network. The maximum of this peak is well aligned with the best 
clustering outcome. Thus, if no reference set is available, choosing the similarity threshold associated with this peak 
would be a near-ideal setting for the subsequent network cluster analysis. The proposed method can be used as a 
general approach to determine the appropriate similarity threshold to generate the similarity network of large-scale 
molecular datasets.

© 2016 Zahoránszky-Kőhalmi et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna‑
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in 
any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com‑
mons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Complex network theory based clustering algorithms 
represent a relatively new class of methods applied to 
the field of cheminformatics. This class of methods can 
process large data sets in reasonable time. The core of the 
decision making mechanism of these network, or graph 
theory based methods, is the connectivity matrix of the 
network, i.e. which nodes are inter-connected. This con-
nection structure can be perceived as information spread 
across the network. This information is used for inferring 
what node is likely to be similar to other nodes, based 

on what nodes they have in common. Network cluster-
ing algorithms, which are also referred to as community 
or module detection algorithms, operate on a similar 
basis. They seek groups of similar subjects based on the 
node neighborhood. Examples of such algorithms are the 
k-clique percolation method (CPM) [1–3] combined with 
a level selection algorithm (LInCS) [4], the InfoMap algo-
rithm [5], and the Girvan–Newman algorithm [6]. The 
outcome of any network based clustering is substantially 
influenced by the underlying network topology.

Cheminformatics networks are typically generated 
using the similarity matrix derived from the molecules of 
interest. Such networks are often referred to as similarity 
networks. The process of converting the similarity matrix 
into a similarity network is not obvious. Typically a 
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threshold is applied to the values of the similarity matrix, 
leading to a so-called threshold matrix [4, 7]. Pairs of 
molecules are preserved as pairs of nodes connected by 
an edge if their similarity-coefficient is greater than or 
equal to the selected cut-off similarity value, denoted as 
t. This process results in an unweighted and undirected 
network. Ideally this network is able to highlight struc-
tural relations between the chemical structures at hand. 
The question arises: How can one select a threshold value 
so that the similarity network serves as an optimal or 
near-optimal input for the subsequent clustering step?

The importance of this question is apparent in the 
context of “Big Data”. To our knowledge, no systematic 
method addresses the aforementioned question. We have 
summarized our requirements for a systematic similarity 
threshold selection mechanism, which are: (1) ability to 
process large molecular datasets; (2) similarity measure 
independence; (3) use of structural chemical informa-
tion only; (4) support the decision making process with 
well-defined network topology parameters. In the follow-
ing we provide a short summary of earlier attempts that 
addressed the challenges, at least in part.

A common approach to converting a similarity matrix 
into a similarity network is to apply a threshold or series 
of thresholds on the similarity matrix. Saito et  al. [8] 
used statistical significance testing to identify positively 
correlated pairs of molecules, which are connected by 
an edge in the resultant network. The emerging net-
work topology is a function of the selected significance 
level. A more common approach is to apply a series of 
thresholds on the full similarity matrix. This approach 
was utilized decades ago for clustering documents based 
on keywords [7]. Tanaka et al. [9] used this approach in 
cheminformatics, however that investigation focused on 
small-world properties [10] of the emerging similarity 
networks. Wawer et  al. [11] applied a series of thresh-
olds to generate similarity networks. Their selection of 
the applied threshold t =  0.65 was driven by evaluating 
clusters based on available bioactivity data. As a second-
ary data source, bioactivity is not always available, thus 
this method cannot be used when only chemical struc-
tures are available; furthermore, by changing the end-
point from one bioactivity source to another, clusters are 
likely to re-arrange. The threshold t = 0.65 value is based 
on the drug-like MACCS fingerprints [12], which are 
unlikely to be suitable for analyzing datasets of Big Data 
given the low discrimination capacity provided by such a 
relatively small number of structural keys. Furthermore, 
Wawer et al. [11] only discuss network topology from a 
high-level point of view, i.e. through the number, size, 
density and composition of components.

Given our interest in molecular similarity networks 
from a clustering point of view, our attention was drawn 

to a promising and well-defined network topology 
descriptor. This descriptor is the so-called average clus-
tering coefficient (ACC) [10]. The use of ACC in conjunc-
tion with (similarity) thresholds can be found in prior art, 
e.g. Serrano et al. [13] used it in the realm of physics. This 
study did not analyze molecular similarity networks, but 
some of its findings demonstrated that the ACC could 
indicate changes in network topology. Barupal et al. [14] 
show that the selection of the similarity threshold in 
metabolite networks can change the individual cluster-
ing coefficient values of nodes. Nevertheless, none of the 
latter two studies provide a systematic method for select-
ing a suitable similarity threshold. To our knowledge, it 
was our previous work, by Zahoránszky et  al. [4], that 
provided a first systematic method for selecting a simi-
larity threshold to promote the success of a subsequent 
network clustering step. While this method was able to 
inspire research [15] outside the realm of cheminfor-
matics it was not evaluated on large molecular datasets. 
Otherwise, the method meets the rest of our criteria 
raised against a systematic similarity threshold selection 
method. Therefore, we extended and generalized this 
approach.

The scope of this study is to find a methodology-driven 
transformation of a similarity matrix into a network that 
facilitates a near optimal outcome of a particular clus-
tering workflow. Naturally the optimal outcome will be 
constrained by the choice of similarity measures and 
clustering algorithms. The transformation should be 
able to handle large datasets and to operate on the basis 
of objective network topology measures, in order to 
reduce the need for making subjective decisions by the 
investigator.

Datasets and methods
Molecular libraries
Graph theory provides the underpinning of quantifying 
similarity between molecular structures. The atoms of 
molecules constitute the nodes of the graph whereas the 
bonds constitute the edges. The nodes and the edges are 
labeled according to the available chemical information, 
i.e. types of atoms and bonds. This representation might 
be referred to as a molecule graph. In this study molecular 
structures are encoded as isomeric SMILES [16] which is 
a widely used language to describe molecule graphs. The 
following subsections introduce the data sets analyzed in 
the present study.

Small combinatorial libraries
A small set of 157 molecules has been proposed [4] to be 
used as a reference data set for clustering studies. Mol-
ecules were manually selected utilizing expert knowledge 
so they can be assigned to six clusters representing the 
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original six combinatorial libraries the compounds were 
synthesized in. The number of molecules selected to each 
reference cluster shows variation that reflects the inten-
tion of designing the reference data set. In each cluster 
molecules are more similar to each other than to mole-
cules of another cluster. The reason of it is that combina-
torial synthesis produces molecules that share the same 
core, referred to as scaffold. Considering that the six dif-
ferent combinatorial libraries represent six different scaf-
folds it is assured that intra-cluster similarity is greater 
than inter-cluster similarity. This data set will be referred 
to as Small Combinatorial Libraries (SCL) through this 
study. The original molecular structures of SCL were 
deposited by AMRI Inc. (former Comgenex) [17] in the 
ZINC 7 database [18].

WOMBAT 2010 data set
The World of Molecular Bioactivity (WOMBAT) 
database (version 2010) [19] is a manually curated 
comprehensive biological activity database for small 
molecules. It comprises 300,000 unique molecu-
lar structures,  19,000 unique targets and more than 
1,000,000 biological activity data that were experi-
mentally determined between small molecule-target 
pairs. Each biological activity entry is referenced by 
the original paper in which the experimental result 
was reported. Small molecules were extracted from the 
WOMBAT database in the form of isomeric SMILES. 
Next, a standardization scheme was applied on the 
structures which is described in details in subsection 
“Structure standardization”. Removal of any dupli-
cate structures resulted in 244,143 unique molecular 
structures.

PubChem MLSMR data set
The PubChem Molecular Libraries Small Molecule 
Repository (MLSMR) [20–24] is a library that was 
designed for facilitating high-throughput screening 
campaigns. The library contains several distinguished 
subsets such as (1) known bioactive compounds such as 
toxins and drugs, (2) natural products, (3) compounds 
focused on a variety of biological target families and (4) 
large number of compounds attributing to a significant 
diversity. The size of the library has evolved in multi-
ple cycles to achieve a number of 400,000 compounds 
the time the experiments of this study were carried out. 
Therefore, this data set provides a large and diverse sam-
ple of known and potential bioactive chemical space. 
Furthermore, the data set contains large number of 
smaller subsets that can be considered as structure-
activity relationship (SAR) series. This unique balance 
of diversity and structural relatedness make this library 
useful for lead identification and optimization. After 

standardization and duplicate filtering: 353,028 unique 
structures.

Structure standardization
The SCL dataset has been imported into ChemAxon 
InstantJChem (version 5.7.0) [25]. Next, the molecules 
were extracted from the database as canonical SMILES 
using the “smiles:au-H” formatting string. The exported 
structures were object to another standardization in the 
pipeline which contains a “keep largest fragment only” 
and a “general” aromatization steps. These standardiza-
tion steps were performed using the ChemAxon’s stand-
ardize utility from the JChem library (version. 3.2.10).

The WOMBAT and PubChem MLSMR datasets were 
imported into a ChemAxon InstantJChem database 
(version 5.3.8). The structures were exported from this 
database as canonical SMILES using the “smiles:au0-H” 
formatting string. The extracted structures were subject 
to another standardization step with the help “standard-
ize” utility of ChemAxon’s JChem library (version: 5.3.6) 
using the -c “keepone..neutralize..aromatize..[O−][N+]
=O>>O=N=O..N=[N:1]#[N:2]>>N=[N+:1]=[N−:2]” 
−f “smiles:au0-Hn” parameters. The duplicate structures 
were removed.

Similarity measures
A family of techniques utilized to quantify similar-
ity between molecules starts with extracting struc-
tural features as subgraphs from the graph of molecular 
structures. The set of extracted structural features will 
characterize a molecule. This set of features is often 
referred to as a topological fingerprint [26, 27]. The more 
features two molecules have in common the more sim-
ilar they are [28, 29]. In this study three major types of 
molecular fingerprints were used, namely structural key 
fingerprints, hashed binary fingerprints and extended 
connectivity fingerprints (ECFP). Structural key based 
fingerprints were computed using the Open Babel (ver-
sion 2.3.2) implementation [30] of the original MACCS 
keys [12]. It should be noted that only 122 out of the 
original 166 MACCS keys is used in the Open Babel 
implementation due to the unavailability of the rest of 
the original MACCS keys. Hashed binary fingerprints 
of length 1024, 2048 and 4096 were generated by using 
ChemAxon’s GenerateMD utility (version 3.2.10) [25, 
31]. Extended connectivity fingerprints of diameter 4, 
8, and 12 were generated by an in-house implementa-
tion of the underlying algorithm [32–34]. In correspond-
ence with the predefined diameter d, types of ECFPs 
are distinguished by suffixing the abbreviation with the 
applied parameter d; ECFP_4 refers to a fingerprint in 
which the diameter of the extended neighborhoods is 
4. Although in the main body of this study molecules 
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were characterized by ECFP_4 fingerprints, some of the 
results were obtained by using ECFP_8 and ECFP_12 
fingerprints.

With the help of molecular fingerprints it is possi-
ble to quantify the similarity between molecules. This 
step requires the application of a so-called similarity 
measure. The Tanimoto similarity-coefficient [35] is one 
of the most widely used similarity measures in chemin-
formatics. The idea of this metric is to express the ratio 
of the common and distinct structural features of two 
molecules. Accordingly, the maximal value of the Tani-
moto similarity-coefficient is 1 whereas the minimal is 0 
corresponding to highest and lowest similarity, respec-
tively. As described above, several methods exist to cap-
ture structural characteristics of molecules in a form of 
molecular fingerprints. In the case of fingerprints of fixed 
length, e.g. MACCS-fingerprint and ChemAxon hashed 
binary fingerprints, computing the Tanimoto similarity-
coefficient T(mA,mB) is performed according to Formula 
1, where A and B denote the set of indices of bits with 
a value of 1 in the fingerprints of molecule mA and mB, 
respectively.

The means of computing Tanimoto similarity-coeffi-
cient between extended connectivity fingerprints follows 
a similar logic. Considering that ECFPs are comprised of 
integers instead of bits, moreover the length of ECFPs 
might vary due to the fingerprint generating algorithm, 
it is necessary to convert these fingerprints into a fixed-
length bit-vector. One of the means to do so is treating 
the integers as indices of a virtual fingerprint of length W 
that corresponds to the largest integer appearing in any 
of the fingerprints. In agreement with this interpretation 
each integer represents a bit turned to 1 in a W-bit length 
virtual fingerprint. With the aid of this transformation 
the Tanimoto similarity-coefficient of two ECFPs can be 
computed as described above.

We used ChemAxon’s JChem 5.7.1 library to compute 
Tanimoto similarity-coefficients in the case of MACCS 
keys and ChemAxon hashed binary fingerprints. In the 
case of ECFPs an in-house developed software was used 
to compute Tanimoto similarity-coefficients.

Molecular similarity network generation
Pairwise similarities between a set of molecular struc-
tures M defines a similarity matrix S that is a |M| × |M| 
squared matrix. Furthermore, S is symmetric consid-
ering that in this study the similarity of molecules is 
expressed as Tanimoto similarity-coefficient (see: Tani-
moto similarity-coefficient above). An element si,j  ∈  Q 
[0,1] of S represents the Tanimoto similarity-coefficient 

(1)T (mA,mB) =
|A| ∩ |B|

|A| ∪ |B|

T(mi, mj|∀m  ∈  M) defined between molecules mi and 
mj. This similarity matrix can be transformed into a 
fully connected network constituted by molecules as 
nodes and edges connecting them. An edge in this net-
work is weighted and represents the similarity relation 
si,j between the two endnodes, i.e. molecules mi and mj 
provided that i ≠  j. The weight of an edge equals to si,j. 
Considering that Tanimoto similarity-coefficient is a 
symmetric similarity measure the edge between two 
nodes is undirected. Therefore this network is a weighted 
and undirected network. However, the topology of a fully 
connected network provides little help in finding inter-
esting relations between molecules based on network 
topology.

A possible solution for highlighting important simi-
larity relations is to apply a similarity threshold t on the 
original similarity matrix S. Applying t on S will trans-
form a similarity-coefficient to 1 if its value is greater 
than or equal to t. Otherwise the similarity-coefficient 
will be transformed to 0. The resultant matrix of the 
thresholding step is referred to as a threshold matrix [7] 
and is denoted by Z. Please note that the dimensions of 
Z are the same as that of S. Elements of Z are denoted by 
zi,j ∈ {0,1} and are computed according to Formula 2.

Threshold matrix Z can be transformed into a net-
work by similar means as the similarity matrix. However, 
according to our initial aim, i.e. to highlight important 
similarity relations based on the topology merely, there is 
no need to preserve the weight of the edges. This trans-
forms the initial meaning of an edge into a new binary 
relation: the existence of an edge between two nodes rep-
resent a T(mi, mj) ≥  t similarity relation between mole-
cules mi and mj. The network can be readily derived from 
Z as follows. If zi,j = 1 then an edge is defined between 
nodes representing molecule mi and mj. On the other 
hand, if zi,j  =  0 then no edge is defined between the 
corresponding nodes. The resultant network is there-
fore unweighted and undirected and can be referred to 
as a similarity network. It should be noted that similar-
ity matrix S might contain molecules that only have 
Tanimoto similarity-coefficients lower than the applied 
threshold. This kind of molecules will only have zeros in 
the corresponding row in the threshold matrix Z. In simi-
larity networks such a molecule is represented as a single 
node, i.e. a singleton. The process of generating similarity 
networks is illustrated in Fig. 1.

Average clustering coefficient
Let G =  (V, E) denote a network constituted by a set of 
nodes V and a set of undirected and unweighted edges E 

(2)zi,j =

{

0, si,j < t
1, si,j ≥ t
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(U × V)|u, v ∈ V, ∀(u, v) : u ≠ v connecting the nodes. 
A node v ∈ V is considered a neighbor of node i ∈ V if 
(i, v) ∈ E, i.e. an edge exists between the two nodes. The 
degree deg(i) ∈ N of node i is defined as the number of 
edges associated to node i.

Let N(A × B) ⊆ E|A, B ⊆ V\i, ∀a ∈ A : (i, a) ∈ E, ∀b ∈ B :  
(i, b)  ∈  E denote a subset of edges that connect the 
neighbors of node i. Please note, that none of the edges 
between node i and its neighbors is member of this edge 
subset N.

The clustering coefficient, denoted by CC(i) ∈ Q [0,1] 
of a node i ∈ V in the network G is defined as the ratio 
of the number of existing edges between the neighbors 
of node i and the number of possible edges between its 
neighbors [10]. If node i has none or only one neighbor 
then CC(i) = 0 by definition.

Using the above introduced concepts the formal defini-
tion of clustering coefficient is given by Formula 3.

It can be seen that the clustering coefficient is a local 
parameter that provides information on the local 

(3)CC(i) =

{

0, deg (i) ∈ {0, 1}

2|N |

deg (i)(deg (i)−1)
, deg (i) > 1

topology of a particular node. On the other hand, the 
average clustering coefficient ACC(G) ∈ R[0,1] is a global 
parameter that characterizes the overall network topol-
ogy of G [10]. It takes into account the clustering coef-
ficient values of the individual nodes that have a degree 
greater than zero. Let X ⊆ V|∀x ∈ X : deg(x) > 0 denote 
the subset of such nodes. Accordingly, the average clus-
tering coefficient is defined formally by Formula 4.

The interplay between the average clustering coefficient 
and the addition or removal of edges
The ACC of a network is subject to change in case of edge 
addition or edge removal. The dynamics of this process is 
quite intriguing: one would expect that addition of new 
edges to an existing network would increase the connect-
edness. While this is true, i.e. more nodes will become 
connected, it does not follow that the existing neighbors 
of a node are more likely be connected. Acquiring a new 
neighbor upon an edge addition does not increase the 
clustering coefficient of the host node if the new neigh-
bor won’t be connected to any of the already existing 

(4)ACC(G) =







0, |X | = 0

1
|X |

|X |
�

i=1

CC(xi), |X | > 0

Fig. 1  Transforming a similarity matrix to a similarity network. The upper part of the figure shows the original similarity matrix and a network 
representing it. The lower part of the figure shows a threshold matrix and the corresponding similarity network that was derived by applying a 
t = 0.7 similarity threshold on the original similarity matrix. Elements of the similarity matrix containing similarity-coefficients greater than or equal 
to t = 0.7 are transformed to 1. Rest of the elements of the similarity matrix are colored with light gray in the threshold matrix and their values are 
transformed to 0. In the resultant similarity network molecule D is a singleton because it only has molecules less similar to itself than the similarity 
threshold of choice
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neighbors of the host node. Furthermore, removal of an 
edge can actually lead to an ACC increase. The changes 
described here are illustrated with examples in Fig. 2.

The phenomenon described above can be observed 
when a series of similarity networks are generated from a 
given similarity matrix by applying a series of thresholds. 
Increasing the threshold implies removing edges from 
the network. Applying a strictly monotonically increasing 
series of thresholds on a similarity matrix does not nec-
essarily lead to a strictly monotonic decrease in the edge 
number of the generated similarity networks. This hap-
pens if an increment in the threshold does not meet the 
value of the next lowest Tanimoto similarity-coefficient 
of a pair of molecules. In this case the two networks gen-
erated by the previous and the incremented thresholds 
will be identical despite the threshold value increase.

Clustering framework and performance analysis
Evaluating clustering performance is still a challenge to 
date for a number of reasons. First of all the number of 
available reference sets, often referred to as ground truth 
sets, is very limited. A common reason is that the data 
set at hand is proprietary in nature. Even though the data 
set might be accessible, the lack of exact definition of a 
cluster per se contributes some extent of inherent subjec-
tivity to the process of determining which object belongs 
to which cluster, i.e. to the creation of reference clustering.

One of the common strategies to define a reference 
clustering for a set of molecular structures requires the 
involvement of expert knowledge. In this process a chem-
ist would inspect individual molecular structures and 

assign them to clusters based on a predefined cluster-
ing objective. This human-dependent approach becomes 
cumbersome, then intractable as the data sets reach the 
thousands range. To overcome this barrier a computer 
aided method is required to substitute expert knowl-
edge in the process. A plausible way to achieve this is to 
apply an adequate combination of a pattern-recognition 
algorithm and a clustering algorithm. Considering that 
numerous pattern recognition and clustering algorithms 
exist it is likely that the resulting clustering will be dif-
ferent in each case, although some degree of consensus 
might be expected.

In the following subsection we describe a clustering 
framework that was used to analyze the effect of choos-
ing a certain similarity threshold on the clustering per-
formance. The clustering framework consists of (a) three 
reference clustering sets, (b) a clustering algorithm and 
(c) a performance evaluation method. It should be noted, 
however, that the aim of cluster analysis was not to achieve 
the ideal clustering in light of the reference sets, but to 
show how the choice of similarity threshold influences 
the performance when the same clustering workflow and 
reference clustering sets are used for comparison. For this 
reason we accept that one might argue for the existence of 
other means to create the reference clustering sets and to 
perform the cluster analysis. Nevertheless, the clustering 
framework assures that the observed variance in the clus-
tering performance is accounted solely for the choice of 
similarity threshold. This holds true, because the applied 
reference clustering sets and the clustering algorithm are 
consistent through the entire study.

Fig. 2  The influence of edge addition/removal on the average clustering coefficient. An intriguing dynamics between a network’s average cluster‑
ing coefficient is observed upon adding or removing edges from the network. a Provides an example in which the average clustering coefficient 
increases followed by the addition of a new edge, shown as red dashed line in the lower network. b Shows a somewhat counterintuitive scenario in 
which the average clustering coefficient of a network actually decreases upon the addition of one edge. The added edge is shown as red dashed line 
in the lower network



Page 7 of 17Zahoránszky‑Kőhalmi et al. J Cheminform  (2016) 8:16 

Reference clustering data sets
As mentioned above there exist various approaches to 
generate a reference clustering set. A specimen of a ref-
erence clustering set generated by an expert is the SCL 
dataset [4]. In this set 157 molecules are assigned to six 
different clusters that correspond to six clearly defined 
scaffolds shared by the members of each cluster. For 
further information on the SCL data set please refer to 
the subsection ‘Molecular libraries’. Results obtained by 
using the SCL data served the purpose of proof-of-con-
cept. However, we felt it necessary to investigate data sets 
that better reflect the size of common chemical libraries. 
To this end, in this study we analyzed additionally the 
WOMBAT [19] and the PubChem MLSMR datasets [20]. 
Considering that no known reference clustering exists for 
these data sets we needed to overcome several challenges 
to generate those.

The number of molecular structures contained by the 
WOMBAT and PubChem MLSMR data sets is in the 
range of hundreds of thousands. Therefore the possibility 
of clustering the molecules relying on expert knowledge 
was ruled out. Instead, we have devised a computer aided 
method to generate a so-called pseudo-reference cluster-
ing for the datasets. The method of generating reference 
clusters is described in details as follows.

We devised a two-phase procedure to generate the 
pseudo-reference clustering for the two large datasets. 
In the first phase, an in-house implemented algorithm 
operates on the basis of a well-defined clustering objec-
tive. This objective follows a chemical rule-set that was 
designed to mimic the decision-making process of a 
medicinal chemist in identifying common structural fea-
tures of molecules. To this end, the algorithm searches 
for so-called maximal common edge subgraphs (MCESs) 
[36] with the help of a modified version of the RASCAL-
algorithm [37]. In the implementation of the algorithm 
an MCES is allowed to be constituted by multiple discon-
nected subgraphs. The algorithm utilizes two major heu-
ristics based solutions to make the clustering capable to 
handle large datasets. One of these solutions is to decom-
pose the molecules according to the hierarchical scaffold 
(HierS) decomposition algorithm [38, 39]. The HierS sets 
enable to eliminate the analysis for pairs of molecules if 
the differences between these sets indicate the lack of 
common ring systems. If the HierS sets don’t exclude a 
pair of molecules from MCES analysis then a second 
heuristic is applied to potentially identify an MCES. To 
this end, molecules that contain less than 40 heavy atoms 
[16] are analyzed by an exact MCES finding algorithm. 
Molecules having between 40 and 80 heavy atoms are 
passed to an algorithm that utilizes a certain approxi-
mation in identifying MCES. Molecules with more than 
80 heavy atoms were excluded from the MCES analyses 

due to performance limits. Once MCESs are identified, 
each MCES will represent one cluster and the cluster 
will be comprised of molecules that contain the particu-
lar MCES. The members of the clusters will only differ 
in the so-called linkers and R-groups that separate and/
or augment the parts of MCES, respectively. This sort of 
decomposition of molecular structures, i.e. MCES, link-
ers and R-groups, follows a common practice in the field 
of medicinal and computational chemistry. The resulting 
MCES-clusters are typically small in size and the mem-
bers are in a rigorous, medicinal chemistry based struc-
tural relation with each other.

One characteristic of the generated MCES-clusters 
is that the structures of cluster members might contain 
twice as much, or even more heavy atoms as the MCES of 
the cluster. In line with our original aim, i.e. to generate 
well defined clusters, we thought it necessary to apply an 
extra filtering step on the MCES-clusters. Therefore, in 
the second phase of the process certain clusters including 
all the cluster-members were eliminated from the data-
set. The criterion for eliminating a cluster is based on the 
heavy-atom count of the MCES and cluster members. 
If any cluster member harbors a heavy-atom count that 
exceeds that of the MCES by more than two-fold, then 
the entire cluster is eliminated.

The filtering step of the second phase is necessary in 
order to maintain a certain level of structural coherence 
within an MCES cluster. Otherwise, it may happen that 
two molecules share the same MCES consisting of two 
disconnected heterocycles that are connected through a 
much larger ring system, which might be different in the 
two molecules. In this case the validity of assigning the two 
molecules to the same MCES cluster might be questioned. 
This filtering step does not incorporate a definite similarity 
constraint on the members of an MCES cluster. The Tani-
moto similarity-coefficient between members might very 
well be under 0.5, a value that intuitively might occur in 
connection with the applied filtering step described above.

The above steps gave rise to the pseudo-reference clus-
tering datasets derived from the original WOMBAT and 
PubChem MLSMR datasets. The WOMBAT-derived set 
contains 154,012 molecules in 27,168 clusters whereas 
the PubChem MLSMR-derived set contains 276,960 
molecules in 52,287 clusters. The distribution of cluster 
sizes in these two pseudo-reference clustering datasets is 
shown on Fig. 3.

While it is true that clusters were generated through an 
automated process, the clustering objective was under-
pinned by a rigorous, medicinal chemistry based struc-
tural rule set. Therefore, we find the pseudo-reference 
cluster generating scheme a useful and feasible alterna-
tive for the tedious process of defining reference cluster-
ing manually by an expert.
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The InfoMap clustering algorithm
In this study we utilized the InfoMap [5] network-based 
clustering method which is able to process a threshold 
matrix of molecules. The reasons of selecting the Info-
Map algorithm as the clustering method of this study 
are as follows. In a thorough clustering review by Fortu-
nato [40], the InfoMap algorithm was shown to have one 
of the best overall performance investigating a variety of 
input datasets. Also, the InfoMap algorithm scales well 
with the problem size which is one of its most important 
characteristics in the light of the objective of this study. 
Furthermore, it requires minimal number of input param-
eters from the user. Finally, the number of clusters and the 
members are determined by the algorithm. These traits 
make the outcome of the cluster analysis rather independ-
ent from a subjective bias potentially introduced by the 
user. Another important property of the produced clus-
tering that clusters are non-overlapping. We carried out 
the InfoMap clustering experiments using the implemen-
tation published by the authors of the algorithm (version: 
July 26, 2010). When performing the InfoMap clustering, 
in the case of each dataset, we applied a value of 1000 as 
the parameter for the number of iteration cycles.

Evaluating clustering performance
In this study we decided to apply the widely utilized sen-
sitivity and specificity measures [41] to quantify cluster-
ing performance. The minimal and maximal values of 
these measures are 0 and 1, respectively. In the case of an 
ideal clustering both measures have the value of 1. Hence, 
the closer the actual values of sensitivity and specificity 
are to 1 the closer the actual clustering approaches the 
ideal one. The formal definition of sensitivity and spec-
ificity is provided in Formula  5, where TP, FP, TN and 
FN stand for the number of true positives, false positives, 
true negatives and false negatives, respectively. Please 
note, that no singletons are present neither in the refer-
ence, nor in the pseudo-reference clustering datasets, 
therefore the sensitivity and specificity computation will 
always lead to a rational number in the range of 0 and 1.

Although the computation of the above measures 
is quite simple, the large size of the WOMBAT and 
PubChem MLSMR datasets required a specific imple-
mentation in order to achieve a reasonable runtime. This 
implementation relies on two important software design 
elements that will be discussed briefly: (1) clustering 
is represented as cluster membership lists (CMLs) that 
resembles the well-known adjacency list data structure, 
(2) set operations are utilized on the CMLs to efficiently 
compute the values of TP, FP, TN and FN.

Clustering is represented by the CMLs as follows. Each 
list of the CMLs starts with the identifier of the node, 
referred to as list root. This node identifier is followed 
by the identifiers of other nodes that belong to the same 
cluster as the list root. Compared to a more conven-
tional clustering representation, e.g. adjacency matrix, 
the speedup of processing time when using the CMLs 
data structure is profound. This can be accounted for 
the observation that clustering at reasonable similarity 
thresholds gives rise to sparse CMLs, i.e. list roots associ-
ate to a number of nodes that are only a fraction of the 
size of the whole dataset. Although it is not a unique fea-
ture of the CMLs data structure, it is worth emphasizing 
its capacity to facilitate the handling of overlapping clus-
ters. This feature is not exploited in this study, since the 
InfoMap algorithm produces only disjoint clusters.

Results and discussion
ACC as function of similarity threshold
We studied ACC in three datasets, namely SCL, WOM-
BAT, and MLSMR. In the case of the SCL dataset, the 
threshold starts at t = 0, whereas in the case of the latter 
two datasets it starts from t = 0.30. The reason of this is 
that computing the complete similarity matrix, i.e. setting 

(5)sensitivity =
TP

TP + FN
, specificity =

TN

TN + FP

Fig. 3  Cluster size distribution of pseudo-reference clustering data‑
sets. The x-axis of the graph is shown on log-scale and it represents 
the size of clusters in the case of the pseudo-clustering datasets gen‑
erated from the WOMBAT and PubChem MLSMR datasets. The y-axis 
represents the relative frequency of certain cluster sizes. A given data‑
set is characterized by cluster sizes that have a higher frequency. The 
overall frequency of cluster sizes provides the cluster size profile of a 
dataset. As it can be seen the cluster size profile of the two datasets 
are nearly identical, with small differences in the low cluster size and 
in the large cluster size regions
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the threshold to t =  0, for the WOMBAT and MLSMR 
datasets was intractable at the time the experiments were 
performed. In all cases, the upper limit of threshold was 
t = 1, and t was incremented in the steps of 0.01.

First, we discuss our proof-of-concept SCL data-
set which enabled us to make important observations. 
If the threshold is set to t =  0 the similarity network 
is a fully connected network, because all elements of 
the similarity matrix are turned to 1, hence encoding 
the presence of an edge between all pair of molecules 
(see: Fig. 4a). By definition the ACC of such a network 
is 1, as the likelihood of neighbors of a host node being 
connected is maximal. Therefore, setting the threshold 
to t =  0 will result in the maximal average clustering 
coefficient and number of edges in the respective func-
tions ACC(t) and EN(t). It can be seen that increasing 
the threshold stepwise will not affect the ACC initially, 
but later it will start to decrease steeply until it reaches 
a local minimum. This local minimum is followed by a 
local maximum at t = 0.23. From hereafter, the thresh-
old associated to the local maximum of the ACC(t) 
function is denoted by tα. After tα, the curve decreases 
and eventually reaches ACC =  0. A few shallow local 
maxima are observed in the range of t > 0.23 but their 
presence was not deemed important. The local maxi-
mum seems to directly follow an interesting phenom-
enon in the EN(t) function (see: Fig. 5a). The number of 
edges start to decrease steeply, then at a certain value 
the rate of decrease becomes slower, leading to a slight 
decline. The steep decrease and the sudden change 
in the slope of the curve is aligned with the local ACC 
maximum at t = 0.23. Analysis of the SCL dataset with 
different similarity measures provides more evidence to 
support this observation (see Additional file  1: Fig.  S1, 
Additional file 2: Fig. S2, Additional file 3: Fig. S3, Addi-
tional file 4: Fig. S4, Additional file 5: Fig. S5, Additional 
file 6: Fig. S6, Additional file 7: Fig. S7). 

To rule out that the above observations are not specific 
to the proof-of-concept dataset, we performed the same 
analysis on the larger, more complex datasets, i.e. WOM-
BAT and MLSMR. A local maximum of the ACC(t) func-
tion is observed for both the WOMBAT and MLSMR 
datasets, as shown in Fig.  4b, c, respectively. In accord-
ance with the SCL dataset, the change in the slope of the 
number of edges versus threshold curve is well aligned 
with the local maximum of the ACC(t) function (see: 
Fig. 5b, c).

Furthermore, tα is shifted in comparison with the SCL 
dataset, and differs with each dataset. The peak enclosing 
tα in the case of WOMBAT and MLSMR follows a more 
elongated, flat curvature compared to the SCL dataset.

These curve characteristics unveil important differ-
ences on the underlying relations between the network 

objects. The local ACC(t) maximum of the SCL curve 
stands out sharply, suggesting a clear-cut threshold that 
separates a group of more similar molecules from groups 
of less similar molecules. On the other hand, missing this 
tα just slightly might lead to a less effective separation of 
molecule groups. By comparison, the local ACC(t) maxi-
mum in large datasets might be considered more robust, 
that is, slightly missing tα will not cause such a sud-
den change in the separation between groups of related 
molecules.

The observed differences in the characteristics of the 
ACC(t) and EN(t) functions are influenced by the applied 
similarity measure between the molecules. In this experi-
mental framework, we use only one type of fingerprint 
and similarity measure, i.e. the ECFP_4 fingerprint and 
Tanimoto similarity-coefficient, the location of tα and 
the characteristics of the ACC(t) and EN(t) functions are 
dependent on the similarity measure at hand. This effect 
is demonstrated by several examples in the Supporting 
Material (see: Additional file 1: Fig. S1, Additional file 2: 
Fig. S2, Additional file 3: Fig. S3, Additional file 4: Fig. S4, 
Additional file 5: Fig. S5, Additional file 6: Fig. S6, Addi-
tional file 7: Fig. S7).

The emergence of a robust local maximum of the 
ACC(t) is also demonstrated on an additional much 
larger dataset extracted from the ChEMBL 20  database 
[42] (downloaded on 04/24/2015). This dataset contains 
more than one million molecules and it was analyzed 
by the Snap library [43]. The threshold associated with 
that local maximum is also well-aligned with the sudden 
change in the slope of the EN(t) function. These results 
are included in the Supporting Material (see: Additional 
file 8: Fig. S8).

Clustering performance as function of the similarity 
threshold
Analyzing the clustering performance as function of the 
similarity threshold requires that certain factors are kept 
invariant through the clustering process. The similar-
ity matrices were generated with the ECFP_4 fingerprint 
algorithm and the Tanimoto similarity measure. While 
different choices can be made in selecting the applied 
clustering algorithm and performance measure, our goal 
was to choose a reliable clustering algorithm and a widely 
used performance measure. As detailed in Datasets and 
Methods, we used the InfoMap algorithm on a 200+ core 
computing cluster, and sensitivity and specificity to char-
acterize clustering performance.

The algorithm is able to detect the number of clusters 
automatically thus alleviating the need to input this num-
ber a priori. For reasons related to storing the similar-
ity matrices, the similarity threshold evaluation began 
at t =  0.30 in the case of the WOMBAT and MLSMR 
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datasets, to assure that the produced networks can be 
stored and processed by the available computational 
tools.

As seen in Fig.  6, the clustering performance is as 
dependent on the selected similarity threshold as on 

the ACC. The specificity of the clustering is close to the 
maximum over the majority of the range of the selected 
threshold, which means that molecules that are not sup-
posed to be clustered together are, indeed, not clus-
tered together given a reference or pseudo-reference 

Fig. 4  Average clustering coefficient of similarity networks in the function of the similarity threshold. For all datasets it is possible to identify a peak 
that stands out in comparison with the others by spanning the largest range of similarity threshold t. The threshold associated with the highest ACC 
value in the peak is denoted as tα, i.e. the so-called obvious local maximum of the ACC(t) function. Fingerprint: ECFP_4, similarity measure: Tanimoto 
similarity-coefficient. a SCL dataset. b WOMBAT dataset. c PubChem MLSMR dataset
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clustering. Thus, the resultant clusters can be thought of 
as being homogeneous. On the other hand, the ideal situ-
ation, characterized by sensitivity = 1 and specificity = 1 
is only observed for the SCL dataset. This may be indica-
tive of internal consistency within a data set, i.e. less 

heterogeneity and more self-similarity among molecules 
within the clustered set.

While the observed maximum sensitivity is near maxi-
mal in the case of WOMBAT dataset, the same param-
eter has a rather low value for MLSMR, reaching its 

Fig. 5  Number of edges in the function of the similarity threshold. Fingerprint: ECFP_4, similarity measure: Tanimoto similarity-coefficient. For each 
dataset it can be observed that the number of edges shows a decrease of steep slope at low ranges of the applied similarity threshold. This steep 
decline is followed by a drastic change in the slope over a short range of the similarity threshold. a SCL dataset. b WOMBAT dataset. c PubChem 
MLSMR dataset
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maximum at sensitivity = 0.5223. Analyzing the causes of 
this difference is beyond the scope of the current study. 
Certain hints are unveiled by the ACC, as discussed in 
the following subsections. Furthermore, the number of 
singletons accounting for such a difference in sensitiv-
ity values can be ruled out, as shown in Additional file 9: 

Fig. S9, Additional file 10: Fig. S10. For the sake of com-
parison, additional information is provided for the SCL 
dataset in Additional file 11: Fig. S11. A complete analysis 
would require computing the missing range of thresh-
old values for the WOMBAT and the MLSMR datasets, 
which is at the moment a challenge.

Fig. 6  Clustering performance in the function of the similarity threshold. On each figure shown are the sensitivity and specificity values associated 
with the determined tα, i.e. the ‘obvious’ local maximum to choose. Dashed vertical line indicates the location of tα on the x-axis. a In the case of the 
SCL dataset both sensitivity and specificity values meet the ideal value of 1 over a range of similarity thresholds (0.19 ≤ t ≤ 0.27 and at t = 0.23). 
Please note that above t = 0.91 the similarity network only consists of singletons, therefore the respective experimental points are not displayed on 
the graph. b In the case of the WOMBAT dataset the value of sensitivity and specificity associated with tα = 0.40 are 0.8689 and 0.9994, respectively. 
The deviation between these values and their observed maximum is acceptable. c In the case of the PubChem MLSMR dataset the sensitivity 
and specificity associated with tα = 0.50 are 0.4905 and 0.9997, respectively. The deviation between these values and their observed maximum is 
acceptable
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Relation of clustering performance and the observed 
maximum of ACC versus similarity threshold function
As shown above, the selection of the similarity threshold 
has a critical effect on the topology of the resultant similar-
ity network which, in turn, substantially affects clustering 
performance. Evaluating the resultant clustering is a rather 
difficult step, which typically involves the use of a reference 
clustering set. Such reference clustering sets at large scale 
are scarce, if available at all. However, we presumed that 
the ACC(t) function could provide insight in the quality of 
the clustering even if no reference dataset exists. Therefore, 
we analyzed whether the ACC(t) function can suggest a 
threshold within a given framework (i.e. a similarity meas-
ure and a clustering algorithm) that might lead to a reason-
able clustering, even if a reference clustering set was not 
available. We intended to analyze what clues are provided 
by the ACC(t) that could be used to describe the structure 
of the underlying data, and to inform us whether the simi-
larity measure of choice can be improved for the dataset at 
hand. While some of these objectives might sound trivial in 
the case of small datasets, they can be relevant for datasets 
in the hundreds of thousands of molecules range.

The first and probably most apparent feature of the 
ACC(t) functions in this study is the presence of a local 
maximum, which is often ’obvious’, i.e. a tα that is clearly 
distinguishable from smaller local maxima. This is not 
the local maximum at t = 0, which yields an ACC of 1. In 
general, this tα might be characterized as robust, because 
its peak spans a larger range of the similarity threshold 
than any other peak. In some cases, as shown in the Sup-
porting Material [Additional file  3: Fig.  S3(a)], the peak 
enclosing tα might contain other, minor peaks belonging 
to other local maxima, but it is still obvious that they are 
part of a larger peak, which encloses tα.

Although threshold values below 0.30 are not evalu-
ated for the WOMBAT and MLSMR datasets, a robust 
local maximum is observed, spanning a larger range of 
similarity threshold  values than any other local maxi-
mum. Should a local maximum appear below 0.30, the 
peak associated to that local maximum could only span a 
smaller range of threshold values than the peak associated 
to the visible tα. In the case of SCL dataset tα coincides 
with the threshold where an ideal clustering perfor-
mance of sensitivity =  1 and specificity =  1 is achieved 
(see: Fig. 6a). For both the WOMBAT an MLSMR data-
sets, selecting the threshold at tα would yield a clustering 
performance near an optimal value, with very little dif-
ferences (see: Fig. 6b, c). The word “optimal” is used here 
to reflect the fact that only a part of the entire threshold 
range is available for analysis. It is possible, however, that 
in the case of the WOMBAT dataset the visible tα might 
also be the tα for the entire threshold range. This assump-
tion is based on the high value of the observed ACC of tα.

As mentioned earlier, the manual analysis of datasets in 
the size of hundreds of thousands of molecules is infeasi-
ble. In order to further support the value in identifying tα 
of the ACC(t) function illustrative examples are provided 
in the Supporting Material (see: Additional file 12, Addi-
tional file 13, Additional file 14, Additional file 15). These 
examples contrast the quality of clustering in the case of 
the WOMBAT and PubChem MLSMR datasets by set-
ting the threshold to tα of the ACC(t) function as com-
pared to setting it on the basis of an in-house practice. 
This in-house practice favors the threshold associated 
with the highest number of observed clusters, exclud-
ing singletons. Although the corresponding clusters are 
equally cohesive, the clusters obtained at tα contain more 
molecules of the kind. This means that the clusters are 
split at the threshold associated with the highest num-
ber of clusters (singletons excluded). Although only one 
example is provided for both datasets, this trend is clear 
when considering the sensitivity and specificity values 
in the function of the similarity threshold, as described 
above.

For SCL, the ACC(tα) value is above 0.8, which suggests 
a high neighbors connectivity in the similarity network. 
A similar observation can be made for the WOMBAT 
dataset, because the visible ACC(tα) is a little below 0.8. 
On the other hand, ACC(tα) is quite low for the MLSMR 
dataset. Thus, the SCL and WOMBAT datasets have 
groups of similar and less similar objects better separated 
at tα, which might offer valuable information regarding 
the diversity of the underlying datasets, given the applied 
similarity measure.

The intent of the MLSMR was to serve as a “diversity” 
library, which suggests that deliberate steps were taken 
to ensure a high number of dis-similar chemicals were 
incorporated. By contrast, WOMBAT is comprised of a 
number of literature-extracted sets; and more often than 
not, each paper consists of a low number of scaffold-
based analog series (usually 1, but rarely above 5 such 
series). This is consistent with the ACC(tα) trends noted 
above.

Analyzing the same datasets but using different simi-
larity measures, shown in the Supporting Material 
[Additional file  16: Fig.  S12(a)], may lead to a different 
conclusion, namely that a particular similarity measure 
is more appropriate for one dataset compared to another. 
This is a known challenge in the field of cheminformatics, 
as fingerprints determine the resolution of defining simi-
larity between pairs of molecules. Thus, analyzing the 
ACC(t) function of a dataset might be of value to decide 
which fingerprint is more appropriate in the light of a 
given investigative objective.

In the Supporting Material further insight is pro-
vided in terms of relating the clustering performance to 
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the similarity network topology (see: “Appendix: First 
and second order derivatives of the number of edges vs. 
threshold functions”). A detailed discussion of these find-
ings is beyond the scope of this paper.

In summary, we were able to demonstrate the emer-
gence of an obvious local maximum of the ACC(t) func-
tion associated with tα in the case of all datasets. The 
three datasets evaluated above share one important fea-
ture: Namely, they contain molecules that can be part of 
various SAR series. Despite the differences in the diver-
sity of the SCL, WOMBAT and PubCHEM MLSMR sets 
and the value of ACC observed at tα it holds true that the 
observed best clustering performance is well aligned with 
tα. These results support the feasibility of extending and 
generalizing our original similarity threshold selection 
approach [4] for large datasets.

Although WOMBAT and MLSMR are in the range of 
105 molecules, computing the ACC(t) function for larger 
molecular datasets is possible. We have computed this 
function for the ChEMBL 20 dataset that contains more 
than 1.2 × 106 molecules (see: Additional file 8: Fig. S8). 
The emergence of an obvious local maximum of the 
ACC(t) function was indeed observed. Considering that 
the computation of this function can be adopted to a par-
allel-computing environment, we expect that computing 
the ACC(t) function should not be difficult for even larger 
datasets.

Besides computing the ACC(t) function, the other lim-
iting step in clustering larger molecular datasets is the 
clustering algorithm itself. InfoMap can be substituted 
by another clustering algorithm, the similarity threshold 
selection method allows for it. Accordingly, the paralleli-
zation of the InfoMap algorithm or the use of an alter-
native method can further push the size of manageable 
molecular datasets.

Conclusions
In this study we proposed a systematic method and an 
objective measure to select the threshold to be applied 
on a similarity matrix of molecules for network-based 
clustering. Finding an appropriate similarity cut-off value 
affects clustering performance and results, as demon-
strated by analyzing three different datasets. We provide 
a clustering framework suitable to perform clustering 
and evaluate clustering performance on a large dataset. 
Monitoring the ACC as function of the cut-off value can 
reveal a threshold that improves the likelihood of obtain-
ing a reasonable clustering performance when a network-
based clustering algorithm was deployed. Moreover, we 
demonstrate that the average clustering coefficient can 
provide insight regarding the diversity of the dataset at 
hand and how the choice of the fingerprint algorithm 
can be improved. This latter property has substantial 

influence on clustering outcome. In the beginning of the 
era of Big Data it is of great importance to devise algo-
rithms that can improve the quality of clustering for large 
datasets when human quality control would become 
intractable or unreliable.

Outlook
Considering that the size of chemical databases can be 
expected to increase substantially, and given that the 
computational costs of computing the ACC for a network 
will increase, it may be of interest to explore the use of 
heuristics based methods to approximate the ACC. An 
alternative method of detecting important changes in 
network topology is the approximation of the first and 
second order derivatives of the number of edges versus 
threshold function. Furthermore, it could be of interest to 
apply an asymmetric similarity measure, e.g. Tversky [44] 
as opposed to the Tanimoto similarity-coefficient. This 
approach could lead to directed weighted and directed 
unweighted networks that might reveal further insight 
among molecular structures.

Additional files

Additional file 1: Figure S1. Topological features of the similarity net‑
work created by using the SCL dataset, ChemAxon 1024 bit hashed finger‑
print and Tanimoto similarity-coefficient. Similarity threshold is increased 
in increments of 0.01 from 0.00 to 1.00.

Additional file 2: Figure S2. Topological features of the similarity net‑
work created by using the SCL dataset, ChemAxon 2048 bit hashed finger‑
print and Tanimoto similarity-coefficient. Similarity threshold is increased 
in increments of 0.01 from 0.00 to 1.00.

Additional file 3: Figure S3. Topological features of the similarity net‑
work created by using the SCL dataset, ChemAxon 4096 bit hashed finger‑
print and Tanimoto similarity-coefficient. Similarity threshold is increased 
in increments of 0.01 from 0.00 to 1.00.

Additional file 4: Figure S4. Topological features of the similarity net‑
work created by using the SCL dataset, MACCS fingerprint and Tanimoto 
similarity-coefficient. Similarity threshold is increased in increments of 0.01 
from 0.00 to 1.00.

Additional file 5: Figure S5. Topological features of the similarity net‑
work created by using the SCL dataset, ECFP_4 fingerprint and Tanimoto 
similarity-coefficient. Similarity threshold is increased in increments of 0.01 
from 0.00 to 1.00.

Additional file 6: Figure S6. Topological features of the similarity net‑
work created by using the SCL dataset, ECFP_8 fingerprint and Tanimoto 
similarity-coefficient. Similarity threshold is increased in increments of 0.01 
from 0.00 to 1.00.

Additional file 7: Figure S7. Topological features of the similarity net‑
work created by using the SCL dataset, ECFP_12 fingerprint and Tanimoto 
similarity-coefficient. Similarity threshold is increased in increments of 0.01 
from 0.00 to 1.00.

Additional file 8: Figure S8. Analysis of the ChEMBL 20 dataset. Molecu‑
lar structures were extracted from the ChEMBL 20 version (downloaded 
on 04/24/2015). The structures were subject to an identical standardiza‑
tion procedure as described in the case of the three other datasets, i.e. 
the SCL, WOMBAT and MLSMR PubChem datasets. Standardization was 
performed using ChemAxon’s JChem standardize utility (version 15.8.10.0). 
The ChEMBL 20 dataset comprises 1,256,876 unique molecules that have 
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Appendix: First and second order derivatives of the 
number of edges versus threshold functions
Let f(x) denote the function of the number of edges in the 
similarity network in the function of the selected similar-
ity threshold x. In order to investigate whether the best 
clustering performance is aligned with the first and sec-
ond order derivatives of f(x) we approximated them with 
the help of numerical differentiation [45]. We applied 
three different methods to compute the first order deriv-
ative, namely the so-called forward, backward and central 
difference as defined in Eqs. 6–8, respectively [46].

a MW ≤ 700 and atomcount ≤ 80. In order to generate the similarity 
networks in the function of the similarity threshold ECFP fingerprints 
were generated for the molecules with a diameter of 4. Similarity of the 
molecules was quantified by the Tanimoto-similarity measure. The range 
of applied similarity threshold t is 0.30 ≤ t ≤ 1.00 and t was incremented 
in steps of 0.01. (a) The number of edges in the similarity network in the 
function of the similarity threshold. (b) The average clustering coefficient 
(ACC) in the function of the applied similarity threshold. The obvious local 
maximum of the ACC vs. threshold curve is at threshold tα = 0.48. The 
value of the associated ACC(tα) is 0.5979.

Additional file 9: Figure S9. Number of clusters and singletons in the 
function of the selected threshold, WOMBAT dataset. Fingerprint: ECFP_4, 
similarity measure: Tanimoto similarity-coefficient, clustering algorithm: 
InfoMap, similarity threshold t incremented in steps of 0.01 in the range of 
0.30 ≤ t ≤ 1.00. (a) Number of clusters excluding singletons. The highest 
number of clusters, 18,120, is observed at t = 0.72. (b) Number of clusters 
including singletons. (c) Number of singletons.

Additional file 10: Figure S10. Number of clusters and singletons in the 
function of the selected threshold, MLSMR dataset. Fingerprint: ECFP_4, 
similarity measure: Tanimoto similarity-coefficient, clustering algorithm: 
InfoMap, similarity threshold t incremented in steps of 0.01 in the range of 
0.30 ≤ t ≤ 1.00. (a) Number of clusters excluding singletons. The highest 
number of clusters, 40,244, is observed at t = 0.68. (b) Number of clusters 
including singletons. (c) Number of singletons.

Additional file 11: Figure S11. Number of clusters and singletons in 
the function of the selected threshold, SCL dataset. Fingerprint: ECFP_4, 
similarity measure: Tanimoto similarity-coefficient, clustering algorithm: 
InfoMap, similarity threshold t incremented in steps of 0.01 in the range 
of 0.00 ≤ t ≤ 0.91. Note, that above t = 0.91 the similarity network only 
consists of singletons, therefore the respective experimental points are 
not displayed on the graph. (a) Number of clusters excluding singletons. 
(b) Number of clusters including singletons. (c) Number of singletons.

Additional file 12. Illustrative cluster of WOMBAT dataset at thresh‑
old = 0.40. File name: wombat_nm17_cid_1178_t_alpha_0.40_pub.pdf 
. Shown are the molecules of cluster 1178 of WOMBAT dataset produced 
at the obvious local maximum of the ACC vs. threshold curve at threshold 
tα = 0.40. PDF generated by ChemAxon’s mview utility.

Additional file 13. Illustrative cluster of WOMBAT dataset at thresh‑
old = 0.72. File name: wombat_nm17_cid_505_t_0.72_pub.pdf . Shown 
are the molecules of cluster 505 of WOMBAT dataset produced at thresh‑
old t = 0.72 associated with the highest number of clusters (singletons 
excluded). PDF generated by ChemAxon’s mview utility.

Additional file 14. Illustrative cluster of PubChem MLSMR dataset at the 
threshold = 0.50. File name: mlsmr_nm16_t_alpha_0.50_cid_674_pub.
pdf. Shown are the molecules of cluster 674 of PubChem MLSMR dataset 
produced at the obvious local maximum of the ACC vs. threshold curve at 
threshold tα = 0.50. PDF generated by ChemAxon’s mview utility.

Additional file 15. Illustrative cluster of PubChem MLSMR dataset at 
the threshold = 0.68. File name: mlsmr_nm16_t_0.68_cid_100_pub.pdf 
. Shown are the molecules of cluster 100 of PubChem MLSMR dataset 
produced at threshold t = 0.68 associated with the highest number of 
clusters (singletons excluded). PDF generated by ChemAxon’s mview 
utility.

Additional file 16: Figure S12. The effect of the applied fingerprint 
on the network topology in the case of SCL dataset. Tanimoto similarity 
threshold was incremented by steps of 0.01 in the range of 0 to 1. The 
choice of molecular fingerpint generating method has a profound effect 
on both the ACC(t) and EN(t) functions.

Additional file 17: Figure S13. First and second order derivatives of the 
number of edges vs. threshold function in the case of the SCL dataset. The 
aforementioned function is denoted by f(x), and it’s first and second order 
derivatives by f′(x) and f″(x), respectively. The derivatives were approxi‑
mated by numerical differentiation. First order derivatives: (a) using the 
forward difference, (b) using the backward difference, (c) using the central 
difference. (d) Second order derivative.

Additional file 18: Figure S14. First and second order derivatives of 
the number of edges vs. threshold function in the case of the WOMBAT 
dataset. The aforementioned function is denoted by f(x), and it’s first and 
second order derivatives by f′(x) and f″(x), respectively. The derivatives 
were approximated by numerical differentiation. The vertical line at 
threshold tγ denotes the threshold associated with the observed best 
clustering performance. First order derivatives: (a) using the forward dif‑
ference, (b) using the backward difference, (c) using the central difference. 
(d) Second order derivative.

Additional file 19: Figure S15. First and second order derivatives of 
the number of edges vs. threshold function in the case of the PubChem 
MLSMR dataset. The aforementioned function is denoted by f(x), and it’s 
first and second order derivatives by f′(x) and f″(x), respectively. The deriva‑
tives were approximated by numerical differentiation. The vertical line 
at threshold tγ denotes the threshold associated with the observed best 
clustering performance. First order derivatives: (a) using the forward dif‑
ference, (b) using the backward difference, (c) using the central difference. 
(d) Second order derivative.
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The second order derivative was computed according 
to Eq. 9.

In the above equations (Eqs. 6–9) d denotes the simi-
larity threshold difference. It was selected to be 0.01 in 
the numerical differentiations as it is the same value 
as the increment of similarity threshold applied in all 
experiment.

The first and second order derivatives of f(x) in the case 
of the SCL, WOMBAT and PubChem MLSMR data-
sets are shown on Additional file 17: Fig. S13, Additional 
file  18: Fig.  S14, Additional file  19: Fig.  S15. In the case 
of the WOMBAT and PubChem MLSMR datasets the 
similarity threshold (tγ) associated with the observed best 
clustering performance is represented by a vertical dotted 
line (see: Additional file  18: Fig. S14, Additional file  19: 
S15). The value of tγ was determined by identifying where 
the sum of sensitivity and specificity is maximal. In the 
case of the SCL dataset the possible best clustering per-
formance is achieved at multiple values of the similarity 
threshold therefore no single tγ and the corresponding 
vertical line is indicated on the graph (see: Additional 
file 17: Fig. S13).

In the case of the WOMBAT and PubChem MLSMR 
data sets the second order derivative of f(x) has a local 
maximum that is aligned with tγ. Furthermore, in the 
case of the PubChem MLSMR dataset the first order 
derivative of f(x) computed via the backward difference 
has a local minimum aligned with tγ.

In the case of the SCL dataset both the first and sec-
ond order derivatives produce multiple local maxima and 
minima at thresholds associated with the potential best 
clustering outcome. It should be noted that in the case of 
the first derivative the aforementioned observation holds 
true, regardless of the selected difference computation 
method. Furthermore, the second order derivative also 
produces a zero value at one of the thresholds associated 
with the best clustering outcome.
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(6)f ′(x) =
f (x + d)− f (x)

d

(7)f ′(x) =
f (x)− f (x − d)

d

(8)f ′(x) =
f (x + d)− f (x − d)

2d

(9)f ′′(x) =
f (x + d)− 2f (x)+ f (x − d)

d2
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