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Blood-oxygen-level dependent (BOLD) signals are widely used in functional magnetic

resonance imaging (fMRI) as a proxy measure of brain activation. However, because

these signals are blood-related, they are also influenced by other physiological processes.

This is especially true in resting state fMRI, during which no experimental stimulation

occurs. Previous studies have found that the amplitude of resting state BOLD is closely

related to regional vascular density. In this study, we investigated how some of the

temporal fluctuations of the BOLD signal also possibly relate to regional vascular density.

We began by identifying the blood-bound systemic low-frequency oscillation (sLFO). We

then assessed the distribution of all voxels based on their correlations with this sLFO.

We found that sLFO signals are widely present in resting state BOLD signals and that

the proportion of these sLFOs in each voxel correlates with different tissue types, which

vary significantly in underlying vascular density. These results deepen our understanding

of the BOLD signal and suggest new imaging biomarkers based on fMRI data, such

as amplitude of low-frequency fluctuation (ALFF) and sLFO, a combination of both, for

assessing vascular density.

Keywords: BOLD, vascular density, amplitude of low-frequency fluctuation, low frequency oscillation, resting state

fMRI

INTRODUCTION

Blood-oxygen-level dependent (BOLD) contrast is the primary signal used in functional MRI
(fMRI) studies of brain function. However, BOLD is not a direct measure of neuronal activity,
but rather a blood-related composite signal that reflects changes in blood flow, volume, and
oxygenation (Buxton, 2002). Thus, although neuronal activation can induce these changes through
neurovascular coupling (Liu, 2013), BOLD signal changes can arise from any processes that affect
the blood including nonneuronal and systemic physiological changes. Many aspects of the BOLD
LFO—including its amplitude, frequency distribution, and temporal characteristics—have been
examined independently in attempts to parse the neuronal and physiological contributions to the
signal (Birn et al., 2008; Chang et al., 2009; Frederick et al., 2012; Murphy et al., 2013).

The amplitude of low-frequency fluctuation (ALFF) of BOLDhas been studied extensively (Zang
et al., 2007; Zuo et al., 2010; Kannurpatti et al., 2012; Vigneau-Roy et al., 2014), and it has been
shown that ALFF is higher in gray matter (GM) than in white matter (WM) (Biswal et al., 1995;
Cordes et al., 2001; Zang et al., 2007; Yan et al., 2009; Zuo et al., 2010). Studies found the highest
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ALFF in posterior structures along the midline (Zang et al.,
2007; Zou et al., 2008, 2009). Recently, Vigneau-Roy et al. (2014)
found a close relationship between regional variations in vascular
density and ALFF of resting state BOLD signal. Based on this
finding, they concluded that resting state BOLD signals are
closely associated with the anatomical vasculature, and suggested
calibration of resting state data using the venous structure (Barth
and Norris, 2007). The result implied that ALFF could be a
potential biomarker to assess vascular integrity.

In this study, we explored an additional vascular biomarker
in the temporal fluctuations of LFO (0.01∼0.15Hz) in the
resting state BOLD fMRI signal. Previously, we found that
a significant portion of the LFO in resting state BOLD data
can be attributed to blood circulation. Using this BOLD LFO
signal and its temporal shifts, dynamic patterns resembling
cerebral blood flow were derived from resting state data (Tong
and Frederick, 2010, 2014). This finding indicates the tight
connection between systemic LFO (sLFO) and the global blood
circulation. We have studied the temporal delays of this sLFO
in BOLD extensively. However, its correlation strength with
BOLD has not been evaluated previously. In the present study,
we wanted to study the relationship between the correlation
strength (between sLFO and BOLD) in each voxel and the voxel’s
underlying vascular density. Since vascular density is hard to
assess using the current MR methods, especially vascular density
within the same tissue type (e.g., GM), we use three easily
identifiable tissue types (i.e., WM, GM, and big blood vessels)
to represent increasing vascular contents. We hypothesized that
the higher the correlation between sLFO and BOLD, the greater
the contribution of systemic blood-borne signal fluctuations to
that voxel and, thus, the more likely this voxel would be found
in the tissue with high vascular density region (e.g., GM). To
test this hypothesis, we collected resting state fMRI data and
then completed the following steps for each participant. First, we
segmented each scanned brain into three tissue types, which have

FIGURE 1 | Averaged segmentation of WM, GM, CSF and VA from 8 healthy participants. WM, GM and VA were segmented by FAST. VA was extracted from

the MRA scan (from 7 subjects).

very different vascular densities: white matter (WM) (lowest),
gray matter (GM) (intermediate) and vasculature (VA) (highest).
We then calculated the voxel-wise peak cross-correlation map
(3D), in which the value in each voxel represents the maximum
correlation coefficient value between the BOLD signal and the
optimally shifted sLFO signal. Finally, we explored the spatial
distribution of these voxels in the three brain tissues according
to their maximum correlation value. As a comparison, we also
calculated ALFF for each participant’s resting state data.

MATERIALS AND METHODS

Protocol
fMRI resting state studies were conducted in 8 healthy
participants (average 33 ± 12, years). In the resting state studies,
participants were asked to lie quietly in the scanner with their
eyes open and view a gray screen with a fixation point in the
center. The resting state scans lasted 6min. All subjects provided
informed, written consent. McLeanHospital Institutional Review
Board approved the research protocol, which was conducted in
accordance with the ethical principles of the Belmont Report.

All MR data were acquired on a Siemens TIM Trio 3T scanner
(Siemens Medical Systems, Malvern, PA) using a 32-channel
phased array head matrix coil. After scans for localization
and automated alignment, multiecho multiplanar rapidly
acquired gradient-echo (ME-MPRAGE) structural images were
acquired with the following parameters (TR = 2530ms, TE =

3.31,6.99,8.85,10.71ms, TI = 1100ms, slices = 128, matrix
= 256× 256, flip angle = 7◦, resolution = 1.0× 1.0× 1.33mm,
2 × GRAPPA, total acquisition time 4:32). Multiband EPI
(University of Minnesota sequence cmrr_mbep2d_bold R010)
(Moeller et al., 2010) data was obtained with parameters
approximating that of the the Human Connectome Project
(Van Essen et al., 2013) fMRI protocol: TR/TE = 720/32ms,
flip angle 66 degrees, matrix = 86 × 86 on a 212 × 212mm2
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FOV, posterior to anterior phase encode, multiband factor = 8,
64 2.5mm slices with no gap parallel to the AC-PC (anterior
commissure–posterior commissure) line extending down
from the top of the brain. An MRI-compatible optical NIRS
probe (1.5 cm separation between collection and illumination
fibers) was placed over the tip of the left middle finger. NIRS
data was recorded continuously before, during, and after the
resting state fMRI acquisition with an ISS Imagent (ISS, Inc.,
Champaign, IL) at 690 and 830 nm with 25Hz acquisition rate.
For seven out of eight participants, 3D phase contrast magnetic
resonance angiography (MRA) data were acquired (TR/TE =

40.95/6.21ms, flip angle 15 degrees, matrix = 200 × 150mm in
plane (0.39mm in-plane resolution), GRAPPA = 2, 160 0.9mm
slices with 0.18mm gap, velocity encoded at 30 and 75 cm/s) to
assess the cerebral vasculature.

Preprocessing
For each participant, the standard fMRI preprocessing steps,
including brain extraction, motion correction, slice-time

correction and smoothing (3mm), were applied to the original
BOLD signals (using FEAT v6.00 of FSL 5.0; Jenkinson et al.,
2012). We then applied a Fourier domain bandpass filter (zero-
phase digital filter function “filtfilt,” which uses a third order
Butterworth filter with cut-off frequencies: 0.01∼0.15Hz) in
MATLAB (The Mathworks, Natick, MA) on all the resulting data
to remove the high-frequency physiological signals of respiration
and cardiac pulsation from the BOLD data. The resulting data
were subsequently used to generate the maps described below.

We applied pipelines from FAST (Zhang et al., 2001) (FSL)
on each participant’s anatomical brain to segment WM, GM,
and cerebrospinal fluid (CSF) regions. These segmented regions,
the MRA scans and each participant’s own resting state fMRI
volumes were registered to the MNI152 standard brain. VA of
each subject was derived from each subject’s thresholded MRA
scan. The threshold of 50 (applied to all the subjects) was an
empirical value decided based on the results of all the subjects
and the scan parameters, which rendered explicit VAmaps for all
the subjects.

FIGURE 2 | Flowchart of the method used to calculate the maxcc map for each subject from the filtered RS data (0.01–0.15Hz). The procedure started

with the selection of the filtered seed regressor from the superior sagittal sinus (SSS) (mask). This regressor was then cross-correlated with all other BOLD signals to

select the voxels that have significant maximum correlation coefficients (maxcc > 0.3). The corresponding maxcc of these voxels produce the colors on the maxcc

map.

Frontiers in Neuroscience | www.frontiersin.org 3 June 2016 | Volume 10 | Article 313

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Tong et al. BOLD Relate to Tisse Type

All these segmented regions (WM, GM, CSF, and VA) later
served as templates and masks for the study. The averaged
segmented brain is shown in Figure 1, whereWM, GM, CSF, and
VA are displayed together.

Maps of sLFO Max-Correlation Coefficient
(maxcc) and ALFF
Two different maps (3D) were derived from each participant’s
resting state data: (1) a map of ALFF, in which the values
represent the amplitudes of LFO from BOLD signal at each
voxel, and (2) a map of the maximum cross-correlation (maxcc)
of sLFO, in which the value of each voxel represents the best
correlation between the optimally delayed sLFO extracted from
the BOLD in Superior Sagittal Sinus (SSS) with the BOLD signal
timecourse in every voxel. The details of the derivation are given
in later sections and illustrated in Figure 2.

In order to create the ALFF map, we calculated the ALFF
of preprocessed resting state data using the software package
REST (Song et al., 2011). In brief, for each voxel, the Fourier
transform was applied on preprocessed BOLD signal, and
then the amplitude of the power spectrum (0.01–0.15Hz) was
summed.

In order to create the maxcc map, first a seed region of
interest (ROI) was selected. Because we believe these sLFOs
are related to the blood signal, the seed ROI was chosen
from a section of a blood vessel (i.e., SSS) to avoid any
contribution from neuronal activation. The seed ROI was hand-
picked for each subject at the back of the brain with the
help of MRA and FSL segmentation. The size of the ROI is
similar among all the subjects and consists of voxels falling
completely within the vessel. The averaged timecourse of the
seed section was extracted and used to cross-correlate with

FIGURE 3 | (A) Histogram of all the valid voxels in maxcc map of BOLD sLFO from one subject. The number of voxels with each maxcc value is graphed, yielding a

distribution that can be divided into 10 bins (as marked by the black vertical lines), each containing 10% of the total number of voxels. The maxcc values that separate

these 10 bins are shown on the X axis. For each bin, the percentage of voxels in GM (red), WM (blue) and CSF (black) and VA (magenta) were calculated using the

masks shown in Figure 1, with stacked distribution by bin number showing the proportion of voxels per bin of each tissue type graphed in (B) and regular distribution

of tissue type by bin graphed in (C).
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all the BOLD signals from the rest of the voxels in the
brain volume. After the cross-correlation, we selected voxels
for further analysis that met the following conditions: (1) the
maximum cross-correlation was significant (>0.3), and (2) the
time lag of this maximum correlation was from −6 to +6 s.
The cross-correlation search range was selected based upon
our previous research (Tong and Frederick, 2014; Tong et al.,
2016). As we have demonstrated (Tong et al., 2016), the range
of actual delay times is far smaller than the search range of -
6 to 6 s. However, since the lags between the seed regressor
(extracted from the SSS) and the rest of the BOLD signals
are subject-specific, the distribution of the lag values (from all
the voxels) is never centered at zero. Having a larger range
will cover most of the meaningful voxels regardless of the lags’
distribution. As a result of choosing a wider correlation range,
the chance of having spurious correlation problem increases.
To minimize the effect of spurious correlation, the minimum
correlation threshold was increased to 0.3, which compensates
for the correlation-inflating effects of large cross-correlation
range (time delay processing) and bandpass filtering (Davey
et al., 2013; Hocke et al., 2016). The voxels that were selected
by the procedure were called “valid” voxels, and were used
in the following calculations. The procedure is depicted in
Figure 2.

Assessment of Segmentation Using
Different Maps
In order to test the hypothesis that voxels with low maximum-
correlation values are more likely to be in WM (with minimal
vascular density), whereas voxels with increasingly greater max-
correlation values are correspondingly more likely to be located
in the more-vascular GM or even in VA, we calculated the
distribution of the voxels with ascending maxcc values among
four brain regions (WM, GM, CSF, and VA). In detail: first,
we calculated the maxcc map for each subject, then ranked
all the valid voxels in ascending order based on their maxcc
values. Next, we grouped the voxels into 10 bins, with an equal
number of voxels in each bin (i.e., 10% of all valid voxels). We
then calculated the percentage of voxels per bin located in the
participant-specific WM, GM, CSF, and VA areas. The percent
distributions of voxels in each bin are plotted in what we refer
to as “distribution graph.” For the purpose of comparison, the
same procedure was repeated on individual ALFF data. Lastly, the
distribution graphs were averaged to assess the group effect. This
procedure is depicted in Figure 3. The histogram of the maxcc
map of BOLD sLFO from one subject is plotted in Figure 3A. The
maxcc, shown on the x-axis, begins at 0.3, which is the minimum
correlation threshold used to select the voxels for analysis. The
black vertical lines in the histogrammark the edges of the 10 bins,

FIGURE 4 | Averaged stacked distribution graph of maxcc map in (A) and its corresponding regular distribution graph in (B). Averaged stacked

distribution graph of ALFF map in (C) and its corresponding regular distribution graph in (D). The regular distribution graph of averaged maxcc (as in B) is shown in the

background of (D) as comparison. The error bars represent standard deviation.

Frontiers in Neuroscience | www.frontiersin.org 5 June 2016 | Volume 10 | Article 313

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Tong et al. BOLD Relate to Tisse Type

spaced by the number of voxels (10%, roughly 18,000 voxels/bin).
The corresponding distribution of each bin (into WM, GM, CSF,
and VA) is shown in Figures 3B,C in both stacked form and the
form of lines. The red, blue, black, and purple bars represent
the proportion of the voxels in the WM, GM, CSF, and VA,
respectively.

RESULTS

Figure 4A shows the averaged stacked maxcc distribution graph
from 8 subjects, where bars represent the tissue distribution of
the voxels in each of the 10 bins. Different colors within the
bar represent the proportion of these 10% voxels found in GM,
WM, CSF, and VA respectively. The same averaged distribution
graphwith standard deviations is shown as Figure 4B. Themaxcc
distribution graph of each subject is shown in Figure S1. The
distribution curves in GM, WM are highly consistent among
all the subjects. When fitted with a linear model, the average
slope of the curves in GM and WM are 0.028 ± 0.0077 and
−0.031 ± 0.012 respectively (Figures S1A,B). The curves in VA
are also consistent, however, these data are poorly fit by a linear
model.

From Figures 4A,B, we can see that as maxcc value increases,
more voxels are found in GM. The opposite trend is observed for
the case of WM. CSF and VA do not exhibit a strong relationship
with maxcc except at the very highest correlation values (bin 10)
where significantly more voxels are in these two tissue segments,
compared to the values in bin 9 (p = 0.012 and p = 0.008
respectively from two sample t-test). As we know, CSF is not
supposed to have any blood in it. However, the locations of CSF
are next to those of GM and VA (see Figure 1). We believe
the CSF results therefore largely represent segmentation and
registration errors.

The stacked distribution graph of ALFF is shown in
Figure 4C, with its non-stacked version shown in (d), overlaid
upon the maxcc distributions from Figure 4B, which are shown
as shaded lines in the background. Figure 4D shows the similarity
between the distribution graph of ALFF and that of maxcc with
small differences. The correlation coefficients of corresponding
distribution curves are 0.97, 0.97, 0.65, 0.99 for GM, WM, CSF,
and VA respectively). The differences are mostly found in bin 1
and 2, as ALFF value increases, the distribution curves become
similar with that of maxcc.

Figure 5 shows the spatial distributions of valid voxels
corresponding to the increasing value in maxcc (a) and ALFF (b).

FIGURE 5 | Averaged spatial distribution of the voxels with increasing maxcc in (A) and increasing ALFF values in (B). Each panel represents the spatial

distribution of the 20% of valid voxels (2 bins) ranked by increasing maxcc and ALFF values.
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For example, the first row of maps in Figure 5A represents the
spatial distribution of the 20% of valid voxels that have the lowest
maxcc values. The second row of maps represents the next 20%
valid voxels with higher maxcc value and so on. From Figure 5,
we can see the similarities in the following way: (1) the voxels that
have the lowest values of maxcc and ALFF are clustered in WM
as demonstrated in the first row of Figure 5; (2) As maxcc and
ALFF values increase, the voxels are increasingly likely to appear
in the GM areas; (3) the voxels with highest maxcc and ALFF are
in large blood vessels as shown in the last row of Figure 5. The
visible differences between the spatial distributionmaps of maxcc
and ALFF are: (1) the voxels with the lowest maxcc values can be
found in the lower brain (e.g., pons), which is not true for that
of ALFF; (2) the spatial patterns of maxcc are much noisier than
those of ALFF, which have clearer boundaries; (3) even though
voxels with highest maxcc and ALFF are in large blood vessels,
the voxels with the highest maxcc values are clustered at the top
and back of the brain (last map in Figure 5A), while the voxels
with the highest ALFF values can be found in lower brain regions,
near the pons (last map in Figure 5B).

DISCUSSION

This study demonstrates that tissue types significantly correlate
with characteristics of the resting state BOLD signal, in both
its amplitude and its temporal fluctuation. We have confirmed
previous findings regarding BOLD ALFF. More importantly, we

FIGURE 6 | Stacked distribution graph (A) and regular distribution

graph (B) of the tissue distribution of voxels binned by averaged

maxcc(swap) which was calculated from seed regressors that were

swapped between subjects.

have revealed the relationship between the sLFO of BOLD signals
and the tissue types in resting state. We demonstrated that the
portion of the BOLD signal accounted for by these sLFOs in
each voxel is positively correlated with the probability that these
voxels are found in GM and VA, and negatively correlated with
the probability that these voxels are found in WM. This finding
suggests that the contribution of sLFOs to BOLD signal may be
positively correlated with the voxel’s underlying vascular density,
which progressively decreases in these three tissue types: VA,
GM, WM. The findings not only extend our knowledge of the
parts (neuronal and non-neuronal) that compose the BOLD
signal, but also indicate potential biomarkers for the assessment
of vascular parameters, such as vascular density and symmetry.
This knowledge is generally useful and, moreover, crucial for
developing and evaluating denoising methods in resting state
fMRI. However, denoising is not the focus of this manuscript.
We have explored the issue in the previous studies (Frederick
et al., 2012) and are currently working on the development of
several novel methods.

Previously, great effort was expended to understand the
time delays reflecting the relative arrival time of sLFOs in
each voxel. Comparisons with Dynamic Susceptibility Contrast
measurements, namely bolus tracking MR (Tong et al., 2016)
have shown that the dynamic pattern of this sLFO moving
through the brain is, to a large extent, related to blood
flow. However, no previous studies thoroughly evaluated the
correlation strengths of sLFO with BOLD signals. In this study,
we demonstrate that correlation strengths between sLFO and
BOLD signals are also meaningful. As shown in Figure 4A, the
voxels with lower maxcc values are likely located in the tissues
that have low blood density (WM), whereas voxels of higher
maxcc values are more likely found in tissues that have higher
blood density (e.g., GM andVA).Moreover, as shown in Figure 5,
the spatial distributions of voxels with increasing maxcc values
match those from ALFF, which has been shown to be closely
associated with the blood density. Of greater interest, the specific
manner in which more voxels are found in GM as maxcc and
ALFF increases is clearly systematic. This is more obvious in the
case of ALFF (Figure 5B), where the pattern with lowest ALFF
value is at the center of the WM and, as ALFF increases, the
corresponding voxels are found at the outer boundary of the
previous pattern. These boundaries may represent contour lines
of equal-blood-density. If this is in fact the case, the map of ALFF
can be used to assess the integrity of the cerebral blood density,
which may be altered by stroke or brain tumor. More studies are
needed to clarify the issue. Similar spatial patterns can also be
observed in Figure 5A, however, withmuchmore noise, asmaxcc
is based upon correlation, where spurious correlation, even
corrected, still has an effect. This would tend to decrease the SNR
of the maxcc map, leading to speckled patterns. We assume that
future studies with larger sample sizes will compensate for this.

In addition to low SNR in the maxcc map, there are some
other clear differences between maps of maxcc and ALFF, which
we believe are likely due to the sensitivities of the two methods.
First, as in Figure 5, there are many voxels with high ALFF
values clustered at the bottom of the brain—around the pons and
medulla areas—that are not visible in the corresponding graph
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of maxcc. We believe this difference is mainly attributable to
the fact that heartbeat is prominent in BOLD signals originating
near arteries, which are located at the base of the brain (a T1
effect due to blood volume changes). Hence, the magnitudes
of these BOLD signals are enlarged by the aliased pulsation
signals, and the closer the signal origin is to the main arteries,
the stronger the effect. This accounts for the disproportionately
large magnitude seen in the bottom of the brain (where many
arteries reside) in Figure 5B. However, these aliased signals are
not sLFO. Moreover, since these voxels are located in or near
the arteries, where there is little deoxy-hemoglobin (contrast in
BOLD), the sLFO cannot be clearly detected. This explains why
the voxels of these regions have the lowest maxcc values (top
graph in Figure 5A). Second, the voxels are heavily clustered in
the back of the head in the map of highest maxcc (last graph in
Figure 5A), but not in the map of ALFF. This may be due to
the fact that the seed of maxcc calculation was selected from the
SSS from that region (Figure 2), leading to corresponding highest
correlation values.

As we know, the signal to noise ratio (SNR) of BOLD is likely
to be greater in blood-rich tissues, regions with high density of
capillaries and veins such as GM, and voxels containing large
veins with high concentrations of deoxy-hemoglobin. In contrast,
a tissue such as white matter has low SNR in BOLD for the
opposite reason. It follows, then, that the SNR effect might
bias the maxcc distribution toward GM and VA. In order to
assess the degree of SNR influence, we recalculated the maxcc
map for each subject. However, instead of using a subject’s
own seed timecourse measured within the SSS to calculate the
maxcc, we used every other subject’s seed timecourse (total of 56
swapped maxcc maps were calculated). With the seed regressors
swapped in this manner, no meaningful maxcc value should be
produced and the result should reflect the SNR effect only. The
averaged result with standard deviation is shown in Figures 6A,B
with stacked distribution and regular distribution graphs. From
Figure 6, as the maxcc (swap) value increases from left to right in
bins 1–10, there is no clear change in the number of voxels found
in GM. The t-test confirms that no significant non-zero values
were found in the slopes of the GM distribution curves (p =

0.77). This indicates that voxels are evenly distributed among
all the tissue types regardless of the maxcc (swap) value, which
further implies that SNR differences were not the main effects in
real maxcc calculations in GM voxels. However, we did observe
small changes in voxel distribution by bin in WM and VA, which
means that SNR differences have small effects on the real maxcc
calculations in WM and VA voxels. Lastly, we performed a two
sample t-test between the slopes of the curves (GM and WM) in
Figures 4B, 6B. They are significantly different (p = 4.5× 10−15

and p = 4.6 × 10−15 respectively), which demonstrated that the

effect we observed in Figure 4B can not be mainly due to SNR
difference.

In this study, we have confirmed that the tissue type has
significant influence on the ALFF of BOLD signals in resting
state. More important, we have demonstrated that the portion
of the BOLD signal accounted for by the sLFOs in each voxel
is higly dependant on the tissue type. Since these tissue types
significantly differ in vascular density, our results imply that
the portion of the BOLD signal accounted for by the sLFOs, as
well as ALFF value, in each voxel may be positively correlated
with voxel’s underlying vascular density. The limitation of the
study is that MRA used in the study was not sensitive enough
to separate vascular density within each tissue type, therefore we
are not able to demonstrate the direct link between sLFOs/ALFF
with vascular density accurately. The three main tissue types
with different vascular densities were used as proxies in this
study. The future studies will involve some MR method, such as
susceptibility-weighted imaging (Descoteaux et al., 2008; Frangi
et al., 2011), to assess the regional vascular density.
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