
Assembler artifacts include misassembly because
of unsafe unitigs and underassembly because
of bidirected graphs

Amatur Rahman1 and Paul Medvedev1,2,3
1Department of Computer Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
2Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
3Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

Recent assemblies by the T2T and VGP consortia have achieved significant accuracy but required a tremendous amount of

effort and resources. More typical assembly efforts, on the other hand, still suffer both from misassemblies (joining se-

quences that should not be adjacent) and from underassemblies (not joining sequences that should be adjacent). To better

understand the common algorithm-driven causes of these limitations, we investigated the unitig algorithm, which is a core

algorithm at the heart of most assemblers. We prove that, contrary to popular belief, even when there are no sequencing

errors, unitigs are not always safe (i.e., they are not guaranteed to be substrings of the sequenced genome). We also prove

that the unitigs of a bidirected de Bruijn graph are different from those of a doubled de Bruijn graph and, contrary to our

expectations, result in underassembly. Using experimental simulations, we then confirm that these two artifacts exist not

only in theory but also in the output of widely used assemblers. In particular, when coverage is low, then even error-

free data result in unsafe unitigs; also, unitigs may unnecessarily split palindromes in half if special care is not taken. To

the best of our knowledge, this paper is the first to theoretically predict the existence of these assembler artifacts and con-

firm and measure the extent of their occurrence in practice.

[Supplemental material is available for this article.]

Reconstructing the full sequence of a genome from its sequencing
data remains one of the most challenging problems in bioinfor-
matics. Assemblers have suffered both from misassemblies (put-
ting together sequences that should not be adjacent) and
underassemblies (not putting together sequences whose adjacency
should be apparent from the data) (Alkan et al. 2011; Simpson and
Pop 2015). Recent efforts by the Telomere-to-Telomere (T2T) con-
sortium (Miga et al. 2020; Nurk et al. 2022) and the Vertebrate
Genome Project (VGP) (Rhie et al. 2021) showed how long-read
technologies, long-range contact mapping, and manual curation
can alleviate these errors. However, the time and cost of those
efforts remain prohibitive for most biology laboratories. In such
cases, mis- and underassemblies continue to be a major limitation
(e.g., Yang et al. 2021).

Understanding the commonalgorithm-driven causes of these
limitations ismade complicated by the diversity and complexity of
assembly algorithms. We can start by focusing on assemblers that
use de Bruijn graphs (dBGs) (Idury and Waterman 1995), which
continue to be popular even for long-read data (Bankevich et al.
2022). But even dBG-based assemblers differ on how they handle
complexities arising from sequencing errors, heterogeneity, or
DNA double-strandedness. Nevertheless, most assemblers are built
on top of the unitig algorithm, which returns all the maximal uni-
tigs in an assembly graph (Simpson and Pop 2015); a unitig is a
path whose vertices have exactly one incoming and one outgoing
edge, with the exception that the first and last vertex can have any
number of incoming and outgoing edges, respectively. Being a
common denominator of most assemblers, the unitig algorithm

is a good target for investigating shared sources of mis- and
underassemblies.

It is already known that the unitig algorithm contributes to
underassembly (e.g., see the safe and complete framework of
Tomescu and Medvedev 2016; Cairo et al. 2020) and can trivially
create misassemblies when there are sequencing errors. The effect
of sequencing errors on assembly errors has even been theoretical-
ly studied more broadly by Shomorony et al. (2015, 2016a,b).
However, it is widely assumed that if it were not for sequencing er-
rors, unitigs would always be safe (i.e., substrings of the sequenced
genome). In an earlierwork (Medvedev 2019), we attempted to for-
mally prove this but could only do so by assuming perfect cover-
age. This assumption was also necessary in another earlier work
(Tomescu and Medvedev 2016), where it was suggested that with-
out it, unitigs may not be safe. Unitigs were also implied to be un-
safe in certain models of the assembly problem (Cairo et al. 2020).
We thereforehypothesize that, contrary to popular belief, there are
noncontrived conditions that lead to unsafe unitigs on error-free
data.

The unitig algorithm also needs to account for the fact that
the strand from which a read is sequenced is unknown. Most as-
semblers do so via two common approaches to constructing the
dBG. In one, every k-mer is “doubled” before constructing the
dBG; that is, for every k-mer in the input, both it and its reverse
complement are added to the dBG (e.g., SPAdes) (Bankevich
et al. 2012). In the other approach, edges are given two instead

Corresponding author: pzm11@psu.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.276601.122.

© 2022 Rahman and Medvedev This article is distributed exclusively by Cold
Spring Harbor Laboratory Press for the first six months after the full-issue publi-
cation date (see https://genome.cshlp.org/site/misc/terms.xhtml). After six
months, it is available under a Creative Commons License (Attribution-
NonCommercial 4.0 International), as described at http://creativecommons.
org/licenses/by-nc/4.0/.

RECOMB 2022 Special/Method

1746 Genome Research 32:1746–1753 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/22; www.genome.org
www.genome.org

mailto:pzm11@psu.edu
https://www.genome.org/cgi/doi/10.1101/gr.276601.122
https://www.genome.org/cgi/doi/10.1101/gr.276601.122
http://genome.cshlp.org/site/misc/terms.xhtml
https://genome.cshlp.org/site/misc/terms.xhtml
https://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml

of one orientation, thereby capturing the way that double-strand-
ed strings can overlap. This results in a bidirected dBG (Medvedev
et al. 2007), used in assemblers such as ABySS (Simpson et al. 2009;
Jackman et al. 2017). Because this is a more elegant construction
for capturing the double-stranded nature of the data, one would
hypothesize that it should not hurt assembly accuracy. In this pa-
per, we will perform a theoretical and empirical study to validate
our two hypotheses about common algorithm-driven sources of
mis- and underassemblies.

Results

Summary of findings

First, despite widespread belief, we show that even on error-free
data, unitigs do not always appear in the sequenced genome
(i.e., they are unsafe). Our experimental results confirm that at
least two different assemblers show this behavior in practice.
Second, we establish that there is a bijection between maximal
unitigs in the doubled and bidirected dBGs, except that palin-
dromic unitigs in the doubled dBG are split in half in the bidir-
ected dBG. This shows that, contrary to intuition, naively using
the bidirected graph actually contributes to underassembly com-
pared with the doubled graph. Our experimental results confirm
that this artifact appears in some assemblers but not in others.
Nevertheless, we also find that the extent of these two artifacts
is limited. To the best of our knowledge, this paper is the first
to theoretically predict the existence of these assembler artifacts
and confirm and measure the extent of their occurrence in
practice.

Theoretical results

Themain theoretical results in this paper are two theorems, whose
precise statement is given in theMethods. Theorem 1 gives a char-
acterization of unitigs that are unsafe; that is, they are not present
in the sequenced parts of the genome. Theorem 2 breaks down the
categories of maximal unitigs in the doubled dBG and the bidir-
ected dBG and gives a relationship between the two. For the dou-
bled graph, the set of maximal unitigs is partitioned into
nonpalindromic strings (Dnon-pal) and palindromic strings (Dpal).
For the bidirected graph, the maximal unitigs is partitioned into
three sets: Bno-loop, Bfirst-loop, and Blast-loop. Theorem 2 states that
there is a one-to-one correspondence between Dnon-pal and
Bno-loop. However, each Dnon-pal unitig is split in half in the bidir-
ected graph, with one half appearing in Bfirst-loop and the other
half appearing in Blast-loop.

Occurrence of unsafe unitigs in real genomes

Theorem 1 predicts the possibility of unsafe unitigs. To verify the
extent to which this happens with real genomes, we use T2T hu-
man reference Chromosome 1 (Nurk et al. 2022). We simulated er-
ror-free reads of length 100 with varying target coverages and
varying k. Note that for this experiment, we want to test if misas-
semblies occur evenwhen the data are perfect, somaking the reads
error-free is necessary. The sequenced read intervals correspond to
the source location of each simulated read, and the sequenced seg-
ments are defined as in previous section. From these reads, we con-
structed the basic dBG and output its maximal unitigs, using a
version of BCALM (Chikhi et al. 2014; Chikhi 2016) modified to
ignore reverse complementary. We confirmed that the unitigs
that were unsafe (i.e., not a substring of the sequenced segments)
were exactly the unitigs that satisfied the conditions of Theorem 1.

Table 1 shows the number of unsafe unitigs, as a function of
the coverage and of k. There are as many as 17,635 unsafe unitigs
(at coverage 2× and k=71). The best indicator for the number of
unsafe unitigs is the percentage of k-mers sampled (or the number
of sequenced segments); that is, the number of unsafe unitigs goes
down as the percentage of sampled k-mers goes up. This trend is in
line with the prediction of Corollary 1, which states that once the
coverage is perfect, we expect to see at most one unsafe unitig. Our
results indicate that the artifacts identified by Theorem 1 do occur
in real genomes, although they become less common as more of
the genomic k-mers are sampled.

An unsafe unitig is not necessarily amisassembly, as itmay be
a substring of the unsequenced genome by luck.We define an uni-
tig to be misassembled if its spelling is not a substring of the refer-
ence. Table 1 shows that the number of misassembled unitigs is
substantially lower than the unsafe unitigs, for example, with
708 misassembled unitigs at 2 × coverage and k=71. Thus, the po-
tential formisassembly does not usually translate into a real misas-
sembly, although many misassemblies remain.

We further check howmany of thesemisassembled unitigs fit
the example in Figure 3. A formal definition to capture this exam-
ple is included in Corollary 2 for reference. Table 1 shows that the
vast majority ofmisassembled cases are in fact caused by this situa-
tion, in which a repeat has an occurrence in which its start is unse-
quenced and another occurrence in which its end is unsequenced.

The simulations in Table 1 suggest that the misassembly arti-
fact can be removed by simply increasing coverage. In a metage-
nome experiment, however, this is not always possible. Even
when one increases the number of reads, there will continue to
be genomes in the sample whose abundance is low enough that
their coverage is low. To verify this intuition, we used a standard
benchmark data set generated by the CAMI competition (Sczyrba

Table 1. The presence of unsafe and misassembled unitigs in human Chromosome 1, using simulated error-free reads

Coverage k
% k-mers
sampled

No. of sequenced
segments

No. of
unitigs

No. of
unsafe

No. of
misassembled

No. of Figure 3
cases

1× 71 26.47 1,838,685 1,747,456 12,396 449 383
2× 45.94 2,710,240 2,582,737 17,635 708 628
10× 95.82 1,051,772 1,243,975 2758 36 36
20× 99.88 61,358 373,335 32 1 0
2× 21 80.76 987,257 4,545,450 2924 260 224

31 76.25 1,208,314 2,823,743 4,489 379 352
41 70.78 1,478,524 2,251,762 6460 480 447
51 64.09 1,808,896 2,093,319 9115 578 532
61 55.93 2,213,535 2,230,578 12,838 709 645
71 45.94 2,710,240 2,582,737 17,635 708 628

Uncovering hidden assembly artifacts

Genome Research 1747
www.genome.org

et al. 2017), containing 70 million synthetic reads from 30 ge-
nomes. Table 2 shows there are 33–37 misassembled unitigs, indi-
cating that this artifact remains under realistic coverage of a
metagenomic data set. The section “CAMI dataset” in
Supplemental Material, section C contains more details about
the experiment, including Supplemental Table S1 which shows
the details of the data set (Nurk et al. 2017; Fritz et al. 2019).

Presence of unsafe unitigs in the contig output of real assemblers

We investigated the extent to which the artifact predicted by
Theorem 1 appears in output of real assemblers. Assemblers do
not simply output the unitigs of a graph but perform many other
steps; hence, it was not clear if this artifact would appear in the out-
put contigs. It is not clear how to verify this artifact with real data,
as sequencing errors make it difficult to know which of the misas-
sembled contigs are caused by the conditions of Theorem 1. We
therefore again used a simulated error-free data set from the T2T
Chromosome 1, using the ART simulator (Huang et al. 2012),
with read length of 250 and varying coverages. This time, we sim-
ulated reads from either strand, because assemblers are not typical-
ly run in single-stranded mode. We also used the CAMI data set,
but simulating reads in double-strandedmode.We then construct-
ed the doubled dBG using k=74 and outputting its maximal uni-
tigs (note that Theorem 1 holds for even k). We also ran SPAdes
(Bankevich et al. 2012) and MEGAHIT (Li et al. 2015) to assemble
the reads (for parameter details, see Corollary 2). We then identi-
fied unitigs and the assembler contigs that were misassembled,
but allowed for reverse complements. We will say that a string x
matches a string y with a threshold of t if a fraction t of the k-
mers of x occur in y.

Tables 3 and 4 show that nearly all of the misassembled uni-
tigs matched at least one misassembled SPAdes contig with a
threshold of one. For MEGAHIT, the threshold of one turned out
to be stringent; this is not surprising, because assemblers have
many steps that may add or remove k-mers from the graph. In ad-
dition, MEGAHIT varies the value of k internally and may there-
fore join k-mers that do not have an overlap of length k−1.
Using a threshold of 0.5, however, we found that, similar to
SPAdes, most misassembled unitigs matched a misassembled con-
tig of MEGAHIT. These results indicate that the artifact predicted
by Theorem 1 appears not only in unitigs of the raw graph but
also in the output of widely used assemblers like SPAdes and
MEGAHIT.

Presence of palindrome splitting in a real genome

To measure the extent of the “palindrome splitting” artifact pre-
dicted by Theorem 2, we let K be the set of all constituent k-mers
in human Chromosome 21 (GRCh38.p13), after excising the Ns.
We confirmed the correctness of Theorem 2 by verifying that the
spellings of Dnon-pal are equal to the spellings of Bno-loop and that
the spellings of Blast-loop are equal to the spellings of Dpal and are

the reverse complements of the spellings of Bfirst-loop. Table 5 shows
that the splitting artifact is present but rare; for example, for k=15,
there were 186 palindromic maximal unitigs in Gdbl(K) that were
split in Gbid(K). The artifact becomes rarer with increasing k (e.g.,
for k=43, there were only three split palindromes), which is ex-
pected because palindrome frequency in real genomes decreases
with length.

Presence of palindrome splitting in real assemblers

Most assembler papers do not contain enough detail to ascertain
what kind of dBG they use to handle reverse complements nor
what modifications, if any, they make to the unitig algorithm
used for the final output. Looking at MEGAHIT (Li et al. 2015),
SPAdes (Bankevich et al. 2012), ABySS (Simpson et al. 2009;
Jackman et al. 2017), and minia (Chikhi and Rizk 2013), only
the SPAdes paper is unambiguously clear in saying how it handled
reverse complements (it used the doubled dBG). Furthermore,
because these assemblers implementmany heuristics, the splitting
artifact may be absent (respectively, present) even if they did (re-
spectively, did not) use bidirected graphs. We therefore tested
the behavior of these assemblers by looking for evidence of palin-
drome splitting in their output rather than in their technical
descriptions.

Because large exact palindromes are uncommon in typical ge-
nomes, we created a synthetic genome by modifying an �7 mil-
lion-bp-long contig from human Chromosome 4 (GRCh38.p13)
as follows. We randomly sampled a 1000-bp-long region and re-
placed the last 500 bp by the reverse complement of first 500 bp;
we then repeated the sampling process 700,000 times. We then
simulated error-free Illumina reads with ART. We used a read
length of 100 bp so that assemblers will not be able to supplement
the dBGwith read information in a way that hides the palindrome
splitting artifact. We used 10× coverage so that most k-mers would
be sampled.

First, we find the reference location of each unitig w in Dpal.
Then, we find all exact alignments of the assembler contigs to
the reference. We say that w is fully covered if there exists a contig
whose alignment spans w’s. Otherwise, we say w is split if one-
half of w’s region does not overlap with any contig alignments
whereas the other half has a contig aligned that ends precisely in
the middle of w at one end and extends past w at the other end.
A unitig is ambiguous if it does fall into either category. Corollary
2 contains a more precise definition of these cases.

Table 2. The presence of unsafe and misassembled unitigs in the
CAMI data set, using simulated error-free reads

k
% k-mers
sampled

No. of
sequenced
segments

No. of
unitigs

No. of
unsafe

No. of
misassembled

55 65 171,682 174,954 593 37
75 61 207,429 207,402 656 33

Table 3. The extent to which misassembled unitigs contribute to
misassembled contigs of real assemblers

Gdbl

SPAdes MEGAHIT

Coverage |U| |S| |S⊏1U| |U⊏0.5S| |M| |M⊏0.5U| |U⊏0.5M|

1× 234 3366 233 209 3070 111 179
2× 129 4423 128 87 2677 75 119
3× 44 8329 44 40 1832 21 39
4× 13 7365 13 13 1240 5 13
5× 5 6526 5 5 986 0 5
6× 1 5795 1 1 832 0 1

Here, U is the set of misassembled unitigs in Gdbl , S is the set of misas-
sembled contigs of SPAdes, and M is the set of misassembled contigs of
MEGAHIT. We use A ⊏t B to indicate the subset of A that matches at least
one element of B at a threshold of t.

Rahman and Medvedev

1748 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276601.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276601.122/-/DC1

Table 6 shows that ABySS clearly shows the palindrome split-
ting artifact, with all nonambiguous unitigs being split and none
fully covered. In fact, this is because of a heuristic that breaks uni-
tigs at any palindromic edges or vertices (see relevant code at https
://github.com/bcgsc/abyss/blob/master/Common/Kmer.cpp).
The opposite was true for SPAdes and MEGAHIT, with all nonam-
biguous unitigs being fully covered and none split. minia, on the
other hand, showed mixed behavior. Of the 417 nonambiguous
cases, 34 were split and 383 were fully covered. These results indi-
cate that the palindrome splitting artifact of Theorem 2 does per-
sist all the way to the contig output stage in some assemblers.
However, this artifact requires the presence of long exact palin-
dromes in the reference, which is uncommon in most genomes.

Discussion

Our theoretical study uncovered two artifacts of the unitig algo-
rithm for genome assembly. The first is that evenwithout sequenc-
ing errors, it can create misassemblies in places of imperfect
coverage. The second is that when the bidirected graph is used to
model double-strandedness, the unitig algorithm underassembles
by failing to merge the two halves of palindromes. Our experi-
ments confirmed the presence of these theoretically predicted ar-
tifacts in real genomes and popular assemblers. Fortunately, the
impact of these artifacts is not large and can be addressed.
Misassembly issues owing to the first artifact can be resolved by in-
creasing coverage or, potentially, breaking unitigs at places where
the coverage along them is uneven. Underassembly issues owing
to the palindrome artifact are rare in real genomes and, moreover,
can sometimes be fixed by forcing the unitigs to “push their way
through” lonely inverted loops (however, it is not always possible)
(e.g., Bushmanova et al. 2019; Meleshko et al. 2021).

One of the tangential outcomes of this paper is that we have
given proper definitions for things like walks and unitigs in the
context of bidirected graphs. Previous papers used these concepts
somewhat informally; when definitions were given, they worked
in the context of that paper but failed to havemore general desired
properties. For example, our previous work had an inconsistency
in the way that a walk was defined on a single vertex versus on
many vertices (Rahman et al. 2021). One key takeaway is that as
a rule of thumb, when working with bidirected graphs one should

avoid thinking in terms of vertices but think instead of vertex-
sides. The definitions we have provided in this paper generalize
further than previous ones and are able to form the basis for the
type of analysis we have performed in this paper. For example,
we are the first to prove the bijection betweenwalks in the doubled
and bidirected dBGs. We hope that these definitions will facilitate
future attempts to formally study questions in bidirected graphs.

Bidirected graphs give an elegant way to capture the double-
stranded nature of DNA in a dBG, but our results here indicate
that, for the unitig algorithm, they do not give any theoretical ad-
vantage. One of the claimed advantages of using the bidirected
graph framework in assembly is that it allows one to take advan-
tage of results from graph theory that may otherwise be hidden.
The primary example of this is a result (involving one of the inves-
tigators) in work by Medvedev et al. (2007), in which a variant of
the assembly problem was theoretically solved in polynomial
time by relying on a reduction to the flow problem in bidirected
graphs (Gabow 1983). When viewed in retrospect, however, it is
not clear that this connection was necessary. The algorithm being
reduced to that of Gabow (1983) was too cumbersome to imple-
ment, and when the assembly problem later necessitated a soft-
ware solution, an approximation algorithm was used instead
(Medvedev and Brudno 2008; Medvedev et al. 2010). But the ap-
proximation algorithm worked on the doubled graph, erasing
the advantage of having initially formulated the problem on bidir-
ected graphs. Therefore, it remains to be seen if there are situations
in which the connection to graph theoretical results on bidirected
graphs can prove useful for genome assembly. Alternatively, using
a different settingmay better help identify the advantages of bidir-
ected graphs, for example, pangenomics (Paten et al. 2017), rear-
rangement analysis (Bergeron et al. 2006), or compression
(Rahman and Medevedev 2021). Quantifying these advantages
would be an exciting future direction.

Methods

Preliminaries

In this section, we give the formal definitions for our paper. The
readermaywish to delay reading the last three paragraphs (relating
to bidirected graphs) until they are used later in the text.

Strings

In this paper, we assume all strings are over the four-letter DNA al-
phabet. A string of length k is called a k-mer. We define sufk(x) (re-
spectively, prek(x)) to be the last (respectively, first) k characters
of x. When the subscript is omitted from pre and suf, we assume
it is k−1. For x and y with suf(x) = pre(y), we define gluing x and y,
denoted by x⊙ y, as x concatenated with the last |y|− k+1 charac-
ters of y. Given two strings x and y, we define occy(x) as the number
of times that x occurs in y. The reverse complement of x is denoted
as �x. For a set of strings S, S denotes the set of the reverse comple-
ments of all strings ofS. A string x is a palindrome iff x = �x. A string x

Table 4. The extent to which misassembled unitigs contribute to
misassembled contigs of real assemblers for the CAMI metagenomic
data set

Gdbl

metaSPAdes MEGAHIT

k |U| |S| |S⊏1U| |U⊏1S| |M| |M⊏0.5U| |U⊏0.5M|

55 37 384 36 36 255 34 32
75 33 208 30 30 144 30 26

Table 5. Extent of the palindrome splitting artifact predicted by Theorem 2 in Chr 21

k |D| |B| |Dnon-pal| |Dpal| |Blast-loop| |Bfirst-loop| |Bno-loop|

15 1,465,800 1,465,986 1,465,614 186 186 186 1,465,614
29 60,849 60,866 60,832 17 17 17 60,832
35 36,542 36,552 36,532 10 10 10 36,532
43 18,459 18,462 18,456 3 3 3 18,456

Uncovering hidden assembly artifacts

Genome Research 1749
www.genome.org

https://github.com/bcgsc/abyss/blob/master/Common/Kmer.cpp
https://github.com/bcgsc/abyss/blob/master/Common/Kmer.cpp
https://github.com/bcgsc/abyss/blob/master/Common/Kmer.cpp
https://github.com/bcgsc/abyss/blob/master/Common/Kmer.cpp
https://github.com/bcgsc/abyss/blob/master/Common/Kmer.cpp

is canonical if it is the lexicographically smaller of x and �x. For s∈
{0, 1}, we define orient(x, s) to be x if s=0 and to be �x if s=1.
To canonize x is to replace it by its canonical version,
canon(x) = min

i
(orient(x, i)). We say that x0 and x1 have a (s0, s1)-

oriented overlap if suf(orient(x0, 1− s0)) = pre(orient(x1, s1)).
Informally, such an overlap exists between two strings if we can or-
ient them in such a way that they are glueable. For example, GTT
and TTG have a (1, 0)-oriented overlap, and AAC and TTG have a
(0, 0)-oriented overlap. We define the noncanonical k-spectrum
spk(x) as the set of all k-mer substrings of x.

Directed dBGs

Given a set of k-mersK, the basic node-centric-directed dBG,Gbasic(K),
is directed graph where nodes are the k-mers of K, and an edge ex-
ists from k-mer x to k-mer y iff suf(x) = pre(y). A double-directed dBG
on K, Gdbl(K) is a basic dBG on the set of k-mers K < �K; that is,
Gdbl(K) = Gbasic(K < �K). Observe that for any k-mer x such that
suf (x) = pre(�x), the existence of the edge from x to y inGdbl(K) im-
plies the existence of a different edge from �y to �x.We refer to such a
pair of edges as mirrors. For a k-mer x such that suf (x) = pre(�x), the
Gdbl(K) will contain an edge from x to �x; we call this edge a self-
mirror.

Walks and unitigs in directed graphs

For a vertex x in a directed graph, the in-degree d−(x) (respectively,
out-degree d+ (x)) is the number of edges incoming to (respectively,
outgoing from) it. The sequence of verticesw= (x0,…, xn), for n≥0,
is a walk iff for all 1≤ i≤n, there exists an edge from xi−1 to xi.
Vertices x0 and xn are called endpoints, and a walk sometimes has
one endpoint. The spelling of a walk is defined as
spell(w) = x0 ⊙ · · · ⊙ xn. A walk is said to be circular iff n≥1 and
x0 = xn, and as a simple cycle if for all i and j such that 0≤ i< j≤n,
xi= xj implies i=0 and j=n. A simple periodic cycle is a walk that
starts with a simple cycle and then keeps on looping around it
without ever exiting; formally, a walk is a simple periodic cycle if
there exists 0≤ i≤n−1 such that (x0, …, xi) is a simple cycle and
xi+1, …, xn is a repetition of x0, …, xi, except the last repetition
may be partial. A walk is a unitig if it is not a periodic cycle and
for all 1≤ i≤n, d−(xi) = 1 and for all 0≤ i≤n−1, d+ (xi) = 1. A unitig
is maximal if it is not a proper subwalk of another unitig.

Bidirected dBG

A bidirected graph G is a pair (V, E) in which the set V is called ver-
tices and E is a set of edges. Informally, every vertex has two sides;
formally, a vertex-side is a pair (u, s), inwhich u∈V and s∈ {0, 1}. An
edge e is a set of two vertex-sides {(u0, s0), (u1, s1)}, where ui∈V and
si∈ {0, 1}, for i∈ {0, 1}. Informally, an edge is an undirected connec-

tion between two (not-necessarily-distinct) vertex-sides. We say
that an edge e is incident to each of the two vertex-sides. Note
that there can be multiple edges between two vertices, but only
one edge once the sides are fixed. A labeled bidirected graph is a bidir-
ected graph G in which every vertex u has a string label lab(u) and
for every edge e= {(u0, s0), (u1, s1)}, there is a (s0, s1)-oriented overlap
between lab(u0) and lab(u1). G is said to be overlap-closed if there is
an edge for every such overlap. Let K be a set of canonical k-mers.
The node-centric bidirected dBG, denoted byGbid(K), is the overlap-
closed-labeled bidirected graph in which the vertices and their la-
bels correspond to K. Supplemental Figure S1A shows an example
of a bidirected graph.

Walks and unitigs in bidirected graphs

An edge in a bidirected graph is an inverted loop if its two vertex-sides
are equal. An inverted loop {(u, s), (u, s)} is lonely if it is the only edge
incident to (u, s).Wedefine the degreeof a vertex-sided(u, s) to be the
number of edges incident to it, but with an inverted loop contribut-
ing two to the degree. A sequence t= (u0, s0, u1, s1,…, un, sn) with n≥
0 is a walk if for all 1≤ i≤n, there exists an edge ei= {(ui−1, 1− si−1),
(ui, si)}. The vertex-sides (u0, s0) and (un, 1− sn) are called the first
and last endpoint sides, respectively. Note that evenwhen n=0, there
are two endpoint sides. The spelling of a walk is defined as
spell(w) = orient(lab(u0), s0)⊙ · · · ⊙ orient(lab(un), sn). The reverse
of t is rev(t) = (un, 1− sn, …, u0, 1− s0). Note that, as expected,
spell(t) = spell(rev(t)). Note that if t

′
is a subwalk of t, then rev(t

′
) is

a subwalk of rev(t) and spell(t
′
) is a substring of spell(t) (the converse

is not necessarily true when k is even). Supplemental Figure S1B,C
gives an example illustrating a walk in a bidirected graph, and
Supplemental Figure S1D shows a corresponding walk in a dou-
ble-directed dBG.

A walk w= (u0, s0, …, un, sn) is said to be circular iff n≥1 and
(u0, s0) = (un, sn) and to be a simple cycle if for all i and j such that
0≤ i< j≤n, (ui, si) = (uj, sj) implies i=0 and j=n. A simple periodic cy-
cle is a walk that starts with a simple cycle and then keeps on loop-
ing around it without ever exiting; formally, w is a simple periodic
cycle if there exists 0≤ i≤n−1 such that (u0, s0,…, ui, si) is a simple
cycle and (ui+1, si+1,…, un, sn) is a repetition of (u0, s0,…, ui, si), ex-
cept the last repetitionmay be partial. A walk is a unitig if it is not a
periodic cycle and for all 1≤ i≤n, d−(xi) = 1 and for all 0≤ i≤n−1,
d+ (xi) = 1. A walk (u0, s0, …, un, sn) is a unitig if it is not a periodic
cycle and for all 0≤ i<n, d(ui, 1− si) = 1 and for all 0 < i≤n, d(ui,
si) = 1. A unitig is said to be maximal if it is not a proper subwalk
of another unitig. Note that all the subwalks of a unitigmust them-
selves be unitigs.

Safety of unitigs

In this subsection, we will give necessary and sufficient conditions
for a unitig to be unsafe in the basic dBG constructed from error-
free reads. To properly formulate this question, we define a se-
quenced read interval as a genomic interval that generated a read,
that is, from which a read was sequenced. A sequencing

Table 6. Presence of the palindrome splitting artifact in real assem-
blers on a synthetic genome

Contigs Unitigs in Dpal

Assembler
No. of
contig

No. of fully
covered

No. of
split

No. of
ambiguous

MEGAHIT 4882 427 0 13
SPAdes 7209 423 0 17
ABySS 53,046 0 66 367
minia 23,318 383 34 16

We used k=31 for all the assemblers (for details, see Corollary 2). We fil-
tered out unitigs <500 bp, amounting to 440 palindromic strings in
ABySS and minia and 433 palindromic strings in SPAdes and MEGAHIT.

Figure 1. Illustration of sequenced segments. The black text on top
shows the reference genome of length 26. The seven sequences in red
are reads aligned to the reference. The green boxes highlight the resulting
sequenced segments when k=3. Note that the reads TACCG and GCCTA
form two separate segments as the k-mer CGC is not present in K.

Rahman and Medvedev

1750 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276601.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276601.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276601.122/-/DC1

experiment then corresponds to a set of sequenced read intervals.
A sequenced interval is then defined as a maximal interval that is
covered by sequenced read intervals, with the additional con-
straint that any two consecutive sequenced intervals overlap by
at least k−1. We define a sequenced segment as the string corre-
sponding to a sequenced interval.

Observe that the sequenced intervals do not overlap by more
than k−2 bases (otherwise they would not be maximal), but the
sequenced segment may have longer overlaps owing to repeats.
A set of reads then induces a set S = {S1, . . . , S|S|} of sequenced seg-
ments. Figure 1 illustrates this formulation. In this subsection, we
do not explicitly account for reverse complements, because they
will be considered in the next subsection.

Given a set of sequenced segments S, we say that a unitigw in
Gbasic(spk(S)) is unsafe iff spell(w) is not a substring of a string in S.
Equivalently,w is unsafe iff it is not a subwalk of a walk that corre-
sponds to a string in S. Our definition of unsafe captures the no-
tion of a potential misassembly, as the unitig is not present in
the sequenced part of the genome. (The safety of unitigs has
been previously studied for other notions of “safety” by Cairo
et al. [2020]. Although the investigators did not make the explicit
conclusion and did not verify it in practice, their Theorem 6.1(d)
implies that unitigs are not guaranteed to be safe in the model of
assembly they consider. Concretely, although a suffix or prefix
of the unitig may be present at the starts and ends of parts of the
genome, the whole unitig might never be contained as a contigu-
ous sequence.)

Observe that in formulating the problem, we start with the
set of sequenced segments themselves; the read set that induced
them is irrelevant. We can now state the main result of this sub-
section, which gives the necessary and sufficient conditions for a
unitig to be unsafe. The proof of this theorem, along with the
necessary lemmas, is left for Corollary 2 owing to space
constraints.

Theorem1. Let S be a set of sequenced segments, and let w= (x0,
…, xm) be a unitig in Gbasic(spk(S)). Then w is unsafe if and only if for
all S [S, one of the following holds:

1. S does not contain any k−mer of w,
2. occS(prek(S)) = 1 and prek(S) = xi for some 1≤ i≤m,
3. occS(sufk(S)) = 1 and sufk(S) = xj for some 0≤ j≤m−1, or
4. occS(prek(S)) = occS(sufk(S)) = 2 and there exists 1≤ i≤ j≤m−1 such

that prek(S) = xi and sufk(S) = xj.

The cases of Theorem 1 are illustrated in Figure 2 and can be
understood informally as follows. Because every k-mer of

S [S is in S, every k-mer of w must be touched by some S [S.
Then, consider a walk g corresponding to such a string S. If g
starts in the middle of w and does not visit its own starting vertex
again, then g does not fully contain w (case 2). Similarly, if g ends
in the middle of w and did not visit its own ending vertex previ-
ously, then g does not fully contain w (case 3). If g starts and ends
in the middle of w, with the ending vertex to the right of the
starting vertex, and contains each of those vertices exactly twice,
then g does not fully contain w (case 4). This is the “if” direction
of Theorem 1, with the “only if” direction further stating that un-
der all other conditions, g fully contains w.

When the genome is a single chromosomeand the coverage is
high enough so that every k-mer is sequenced, the whole genome
becomes one sequenced segment. In this case, Theorem 1 simpli-
fies because the genome has only one starting and ending vertex
and, for a unitig w to be unsafe, the genome must somehow con-
tain every vertex of w without containing w as a subwalk.

Corollary 1. Let X be a string and let w= (x0,…, xm) be a unitig
in Gbasic(sp

k(X)). Then spell(w) is not a substring of X iff one of the fol-
lowing holds:

1. occX(prek(X)) = occX(sufk(X)) = 1, prek(X) = xi, sufk(X) = xi−1 for
some 1≤ i≤m.

2. occX(prek(X)) = occX(sufk(X)) = 2, prek(X) = xi, sufk(X) = xj for some
0< i≤ j<m.

Moreover, this can hold for at most one unitig in Gbasic(sp
k(X)).

This corollary tells us that with perfect coverage, all unitigs,
except possibly one, are safe. Note that this is a stronger version
of the perfect coverage case than the one given by Medvedev
(2019), which made an assumption that the starting vertex of X
is a source and the ending vertex of X is a sink.

A natural question is how a scenario that gives an unsafe
unitig looks like in terms of the original genome. Figure 3, A
and B, visualized the following natural possibility. Suppose that
the sequenced genome X has a repeat that appears as a maximal
unitig ψ in Gbasic(sp

k(X)). Then, suppose that the region encom-
passing the start of one copy and the region encompassing the
end of the other copy is not sequenced. Then ψ loses its maximal-
ity in Gbasic(spk(S)) and becomes a subwalk of a bigger unitig w.
Although w is a unitig in the graph from the sequencing data,
it would not be a unitig if all the k-mers of X were included in
the graph. In the Results section, we show that this situation ac-
counts for the majority of our experimental observations.

A

B

Figure 3. Illustration of an unsafe unitig. Panel A shows two parts of a
sequenced genome X. Regions surrounded by green dashed boxes are the
sequenced segments S. The solid blue boxes represent two copies of a re-
peat. Panel B shows the resulting Gbasic(spk(S)), with dashed vertices and
edges representing vertices that are in Gbasic(sp

k(X)) but not sequenced.

Figure 2. Illustration of the cases in Theorem 1. The graph in the
figure represents Gbasic(spk(S)), where k=3 and
S = {CTTGG, CTTGACTT, TACTT, TGAC}. The segments are marked by
dashed lines with their starts marked with a dot and their ends marked with
a diamond. The unitig w= {ACT, CTT, TTG} is unsafe because for each of the
segment, one of the cases in Theorem 1 is true. For segment colored in green,
case 1 holds; for red, case 2; for blue, case 3; and for orange, case 4.

Uncovering hidden assembly artifacts

Genome Research 1751
www.genome.org

The relationship between the doubled dBG (Gdbl(K))
and the bidirected dBG (Gbid(K))

In this subsection, we will characterize the relationship between
the maximal unitigs of Gdbl(K) and the maximal unitigs of
Gbid(K) (Theorem 2). Because of space constraints, the lemmas
and proofs needed to prove Theorem 2 are in Corollary 2. Here,
we will instead give an informal walk-through to elucidate the re-
lationship between the two graphs. We will incrementally show
the relationship between objects in the doubled graph and the
bidirected graph: first between vertices and vertex-sides, then be-
tween edges, then between walks, and finally between maximal
unitigs.

Let K be a set of canonical k-mers, with k as odd.We only con-
sider the case of odd k; when k is even, there may be palindrome k-
mers, which create special cases to handle both in the practical as-
sembler implementation and in the theoretical analysis. Because
most assemblers anyway restrict k to be odd, we limit ourselves
to this case as well.

There is a natural mapping between vertices of Gdbl(K) and
vertex-sides of Gbid(K). For a vertex x in Gdbl(K), define FV(x) = (u,
s), where u is a vertex in Gbid(K) and s∈ {0, 1} such that lab(u) = or-
ient(x, s). By the definition of Gbid(K), there exists a unique u and
unique s that satisfy this condition. The uniqueness of s is guaran-
teed by the fact that x cannot be a palindrome. Formally, FV is a
bijection between vertices of Gdbl(K) and vertex-sides of Gbid(K)
(Lemma B.10).

There is also a natural mapping between edges in Gdbl(K) and
Gbid(K). Let x1 and x2 be two k-mers in Gdbl(K) and let (u1, s1) =
FV(x1) and (u2, s2) = FV(x2). We define the mapping FE(x1, x2) =
{(u1, 1− s1), (u2, s2)} such that (x1, x2) is an edge in Gdbl(K) if and
only if FE(x1, x2) is an edge in Gbid(K) (Lemma B.11). Note, howev-
er, that FE is not a bijection, because a pair ofmirror edges (x, y) and
(�y, �x) map to the same bidirected edge; that is, FE(x, y) = FE(�y, �x).

The FV and FE mappings allow us to naturally define a map-
ping from walks in Gdbl(K) to walks in Gbid(K). Let w= (x0, …, xn)
be a walk in Gdbl(K). For each 0≤ i≤n, let (ui, si) = FV(xi) and define
FW(w)≜(u0, s0,…, un, sn). FW is a spell-preserving bijection between
the set of walks in Gdbl(K) and the set of walks in Gbid(K) (Lemma
B.12).

One might hypothesize that FW is also a bijection between
the maximal unitigs of Gdbl(K) and the maximal unitigs of
Gbid(K). It turns out to not be the case, although the following
more careful analysis reveals a close relationship. For Gdbl(K), let
us partition the set of maximal unitigs into nonpalindromic
strings Dnon−pal and palindromic strings Dpal. For Gbid(K), let Bno

−loop be the set of maximal unitigs in which neither endpoint
side has an incident lonely inverted loop, let Bfirst−loop be the set
of maximal unitigs in which the only endpoint side with a lonely

inverted loop is the first one, and let
Blast-loop be the set of maximal unitigs in
which the only endpoint side with a
lonely inverted loop is the last one. To
avoid corner cases, let us further assume
that there are no circular unitigs in
Gdbl(K), which eliminates the possibility
of amaximal unitig having lonely invert-
ed loops at both endpoint sides and im-
plies that Bno-loop, Bfirst-loop, and Blast-loop

are a partition of the maximal unitigs of
Gbid(K) (Lemma B.16). Figure 4, A and
B, shows an example.

We also need to define a function
HEAD that, informally, takes a maximal
palindromic unitig in Gdbl(K), extracts

the first half of it, and maps it to Gbid(K). Formally, head(w)
maps a walk w= (x0, …, xn) in Dpal to the walk

FW x0, . . . , xn− 1
2

⎛
⎜⎝

⎞
⎟⎠

⎛
⎜⎝

⎞
⎟⎠ in Gbid(K). Note that

n− 1
2

is necessarily

an integer because w is a palindrome, and hence, n must be odd
(Lemma B.1). We can now state the main theorem of this
subsection.

Theorem2. Let K be a set of canonical k-merswhere k is odd and
Gdbl(K) does not contain a circular unitig.

1. The function Fw is a bijection from Dnon-pal to Bno-loop.
2. The function rev is a bijection between Blast-loop and Bfirst-loop.
3. HEAD is a bijection from Dpal and Blast-loop

Figure 5 schematically illustrates the relationship captured
by Theorem 2. The theorem says that for maximal unitigs that
are nonpalindromic in Gdbl(K) and do not have inverted self-
loops incident at the endpoint sides in Gbid(K), FW is in fact a
bijection. However, every maximal unitig w that is palindromic
in Gdbl(K) is split into two maximal unitigs in Gbid(K): one that
spells the first half of w and has a self-loop incident at the last
endpoint side, and one that spells the second half of w and
has a self-loop at the first endpoint side. These are necessarily re-
verses of each other.

Inverted loops are caused by k-mers x where suf (x) = suf (x)
(e.g., GTA). When these type of k-mers are not present in K, there
are no inverted loops in Gbid(K) or palindromic unitigs in Gdbl(K).
Hence,Dpal = Bfirst-loop = Blast-loop = ∅, and Theorem 2 immediate-
ly simplifies.

Corollary 2. Let K be a set of k-mers,with odd k, which does not
contain any x such that suf (x) = suf (x).Then FW is a bijection from the
maximal unitigs in Gdbl(K) to the maximal unitigs in Gbid(K).

A B

Figure 4. Example of a bidirected dBG (Gbid(K)) (panel A) and a doubled dBG (Gdbl(K)) (panel B) on
the same underlying set of k-mers K= {CAC, AAC, ACT, CTA, ATA}. Each vertex-side in Gbid(K) and each
in- and outside of a vertex in Gdbl(K) is numbered with the corresponding degree. All maximal unitigs are
shown using a long, filled rectangle with an arrow. Themaximal unitigs ofGbid(K) are color-coded so that
red is Bno-loop, dark green is Blast-loop, and light green is Bfirst-loop. The maximal unitigs of Gdbl(K) are color-
coded so that dark red is Dnon-pal and blue is Dpal. Self-mirror edges in Gdbl(K) are shown in blue.

Figure 5. Overview of relationship between maximal unitigs in dou-
ble and bidirected graph for odd k. We use the example from Figure 4,
in which K= {AAC, ACT, CTA, CAC, ATA}. The set of maximal unitigs
from Gdbl(K), D, is partitioned into Dpal and Dnon-pal. The set of maximal
unitigs from Gbid(K), B, is partitioned into Blast-loop, Bfirst-loop, and Bno-loop.
The arrows between different subsets of D and B denote bijections.

Rahman and Medvedev

1752 Genome Research
www.genome.org

Software availability

Scripts for the experimental evaluations are available at GitHub
(https://github.com/medvedevgroup/assembly-artifacts-paper-
experiments) and as Supplemental Code.

Competing interest statement

The authors declare no competing interests.

Acknowledgments

P.M. thanks RayanChikhi, Alexandru Tomescu, andMihai Pop for
useful discussions. This material is based upon work supported by
the National Science Foundation under grant nos. 1453527 and
1931531. A.R. was supported by the National Institutes of Health
Computation, Bioinformatics, and Statistics (CBIOS) training
program.

Author contributions: Both P.M. and A.R. took part in all as-
pects of the project, except that A.R. was the one who performed
all the experiments.

References

Alkan C, Sajjadian S, Eichler EE. 2011. Limitations of next-generation ge-
nome sequence assembly. Nat Methods 8: 61–65. doi:10.1038/nmeth
.1527

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS,
Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: a
new genome assembly algorithm and its applications to single-cell se-
quencing. J Comput Biol 19: 455–477. doi:10.1089/cmb.2012.0021

Bankevich A, Bzikadze AV, Kolmogorov M, Antipov D, Pevzner PA. 2022.
Multiplex de Bruijn graphs enable genome assembly from long, high-fi-
delity reads. Nat Biotechnol 40: 1075–1081. doi:10.1038/s41587-022-
01220-6

Bergeron A, Mixtacki J, Stoye J. 2006. A unifying view of genome rearrange-
ments. In International Workshop on Algorithms in Bioinformatics, WABI
2006. Lecture Notes in Computer Science (ed. Bücher P, Moret BME), Vol.
4175, pp. 163–173. Springer, Berlin, Heidelberg. https://doi.org/10
.1007/11851561_16

Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. 2019. rnaSPAdes: a de
novo transcriptome assembler and its application to RNA-Seq data.
Gigascience 8: giz100. doi:10.1093/gigascience/giz100

Cairo M, Khan S, Rizzi R, Schmidt S, Tomescu AI, Zirondelli EC. 2020. The
hydrostructure: a universal framework for safe and complete algorithms
for genome assembly. arXiv:2011.12635 [cs.DM]. https://doi.org/10
.48550/arXiv.2011.12635

Chikhi R, Rizk G. 2013. Space-efficient and exact de Bruijn graph represen-
tation based on a bloom filter. Algorithms Mol Biol 8: 22. doi:10.1186/
1748-7188-8-22

Chikhi R, Limasset A, Jackman S, Simpson JT, Medvedev P. 2014. On the
representation of de Bruijn graphs. In Research in Computational
Molecular Biology. RECOMB 2014. Lecture Notes in Computer Science (ed.
Sharan R), Vol. 8394, pp. 35–55. Springer, Cham. https://doi.org/10
.1007/978-3-319-05269-4_4

Chikhi R, Limasset A,Medvedev P. 2016. Compacting de Bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics 32: i201–
i208. doi:10.1093/bioinformatics/btw279

Fritz A, Hofmann P, Majda S, Dahms E, Dröge J, Fiedler J, Lesker TR,
Belmann P, DeMaere MZ, Darling AE, et al. 2019. CAMISIM: simulating
metagenomes and microbial communities. Microbiome 7: 17. doi:10
.1186/s40168-019-0633-6

Gabow HN. 1983. An efficient reduction technique for degree-constrained
subgraph and bidirected network flow problems. In STOC ’83:
Proceedings of the fifteenth annual ACM Symposium on Theory of
Computing, pp. 448–456. Association for Computing Machinery, New
York. https://doi.org/10.1145/800061.808776

Huang W, Li L, Myers JR, Marth GT. 2012. ART: a next-generation sequenc-
ing read simulator. Bioinformatics 28: 593–594. doi:10.1093/bioinfor
matics/btr708

Idury RM, Waterman MS. 1995. A new algorithm for DNA sequence assem-
bly. J Comput Biol 2: 291–306. doi:10.1089/cmb.1995.2.291

Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA,
Jahesh G, Khan H, Coombe L, Warren RL, et al. 2017. ABySS 2.0: re-

source-efficient assembly of large genomes using a Bloom filter.
Genome Res 27: 768–777. doi:10.1101/gr.214346.116

Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. 2015. MEGAHIT: an ultra-fast
single-node solution for large and complexmetagenomics assembly via
succinct de Bruijn graph. Bioinformatics 31: 1674–1676. doi:10.1093/
bioinformatics/btv033

Medvedev P. 2019. Modeling biological problems in computer science: a
case study in genome assembly. Brief Bioinformatics 20: 1376–1383.
doi:10.1093/bib/bby003

Medvedev P, Brudno M. 2008. Ab initio whole genome shotgun assembly
with mated short reads. In Research in Computational Molecular Biology.
RECOMB 2008. Lecture Notes in Computer Science (ed. Vingron M,
Wong L), Vol. 4955, pp. 50–64. Springer, Berlin, Heidelberg. https
://doi.org/10.1007/978-3-540-78839-3_5

Medvedev P, Georgiou K,Myers G, BrudnoM. 2007. Computability ofmod-
els for sequence assembly. In Algorithms in Bioinformatics. WABI 2007.
Lecture Notes in Computer Science (ed. Giancarlo R, Hannenhalli S), Vol.
4645, pp. 289–301. Springer, Berlin, Heidelberg. https://doi.org/10
.1007/978-3-540-74126-8_27

Medvedev P, Fiume M, Dzamba M, Smith T, Brudno M. 2010. Detecting
copy number variation with mated short reads. Genome Res 20: 1613–
1622. doi:10.1101/gr.106344.110

Meleshko D, Hajirasouliha I, Korobeynikov A. 2022. coronaSPAdes: from
biosynthetic gene clusters to RNA viral assemblies. Bioinformatics 38:
1–8. doi:10.1093/bioinformatics/btab597

Miga KH, Koren S, Rhie A, Vollger MR, Gershman A, Bzikadze A, Brooks S,
Howe E, Porubsky D, Logsdon GA, et al. 2020. Telomere-to-telomere as-
sembly of a complete humanX chromosome.Nature 585: 79–84. doi:10
.1038/s41586-020-2547-7

Nurk S, MeleshkoD, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new
versatile metagenomic assembler. Genome Res 27: 824–834. doi:10
.1101/gr.213959.116

Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger
MR, Altemose N, Uralsky L, Gershman A, et al. 2022. The complete se-
quence of a human genome. Science 376: 44–53. doi:10.1126/science
.abj6987

Paten B, Novak AM, Eizenga JM, Garrison E. 2017. Genome graphs and the
evolution of genome inference. Genome Res 27: 665–676. doi:10.1101/
gr.214155.116

Rahman A, Medevedev P. 2021. Representation of k-mer sets using spec-
trum-preserving string sets. J Comput Biol 28: 381–394. doi:10.1089/
cmb.2020.0431

Rahman A, Chikhi R, Medvedev P. 2021. Disk compression of k-mer sets.
Algorithms Mol Biol 16: 10. doi:10.1186/s13015-021-00192-7

Rhie A,McCarthy SA, FedrigoO, Damas J, Formenti G, Koren S, Uliano-Silva
M, Chow W, Fungtammasan A, Kim J, et al. 2021. Towards complete
and error-free genome assemblies of all vertebrate species. Nature 592:
737–746. doi:10.1038/s41586-021-03451-0

Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I,
Majda S, Fiedler J, Dahms E, et al. 2017. Critical assessment of metage-
nome interpretation: a benchmark of metagenomics software. Nat
Methods 14: 1063–1071. doi:10.1038/nmeth.4458

Shomorony I, Courtade T, Tse D. 2015. Do read errorsmatter for genome as-
sembly? In 2015 IEEE International Symposium on Information Theory
(ISIT), pp. 919–923. IEEE. doi:10.1109/ISIT.2015.7282589

Shomorony I, Courtade TA, TseD. 2016a. Fundamental limits of genome as-
sembly under an adversarial erasure model. IEEE Trans Mol Biol Multi-
Scale Commun 2: 199–208. doi:10.1109/TMBMC.2016.2641440

Shomorony I, Kim SH, Courtade TA, Tse DN. 2016b. Information-optimal
genome assembly via sparse read-overlap graphs. Bioinformatics 32:
i494–i502. doi:10.1093/bioinformatics/btw450

Simpson JT, Pop M. 2015. The theory and practice of genome sequence as-
sembly. Annu Rev Genomics Hum Genet 16: 153–172. doi:10.1146/
annurev-genom-090314-050032

Simpson JT,Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. 2009. ABySS: a
parallel assembler for short read sequence data. Genome Res 19: 1117–
1123. doi:10.1101/gr.089532.108

Tomescu AI, Medvedev P. 2016. Safe and complete contig assembly via
omnitigs. In Research in Computational Molecular Biology. RECOMB
2016 (ed. Singh M). Lecture Notes in Computer Science, Vol. 9649,
pp. 152–163. Springer, Cham. https://doi.org/10.1007/978-3-319-
31957-5_11

Yang L, Malhotra R, Chikhi R, Elleder D, Kaiser T, Rong J, Medvedev P, Poss
M. 2021. Recombinationmarks the evolutionary dynamics of a recently
endogenized retrovirus. Mol Biol Evol 38: 5423–5436. doi:10.1093/mol
bev/msab252

Received January 17, 2022; accepted in revised form July 26, 2022.

Uncovering hidden assembly artifacts

Genome Research 1753
www.genome.org

https://github.com/medvedevgroup/assembly-artifacts-paper-experiments
https://github.com/medvedevgroup/assembly-artifacts-paper-experiments
https://github.com/medvedevgroup/assembly-artifacts-paper-experiments
https://github.com/medvedevgroup/assembly-artifacts-paper-experiments
https://github.com/medvedevgroup/assembly-artifacts-paper-experiments
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276601.122/-/DC1
https://doi.org/10.1007/11851561_16
https://doi.org/10.1007/11851561_16
https://doi.org/10.1007/11851561_16
https://doi.org/10.1007/11851561_16
https://doi.org/10.1007/11851561_16
https://doi.org/10.48550/arXiv.2011.12635
https://doi.org/10.48550/arXiv.2011.12635
https://doi.org/10.48550/arXiv.2011.12635
https://doi.org/10.48550/arXiv.2011.12635
https://doi.org/10.48550/arXiv.2011.12635
https://doi.org/10.48550/arXiv.2011.12635
https://doi.org/10.48550/arXiv.2011.12635
https://doi.org/10.1007/978-3-319-05269-4_4
https://doi.org/10.1007/978-3-319-05269-4_4
https://doi.org/10.1007/978-3-319-05269-4_4
https://doi.org/10.1007/978-3-319-05269-4_4
https://doi.org/10.1007/978-3-319-05269-4_4
https://doi.org/10.1145/800061.808776
https://doi.org/10.1145/800061.808776
https://doi.org/10.1145/800061.808776
https://doi.org/10.1145/800061.808776
https://doi.org/10.1145/800061.808776
https://doi.org/10.1145/800061.808776
https://doi.org/10.1007/978-3-540-78839-3_5
https://doi.org/10.1007/978-3-540-78839-3_5
https://doi.org/10.1007/978-3-540-78839-3_5
https://doi.org/10.1007/978-3-540-78839-3_5
https://doi.org/10.1007/978-3-540-78839-3_5
https://doi.org/10.1007/978-3-540-74126-8_27
https://doi.org/10.1007/978-3-540-74126-8_27
https://doi.org/10.1007/978-3-540-74126-8_27
https://doi.org/10.1007/978-3-540-74126-8_27
https://doi.org/10.1007/978-3-540-74126-8_27

