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Abstract

Amicoumacin A exhibits strong antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), hence we
sought to uncover its mechanism of action. Genome-wide transcriptome analysis of S. aureus COL in response to
amicoumacin A showed alteration in transcription of genes specifying several cellular processes including cell envelope
turnover, cross-membrane transport, virulence, metabolism, and general stress response. The most highly induced gene
was lrgA, encoding an antiholin-like product, which is induced in cells undergoing a collapse of Dy. Consistent with the
notion that LrgA modulates murein hydrolase activity, COL grown in the presence of amicoumacin A showed reduced
autolysis, which was primarily caused by lower hydrolase activity. To gain further insight into the mechanism of action of
amicoumacin A, a whole genome comparison of wild-type COL and amicoumacin A-resistant mutants isolated by a serial
passage method was carried out. Single point mutations generating codon substitutions were uncovered in ksgA (encoding
RNA dimethyltransferase), fusA (elongation factor G), dnaG (primase), lacD (tagatose 1,6-bisphosphate aldolase), and
SACOL0611 (a putative glycosyl transferase). The codon substitutions in EF-G that cause amicoumacin A resistance and
fusidic acid resistance reside in separate domains and do not bring about cross resistance. Taken together, these results
suggest that amicoumacin A might cause perturbation of the cell membrane and lead to energy dissipation. Decreased
rates of cellular metabolism including protein synthesis and DNA replication in resistant strains might allow cells to
compensate for membrane dysfunction and thus increase cell survivability.
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Introduction

Staphylococcus aureus is the etiological agent for a large number of

human infections, including pneumonia, meningitis, toxic shock

syndrome, bacteremia, and endocarditis. S. aureus is notorious for

developing rapid resistance to antibiotics, which is caused mainly

by antibiotic selection and horizontal transfer of resistance genes

[1]. Most notably, methicillin-resistant S. aureus (MRSA) has

emerged quickly due to acquisition of the novel penicillin-binding

protein 2A (PBP2A) encoded by mecA [2]. The mecA gene likely

originated from Staphylococcus sciuri that is naturally sensitive to b-

lactam [3] and mecA incorporated into a staphylococcal cassette

chromosome (SCCmec) serves as a mobile genetic element, thus

mediating transfer of the mecA gene into staphylococcal species [4].

Morbidity caused by MRSA infections per year in the U.S.A. was

reported to be comparable to that caused by HIV/AIDS [5],

which highlights the importance of this deadly pathogen. The

glycopeptide vancomycin, the most commonly used antibiotic for

the treatment of MRSA infections, is no longer effective enough

because of the emergence of vancomycin-intermediate S. aureus

(VISA) [6]. Therefore, there is an urgent need to find antibacterial

agents with novel mechanisms of action and to understand how S.

aureus acquires antibiotic resistance.

In this study, amicoumacin A, which possesses strong anti-

MRSA activity, was investigated. Amicoumacin A, also known as

AI-77-A, is one of numerous structurally related isocoumarin

antibiotics [7,8,9,10]. Other examples of this class of antibiotics

include the xenocoumacins, the bacilosarcins, Sg17-1-4, PM-

94128, and Y-05460 [11,12,13,14,15]. Figure 1 illustrates the

structures of amicoumacin A and xenocoumacin 1. These

isocoumarins exhibit a wide variety of biological effects, ranging

from anti-bacterial to anti-tumor activity [11,12,13,14,15].

Amicoumacin A has anti-microbial, anti-inflammatory, and anti-

ulcer properties [7], and anti-Helicobacter activity was later reported

[16]. Despite the versatile activities, the mode of action remains

unknown. Antibiotics currently used for MRSA infections either
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inhibit bacterial protein synthesis (linezolid) [17] or target the cell

membrane (daptomycin) [18]. Amicoumacin A was reported to

exhibit anti-MRSA activity [19]. This work has been aimed at

elucidating the mechanism of action of amicoumacin A by

examining genome-wide transcription induced by exposure of

MRSA to amicoumacin A and identifying genetic changes that

lead to reduced susceptibility to amicoumacin A.

Results

Isolation and identification of Bacillus pumilus strain C9
with anti-MRSA activity

A collection of 60 bacterial strains isolated from the Columbia

River Estuary was screened for their potential antimicrobial

activity against S. aureus. Three isolates exhibited clear inhibitory

zones and were identified as Pseudoalteromonas tunicata, Peudoalter-

omonas sp., and B. pumilus based on the analysis of 16S rRNA gene

sequence. Among the three strains, B. pumilus (named the strain

C9) had the strongest activity against methicillin-sensitive S. aureus

(MSSA) and MRSA and was chosen for further investigation.

Purification and characterization of amicoumacin A
To identify its structure, the anti-MRSA substance was purified

by methanol extraction, anion exchange column chromatography

and RP-HPLC. The molecular mass of the compound was

determined to be 424.2077 Da as determined by nanoESI FTICR

mass spectrometry. FTICR analysis also revealed a plausible

chemical formula (C20H30N3O7) for the substance. Through

NMR analysis of the compound, chemical shifts and coupling

constants were assigned for the protons in the molecule.

Comparisons of the molecular mass, molecular formula and

NMR data with the literature suggested that this substance is

identical to amicoumacin A [7] (Figure 1).

Seven B. pumilus strains obtained from the Bacillus Genetic Stock

Center were also checked for their anti-MRSA activity. No activity

was detected from these strains except that 8A2 showed a weak

anti-MRSA activity. However, the antibacterial spectrum of the

compound from 8A2 significantly differed from that of the

substance from C9 (data not shown). On the other hand, a similar

anti-MRSA activity was detected in B. pumilus SAFR-032, a strain

originally recovered from the Jet Propulsion Lab (Pasadena, CA)

spacecraft assembly facility [20]. The results suggested that

productivity of amicoumacin A was lost during domestication of

B. pumilus strains and in fact, we have previously found a similar

phenomenon for surfactin production in B. subtilis 168. In this

case, introduction of sfp into domesticated B. subtilis strains

restored surfactin production [21]. The sfp gene encodes 49-

phosphopantetheine transferase essential for nonribosomal pep-

tides (NRP) and polyketides (PK) synthesis [22]. A recent study

showed that PK and NRP synthesis genes are required for the

production of xenocoumacin I [23], indicating that amicoumacin

A is likely synthesized by a PK/NRP complex. It is conceivable

that B. pumilus domesticated strains contain inactive sfp and hence

are incapable of producing amicoumacin A. We designed primers

using the sfp sequence of B. pumilus SAFR032 strain and used the

primers to detect a PCR product with chromosomal DNA isolated

from C9, 8A3, and 14A1. The PCR product with a high sequence

homology to sfp from SAFR032 was detected in C9, but not in

8A3 and 14A1 (unpublished results), which is consistent with the

notion that amicoumacin A is likely synthesized by a similar

mechanism and the lack of an intact sfp is partially (if not solely)

responsible for the loss of amicoumacin A production in

domesticated B. pumilus strains.

Antimicrobial spectrum of amicoumacin A
In order to evaluate the antimicrobial effect of amicoumacin A,

we examined the spectrum of amicoumacin A. Two gram-negative

bacteria, E. coli and Pseudomonas aeruginosa were resistant as were

three gram-positive bacteria, B. pumilus, Bacillus subtilis, and Listeria

monocytogenes. Among the susceptible gram-positive bacteria,

Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis showed a

moderate sensitivity. These bacteria exhibited a fairly large zone of

inhibition (,2 cm in diameter) after 4–5 h of incubation with

amicoumacin A; however, several resistant colonies appeared after

overnight incubation and the inhibition zone became smaller

(0.5 cm in diameter). In contrast, amicoumacin A showed highly

potent activity (inhibition zone .2 cm in diameter after overnight

incubation) against all MSSA and MRSA strains tested including

hospital-acquired MRSA (HA-MRSA), community-acquired

MRSA (CA-MRSA), and Mu50, a HA-MRSA/VISA strain. In

addition, Staphylococcus carnosus and Streptococcus pyogenes are sensitive

to amicoumacin A at a level similar to S. aureus strains. These

results indicated that amicoumacin A is highly effective against

gram-positive cocci including important pathogens.

Effect of amicoumacin A on the growth of S. aureus COL
The effect of amicoumacin A on the growth and survival of S.

aureus COL was examined. As shown in Figure 2, the growth was

inhibited after treatment with amicoumacin A and there was a

significant ,3-log10 decrease in the number of viable S. aureus cells.

These effects on the growth and survival are similar to those by a

bactericidal antibiotic vancomycin (Fig. 2), indicating that

amicoumacin A is a bactericidal antibiotic as reported in H. pylori

[16].

Changes in global transcription of S. aureus COL in
response to amicoumacin A

Transcriptome analysis has been used to identify changes in

gene expression in response to antibiotic treatment (reviewed in

[24]). Samples were taken at 0, 10, and 40 min (t0, t10, and t40,

respectively) after COL was treated with amicoumacin A and

RNA was purified as described in Materials and Methods.

Microarray experiments were carried out on three independent

Figure 1. The chemical structures of amicoumacin A and
xenocoumacin 1.
doi:10.1371/journal.pone.0034037.g001
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biological replicates. The results are included as supplemental

information (Table S1, all genes with a minimum 2.5-fold up or

down change) and Table 1 shows a list of selected genes that are

upregulated more than 3-fold at 10 min after the treatment

compared to unexposed control cells.

In total, we identified 263 upregulated and 282 downregulated

genes.

The overall transcriptome results indicated that genes involved

in diverse biological processes are upregulated, which is similar to

the transcriptome in response to unsaturated long chain free fatty

acids [25]. Particularly intriguing is that 46 genes were co-

upregulated and 27 co-downregulated by amicoumacin A and

linoleic acid. Of the 46 co-upregulated genes, 30 belong to the S.

aureus sB-regulon [26,27]. sB is an alternative s factor functioning

in general stress response, the mechanism of which has been

extensively studied in B. subtilis (reviewed in [28,29]). A previous

study suggested that sB of S. aureus functions in more basic cell

physiology compared to the B. subtilis counterpart [27]. The sB-

controlled genes upregulated by amicoumacin A were either

transiently upregulated at t10 only or were upregulated at t10 and

t40. We examined whether the sigB mutation leads to a higher

susceptibility to amicoumacin A; however, the growth curve assay

did not show any significant effect of the sigB mutation on

amicoumacin A susceptibility (data not shown).

An annotation-based grouping of amicoumacin A regulated

genes highlighted a particularly high number of induced genes

with cell envelope and transport related processes. In total, 21

genes with cell envelope associated functions were upregulated

including lrgA (SACOL0247) and lrgB (SACOL0248), which are

among the most highly induced genes (Table 1). The lrgA gene and

its homologous gene cidA are known to regulate murein hydrolase

activity and affect sensitivity to penicillin [30,31]. CidA is a holin-

like protein that positively controls murein hydrolase activity and

penicillin-induced killing, which is antagonized by LrgA, an anti-

holin [30,31]. Consistent with the notion, cidA transcription is

regulated oppositely from lrgAB in response to amicoumacin A.

The microarray result showed that cidA is downregulated 1.9-fold

at 10 min, whereas expression of the downstream cidB and cidC

gene is upregulated 2.8-fold and 4.2-fold, respectively, which was

confirmed by Northern blot analysis (data not shown).

In addition, transcription of three peptidoglycan hydrolases (atl,

lytM and sceD) was strongly upregulated in amicoumacin-A-treated

cells. Transcription of atl encoding the major autolysin of S. aureus

was about 4-fold induced at t10 and t40, while sceD encoding a lytic

transglycosylase [32] was 2-fold induced at t10 and over 10-fold at

t40. Similar to sceD, transcription of lytM, a Gly-Gly endopeptidase

[33], was 4-fold induced at t40. Another group of upregulated

genes encode proteins that function in cell wall and surface

polysaccharides synthesis and turnover, which include a penicillin-

binding protein (SACOL1490), MurG (SACOL1453), a predicted

glycosyl-transferase (SACOL2578), and N-acetylmuramoyl-L-ala-

nine amidase (SACOL1825) [34]. In addition, over 46 genes

encoding proteins with functions in membrane transport were

upregulated.

Validation of microarray results
Northern blot analysis was carried out with two independently

isolated RNA samples to validate the microarray results. Five

operons and one gene were randomly chosen and the results of

two operons are shown in Figure 3. The operon of eight genes

(SACOL0678 to SACOL0686) encodes a phage integrase family

protein (SACOL0678) and monovalent cation/H+ antiporter

subunits (SACOL0679 to 0686). A previous study showed that

Figure 2. Effect of amicoumacin A (A and B) and vancomycin (C and D) on S. aureus COL. (A) COL was grown in TSB and exponential
growth phase cultures were divided into two flasks. Amicoumacin-A-treated (closed circles) and -untreated cultures (open circles) were further
incubated and the optical density at 600 nm was measured at hourly intervals. Effect of inhibitory levels of amicoumacin A during longer cultivation
is shown in the insert of Figure 2A. (B) The cultures in (A) were used to examine viable cell counts by plating diluted cells on TSB agar. (C) COL was
treated with 10 mg/ml of vancomycin and growth was monitored as described in (A). (D) The cultures in (C) were used to examine viable cell counts.
The data are the average of three independent experiments with standard deviations.
doi:10.1371/journal.pone.0034037.g002
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transcription of these genes is sB-dependent [27]. Based on the

microarray result, all eight genes were induced at t10 and the

increased level of transcription was sustained at similar levels at t40

(Table 1 and Table S1). In the Northern blot experiment, a low

level of 6.8 kb transcript was detected in untreated cells and the

transcript was highly elevated at t10 and t40 (Figure 3A). This result

confirmed that the eight genes constitute an operon and that

amicoumacin A upregulates the operon transcription as shown by

the microarray hybridization result. Transcription of another

operon starting from SACOL2176 was also upregulated at t10 in

the microarray results but the transcription decreased to the

untreated level at t40 (Table 1 and Table S1). SACOL2176

encodes an osmoprotectant transporter, SACOL2175 and SA-

COL2174 encode a protein of unknown function and a membrane

protein, respectively, and SACOL2173 is asp23 that codes for

alkaline shock protein 23 [35]. The Northern blot analysis

detected three transcripts of 3.0 kb, 1.5 kb, and 0.6 kb, all of

which increase at t10 but not at t40 (Figure 3B). The sizes of the

transcripts correspond to the predicted transcripts initiated at the

three sB-dependent promoters. In a similar way, we also validated

the microarray result of SACOL0673-0672-0671, SACOL2596-

2597, SACOL02554.1-2554-2553, and SACOL1062 (data not

shown).

Effect of amicoumacin A on autolysis
The transcriptome results showed that lrgA transcription is

highly upregulated and cidA transcription is downregulated by

amicoumacin A. It has been shown that the cidA mutation reduces

murein hydrolase activity [31], whereas the lrgAB mutation

increases activity [30]. This result implied that autolysis might

be reduced in response to amicoumacin A. On the other hand, the

major autolysin gene atl was upregulated by amicoumacin A

treatment (Table 1), suggesting that amicoumacin A might cause

increased autolysis. To determine which possibility is correct, we

investigated whether and how amicoumacin A affects autolysis.

Figure 4A showed that amicoumacin-A-treated cells are more

resistant to Triton X-100-induced lysis than untreated cells.

Therefore, increased transcription of atl did not result in higher

autolysis, which is consistent with the model that LrgA/CidA

Table 1. Selected genes induced 3-fold or above by amicoumacin A.

COL ORF Fold induction Gene product

T10 T40

Cell envelope

SACOL0248a 14.0 1.4 LrgB, antiholin

SACOL0247a 8.6 1.0 LrgA, murein hydrolase regulator 2

SACOL2197 9.2 11.9 Surface protein + sB

SACOL2557 4.3 2.7 N-acetylmuramoyl-L-alanine amidase

SACOL1062 3.9 4.0 Atl, bifunctional autolysin + sB

SACOL0671b 3.9 2.2 a/b-fold family hydrolase + sB

SACOL2597 3.5 1.4 a/b-fold family hydrolase + sB

SACOL2019 3.8 3.3 SdrH protein 2

SACOL2434 3.0 3.2 cell surface polysaccharide synthesis + sB

Transporter

SACOL2138c 6.7 7.8 Cation efflux family protein

SACOL2136c 4.1 1.4 Hypothetical sB

SACOL0264 4.0 4.5 ABC transporter

SACOL2176 3.8 2.2 OpuD2, osmoprotectant transporter + sB

SACOL0681d 3.3 3.5 monovalent cation/H+ antiporter C sB

SACOL0679d 3.1 2.8 monovalent cation/H+ antiporter A sB

SACOL0682d 3.0 3.1 monovalent cation/H+ antiporter D sB

SACOL0680d 3.0 3.1 monovalent cation/H+ antiporter B sB

SACOL1422 3.1 3.7 phosphate ABC transporter

Virulence

SACOL2295 5.5 7.2 Staphyloxanthin biosynthesis

SACOL0136e 3.8 2.7 Cap5A, capsular polysaccharide biosynthesis sB

SACOL0137e 3.0 2.3 Cap5B, capsular polysaccharide biosynthesis sB

SACOL0138e 3.4 2.0 Cap5C, capsular polysaccharide biosynthesis sB

SACOL0672b 3.4 2.0 SarA, staphylococcal accessory regulator +

SACOL0856 3.3 3.0 clumping factor + sB

SACOL2511 3.0 5.4 fibronectin-binding protein

Superscript alphabet indicates genes in the same operon. + and 2 arrows show genes induced or repressed in response to linoleic acid based on [25]. sB-controlled
genes are marked.
doi:10.1371/journal.pone.0034037.t001
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system controls autolysin activity at the post-transcriptional level

[36].

To distinguish whether the reduced autolysis is due to

alterations of cell wall or to decreased activity of autolysin,

purified cell wall and extracellular autolysin were prepared from

cells grown in the presence and absence of amicoumacin A.

Previous work showed that overexpression of lrgAB in S. aureus

leads to decreased extracellular murein hydrolase activity [30]. We

first conducted an experiment designed to determine if amicou-

macin A inhibits autolysis by reducing extracellular autolysin

activity. Purified cell wall from S. aureus COL was incubated with

an equal amount of extracellular proteins from untreated or

amicoumacin-A-treated cells (Figure 4B). No significant decrease

in OD600 was detected in the sample of purified cell wall alone,

confirming that it has no intrinsic autolysin activity. The addition

of extracellular proteins from untreated cells hydrolyzed over 50%

of cell wall after 7 h of incubation, whereas proteins from treated

cells did not hydrolyze purified cell wall, indicating that

amicoumacin A reduces murein hydrolase activity. In a reciprocal

experiment, we demonstrated that cell wall purified from strain

COL grown in the presence of amicoumacin A was susceptible to

extracellular autolysin from amicoumacin-A-untreated cells,

although the rate of hydrolysis was slightly slower than cell wall

prepared from untreated cells (Figure 4C). These results clearly

showed that reduced autolysis of S. aureus grown in the presence of

amicoumacin A is due to the lower level and/or activity of

autolysin.

We performed zymographic analysis to examine the autolysin

profile (Figure 4D). Both cell-wall-associated and extracellular

autolysin profiles were not significantly altered by amicoumacin A

treatment, but overall activities were reduced by the treatment.

Except for the 36 kDa protein identified as Aaa (autolysin/

adhesion protein of S. aureus) [37], the other six bands likely

represent differently processed forms of Atl [38,39]. Among these

Atl forms, the 113 kDa band, which corresponds to an

intermediate generated from pro-Atl by cleavage of the pro-

peptide, was particularly reduced in both cell wall and the

extracellular fraction of cells treated by amicoumacin A.

Isolation of mutants with decreased susceptibility
towards amicoumacin A

As amicoumacin A is highly effective against MRSA, we

investigated whether resistant mutants are associated with

antibiotic selection pressure. Identification of mutations that lead

to the amicoumacin A resistance might also provide clues to its

mechanism of action. We isolated strains with decreased

susceptibility to amicoumacin A using a serial passage of COL

in the presence of the compound. COL was able to grow in the

presence of successively higher concentrations of amicoumacin A

over time. The resistance increased 2-fold every two days.

Figure 3. Northern blot analyses for SACOL0678 (A) and SACOL2176 (B) operon. Total RNA was isolated from S. aureus COL at 0 (t0), 10
(t10), and 40 (t40) min after the addition of amicoumacin A. 10 mg of total RNA isolated from each culture was separated in a formaldehyde-agarose
gel and the RNA-blotted membrane was hybridized with SACOL0678- or SACOL2173(asp23)-specific digoxigenin-labeled probes. The sizes of the
transcripts were determined by comparison to an RNA ladder on the same gel. The corresponding stained gels are shown underneath each blot.
Schematic views of the gene loci based on NCBI COL genome site are shown with predicted transcripts. sB indicates locations of sB-controlled
promoters. Microarray results of each operon’s genes are summarized in the right panel of the corresponding Northern blot gels. Closed squares and
open squares show samples taken at t10 and t40, respectively. The average of triplicates and standard deviations are indicated.
doi:10.1371/journal.pone.0034037.g003
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Although we were able to obtain an isolate with 16-fold higher

resistance against amicoumacin A as compared to the wild-type

strain, further incubation up to 15 days did not increase resistance

(Figure 5).

Determination of the mutations associated with
increased resistance to amicoumacin A

Whole-genome sequencing becomes a powerful tool for

identifying genomic variation and was applied to track multidrug

resistance in S. aureus recovered periodically from a patient

undergoing chemotherapy with vancomycin [40]. We used the

approach to identify genetic changes present in the amicoumacin

A-resistant COL strains. Genome libraries were constructed from

three resistant strains, namely SA-1, SA-3, and SA-6 that exhibit

2-fold, 8-fold, and 16-fold increase in resistance, respectively. The

sequencing results uncovered a set of genes with varying numbers

of single nucleotide polymorphisms (SNPs) in the resistant mutants

(Table 2). The results revealed that more mutations were found in

parallel with increasing levels of resistance. Among the mutations,

SACOL0187 (in SA-1) and oppB (in SA-3) encode ABC-

transporters. Both SA-3 and SA-6 contain missense mutations in

fusA that encodes translation factor EF-G. Interestingly, the EF-G

amino acid substitutions occur at adjacent glycine residues. The

fusA gene has been known as the site of mutations that confer

fusidic acid resistance in Salmonella enterica serovar Typhimurium

[41] and S. aureus [42,43]. Fusidic acid is a steroid-like antibiotic

clinically used since the 1960s. Mutations that are responsible for

fusidic acid resistance occur in domains I, III, and V of EF-G, as

well as in domain II with less frequency, whereas the mutations

found in the amicoumacin A-resistant isolates reside in domain IV.

Figure 4. Effect of amicoumacin A on autolysis. (A) Effect on whole cell autolysis. Cultures grown in the absence (open circles) and the presence
(closed circles) of amicoumacin A were washed and suspended in autolysis buffer to an initial OD600 of around 1.0 and autolysis was monitored as
decline in OD600. (B) Quantitative assay of murein hydrolase activity against cell wall. An equal amount (90 mg protein) of extracellular proteins were
added to cell wall purified from amicoumacin-A-untreated cells and OD600 was monitored as described in Materials and Methods. Symbols: open
circles, extracellular proteins from untreated cells; closed circles, extracellular proteins from amicoumacin-A-treated cells; open triangles, 10 mM Tris-
HCl (pH 7.5). (C) Susceptibility assay of purified cell wall to murein hydrolase. Ninety mg of extracellular proteins from amicoumacin-A-untreated cells
were added to cell wall purified from amicoumacin-A-treated and -untreated cells and OD600 was monitored. Symbols: open circles, cell wall from
untreated cells with 10 mM Tris-HCl (pH 7.5); closed circles, cell wall from untreated cells with extracellular proteins; open triangles, cell wall from
amicoumacin-A-treated cells with 10 mM Tris-HCl (pH 7.5); closed triangles, cell wall from amicoumacin-A-treated cells with extracellular proteins. (D)
Zymographic analysis of murein hydrolase activity from amicoumacin-A-treated and -untreated cells against purified S. aureus COL cell wall. Autolytic
extracts were prepared and assayed by electrophoresis on an SDS-polyacrylamide gel (10%) containing 1 mg/ml purified cell wall as described in
Materials and Methods. Lanes: M, prestained molecular weight markers; 1, cell-wall-associated proteins from untreated cells; 2, cell-wall-associated
proteins from amicoumacin-A-treated cells; 3, extracellular proteins from untreated cells; 4, extracellular proteins from amicoumacin-A-treated cells.
doi:10.1371/journal.pone.0034037.g004

Figure 5. Serial passage experiments with S. aureus COL
selected for increasing resistance to amicoumacin A. Each circle
shows fold-resistance on each day.
doi:10.1371/journal.pone.0034037.g005
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The ksgA mutation is the only nonsense mutation among the

identified point mutations. The ksgA gene encodes the methyl-

transferase for two adjacent adenosines in 16 S rRNA. Kasuga-

mycin resistance was shown to be associated with the loss of the

methylation [44]. Other mutations were identified in dnaG

encoding primase, lacD encoding tagatose 1,6-bisphosphate

aldolase, and SACOL0611, a putative glycosyl transferase gene.

Construction of the ksgA knockout mutation and
amicoumacin A resistance

To evaluate the role and impact of the ksgA mutation in

amicoumacin A resistance, the same mutation was re-created in

COL using plasmid pMAD with a temperature-sensitive replicon.

The mutant allele (L260stp) of the ksgA gene that lacks the start

codon was amplified by PCR and the product was cloned into

pMAD. The PCR product was designed to position the mutation

at the 39-end of the insert DNA, thus maximizing the chance of

homologous recombination at a region located the 59 to the site of

the mutation. A single crossover recombination of the resultant

plasmid into COL chromosomal DNA thus results in the mutant

ksgA gene expressed from the native promoter and inactivation of

the wild-type ksgA gene due to the loss of its promoter and deletion

of the 59-end of the gene. The integration of the plasmid in the

predicted manner was confirmed by PCR and sequence analysis of

the ksgA region of the resultant strain, SA-8. The MIC of

amicoumacin A increased 2-fold compared to the parent strain,

confirming that the nonsense ksgA allele is responsible for a low

level of resistance towards amicoumacin A. As expected, SA-8, like

SA-6, exhibited increased kasugamycin resistance compared to the

wild-type strain (data not shown).

Overexpression of fusA genes with mutant alleles in S.
aureus COL

As described above, the fusA mutations found in two

amicoumacin A-resistant strains locate in domain IV where no

fusidic acid-resistant mutation has previously been isolated. We

also found that the SA-3 and SA-6 fusA mutants are as sensitive to

fusidic acid as the wild-type strain (MIC 0.08 mg/ml). In order to

further characterize antibiotic-resistant phenotypes of fusA muta-

tions, we isolated a fusidic acid-resistant mutant (SA-7) by the

multiple passage method as described in Materials and Methods.

The MIC of SA-7 for fusidic acid was 12.5 mg/ml, which is 156-

fold higher than that of the wild-type strain, whereas SA-7

exhibited the same MIC as the wild-type COL towards

amicoumacin A. Sequence analysis of fusA amplified from the

SA-7 chromosomal DNA identified a point mutation of R464H in

domain III, which is identical to the mutation identified in a fusidic

acid-resistant S. aureus with the small-colony-variant phenotype

[43].

We next checked whether SA-11, the wild-type COL strain

carrying the mutant allele (R464H) of fusA on plasmid pDG148,

confers resistance to fusidic acid. The MIC of this strain for fusidic

acid was around 6.25 mg/ml irrespective of IPTG addition,

probably because the control of the vector IPTG-inducible Pspac

promoter is leaky. In contrast, the MIC of SA-11 for amicoumacin

A was identical to that of the wild-type strain. SA-9 and SA-10 that

express fusA(G530V) and fusA(G531S), respectively, on the multi-

copy plasmid were sensitive to fusidic acid but exhibited 2-fold

higher resistance to amicoumacin A as compared to the wild-type

strain. These results confirmed that the fusA(G530V) and

fusA(G531S) mutations cause amicoumacin A resistance and the

fusA(R464H) mutation causes fusidic acid resistance, but not vice

versa.

Discussion

Amicoumacin A possesses strong bactericidal activity against

MRSA. Xenocoumacin 1, another isocoumarin antibiotic, shares

an identical dihydroisocoumarin moiety with amicoumacin A, but

has a slightly different hydroxy amino acid side chain (Figure 1).

Both compounds exhibit potent activity against gram-positive

bacteria, but only xenocoumacin 1 exhibits activity against

selected gram-negative bacteria, such as some E. coli strains [14].

Conversely, amicoumacin A can kill multi-resistant S. aureus,

whereas xenocoumacin I has no effect on the organism [14]. This

difference in spectra of activity might be due to the difference in

the hydroxy amino acid side chains of the two molecules. In fact, it

has been previously demonstrated that the amide at the terminal

end of the side chain in amicoumacin A is essential for its activity

against MRSA [19].

In this study, we aimed at elucidating the mechanism behind the

strong bactericidal activity of amicoumacin A against MRSA. In

hope of identifying the target of amicoumacin A, we isolated

amicoumacin A resistant strains using the multiple passage

method.

Two different alleles of fusA were found to cause amicoumacin

A resistance, while other alleles lead to fusidic acid resistance as

shown here and in previous work. Fusidic acid binds to an EF-G/

ribosome complex and inhibits EF-G turnover. The crystal

structure of Thermus thermophilus EF-G revealed that domains I

and II are homologous to elongation factor Tu and domains III

and V show structural similarities to ribosomal proteins [45].

Domain IV was shown to protrude from the main body of the

protein. This could explain why no cross-resistance was observed

Table 2. Codon substitution mutations found in amicoumacin-A-resistant COL.

Isolate Fold-resistance Mutated gene (mutation) Function

SA-1 2 SACOL0187 (D343H) RGD-containing lipoprotein

SA-3 8 fusA (G530V) Elongation factor G

oppB (I263F) Oligopeptide permease

dnaG (R190H) DNA primase

SA-6 16 fusA (G531S) Elongation factor G

ksgA (L260Stp) 16 S rRNA methyl transferase

lacD (G86R) tagatose-1,6-bisphosphate aldolase

SACOL0611 (S472P) Glycosyl transferase

doi:10.1371/journal.pone.0034037.t002
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between fusidic acid-resistant mutations found in all domains

except domain IV and amicoumacin A-resistant mutations in

domain IV. The high resistance to fusidic acid caused by a single

mutation in fusA is attributed to the fact that EF-G is the direct

target of fusidic acid [46]. On the contrary, amicoumacin A

resistance caused by the fusA mutations or the ksgA mutation is only

2-fold. In addition, the resistance increased every 2-fold in parallel

with increased numbers of mutations in such a way that 2-, 8-, and

16-fold increase in MIC was observed in the strains carrying 1, 3,

and 4 point mutations. These results suggest that the direct target

of amicoumacin A is neither EF-G nor proteins encoded by the

other genes, the mutations of which were identified by genome-

wide sequencing.

Table 3. Plasmids and bacterial strains.

Plasmid

pDG148 multi-copy shuttle vector, kanamycin resistance [57]

pMAD integration plasmid with temperature-sensitive replicon [56]

pALG26 pMAD with ksgA(L260stp)

pALG43 pDG148 with fusA(G530V)

pALG44 pDG148 with fusA(G531S)

pALG45 pDG148 with fusA(R464H)

Strain

Bacillus subtilis JH642 Laboratory stock James Hoch

Bacillus pumilus C9 Isolated from the Columbia River Estuary

SAFR032 Kasthuri Venkateswaran

8A1 Bacillus genetic stock center

8A2 Bacillus genetic stock center

8A3 Bacillus genetic stock center

8A4 Bacillus genetic stock center

8E2 Bacillus genetic stock center

8E3 Bacillus genetic stock center

14A1 Bacillus genetic stock center

Bacillus anthracis Sterne 7702 Laboratory stock Terri Koehler

Bacillus cereus ATCC10987 Bacillus genetic stock center

Bacillus thuringiensis NRRL-B4039 Bacillus genetic stock center

Listeria monocytogenes F4244 Laboratory stock

Staphylococcus aureus

RN4220 (MSSA) Laboratory stock Barry Hurlburt

RN6390 (MSSA) Laboratory stock Barry Hurlburt

COL (HA-MRSA) Ambrose Cheung

SA-1 amicoumacin A resistant

SA-3 amicoumacin A resistant

SA-6 amicoumacin A resistant

SA-7 fusidic acid resistant

SA-8 ksgA::pALG26

SA-9 COL with pDG148 carrying fusA(G530V)

SA-10 COL with pDG148 carrying fusA(G531S)

SA-11 COL with pDG148 carrying fusA(R464H)

N315 (HA-MRSA) Ambrose Cheung

Mu50 (HA-MRSA) VISA Ambrose Cheung

USA300 (CA-MRSA) Ambrose Cheung

USA400 (CA-MRSA) Ambrose Cheung

Staphylococcus carnosus/pCX15 Laboratory stock Wolfgang Schumann

Streptococcus pyogenes MGAS5005 Laboratory stock June Scott

Escherichia coli DH5a Laboratory stock

Pseudomonas aeruginosa PA01 Laboratory stock

doi:10.1371/journal.pone.0034037.t003
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As described above, lrgAB transcription was most highly induced

by amicoumacin A. The proton ionophore carbomyl cyanide m-

chlorophenylhydrazone (CCCP) was known to induce lrgAB

expression. Since valinomycin, which dissipates Dy, but not

nigericin that depletes DpH across the membrane, has a similar

effect with CCCP on lrg expression, the authors concluded that

lrgAB is upregulated in response to a collapse of Dy [47]. As this

induction of lrgAB transcription requires the LytSR two-compo-

nent signal transduction system, the LytS kinase might respond to

a collapse of Dy [47]. Daptomycin induces genes including lrgAB

that are induced by CCCP, hence it was proposed that a part of

the mechanism of action of daptomycin is membrane depolariza-

tion [48], which is consistent with an earlier study on potassium

release assays [18]. Given transcription of lrgAB is highly induced

by amicoumacin A, it might be possible that membrane

depolarization is at least a part of the mechanism of action.

In this study, we showed that autolysis is highly reduced in cells

grown in the presence of amicoumacin A, which is mainly caused

by decreased activity of murein hydrolase, very likely Atl. A similar

inhibition of autolysis due to reduced murein hydrolase activity

was recently reported in S. aureus treated with Magnolol (5, 59-

diallyl-2, 29-dihydroxybiphenyl) [49]. In this case, transcription of

atl and cidA was reduced and lrgAB transcription was highly

induced after Magnolol treatment. In the case of amicoumacin A,

atl transcription was upregulated and Atl activity was reduced.

There is a precedent for this paradoxical observation. A

teicoplanin-resistant MRSA isolate exhibited an autolysis-deficient

phenotype, although expression of major autolytic genes (atl, lytM,

and lytN) was not changed [50]. As the resistant strain displayed

decreased extracellular murein hydrolase activity, the authors

suggested post-transcriptional regulation of hydrolase activity, the

same conclusion of our study. However, transcription analysis of

cidABC and lrgAB in the teicoplanin-resistant strain ruled out the

possibility of a role for CidA in post-transcriptional control of

murein hydrolase activity. The major murein hydrolase Atl is

involved in peptidoglycan turnover, daughter cell separation after

cell division [51], biofilm formation [52], and penicillin-induced

lysis [53]. Given the roles of Atl in diverse cellular function, its

activity could be tightly controlled through multiple mechanisms.

Future studies are needed to uncover whether amicoumacin A

affects autolysin activity through the LytS-Lrg-Cid pathway.

Materials and Methods

Bacterial strains and media
All of the strains used in this study are listed in Table 3. Bacillus

and Escherichia coli were cultured in 26YT and methicillin-sensitive

S. aureus (MSSA) and MRSA strains were routinely propagated in

tryptic soy broth (TSB) (Cellgro, Manassas, VA). Half-diluted

artificial seawater contains 13.75 g NaCl, 5.3 g MgCl2?6H2O,

1.95 g MgSO4?7H2O, 0.5 g KCl, 0.331 g CaCl2?2H2O, and

0.914 mg FeSO4?7H2O per liter. Antibiotic concentrations used

are; ampicillin, 50 mg/ml; erythromycin, 10 mg/ml; kanamycin,

100 mg/ml (for RN4220) and 20 mg/ml (for COL).

Identification of Bacillus pumilus C9 that produces
amicoumacin A

Water samples were collected from the estuary turbidity

maximum of the North Channel in the Columbia River Estuary

on June 14, 2007 (cruise data link http://www.stccmop.org/

node/510). No specific permissions were required for the

described field studies. The water samples were incubated at

28uC for 8 days and plated on half-diluted artificial seawater

containing 0.5% peptone, 0.1% yeast extract (SPY), and 1.5%

agar. After incubation at 28uC for 3 to 4 days, each bacterium was

purified by isolating a single colony. Isolated bacterium was grown

on SPY agar for 2 to 3 days depending on growth and

antimicrobial activity was determined by overlaying S. aureus

RN6390 in 7 ml brain heart infusion (BHI) (Becton Dickinson,

Franklin Lakes, NJ) with 0.7% soft agar. After incubation at 37uC
overnight, antimicrobial activity was detected as a lysis zone of

RN6390 around a colony of testing bacteria.

Overlay assay to determine anti-microbial spectrum of
amicoumacin A

B. pumilus C9 was streaked onto a small piece (161 cm) of

0.22 mm Millipore filter placed on LB agar plate and incubated at

37uC overnight. The filters were removed and susceptibility to

amicoumacin A was determined by overlaying cultures of testing

strains in 7 ml of BHI or 26YT with soft agar. The plates were

incubated at 37uC for 5 h to overnight.

Isolation of the anti-MRSA substance and purification to
homogeneity

A fresh colony of B. pumilus C9 was used to inoculate LB broth

and was incubated by shaking (150 rpm) at 30uC for 24 h. The

culture supernatant was passed through an AmiconH ultra

filtration membrane (MW 3,000 cutoff, Millipore, Billerica, MA)

and the filtrate was lyophilized. The lyophilized material was

extracted with methanol and the dried methanol extract was

dissolved in 20 mM Tris-HCl (pH 7.0) before applying to a Hi-Q

column to remove impurities. The column was run with 20 mM

Tris-HCl (pH 7.0) at a flow rate of 2 ml/min. The active fractions

were pooled and lyophilized for further purification by reverse

phase high performance liquid chromatography (RP-HPLC). A

C18 semi-preparative column (Vydac 218TP510, 300 Å pore

diameter, 250 mm610 mm, 5 mm particle diameter) was devel-

oped with a gradient of 5% acetonitrile/0.1% trifluoroacetic acid

(TFA) to 50% acetonitrile/0.1% TFA from 5 to 42 min using a

3 ml/min flow rate. The active peak was identified at 29.56 min,

which corresponds to an acetonitrile concentration of 36%. This

fraction was lyophilized prior to analysis by mass spectrometry and

nuclear magnetic resonance (NMR) spectroscopy.

Mass spectrometry analysis
The purified anti-MRSA substance was analyzed by nano-

electrospray ionization (nanoESI) Fourier transform ion cyclotron

resonance (FTICR) mass spectrometry. The Bruker 9.4T Apex-

Qe FTICR (Bruker Daltonics, Billerica, MA) was calibrated

externally using polyethylene glycol. The sample was dissolved in

50% acetonitrile/0.1% formic acid for injection into the nanoESI.

NMR analysis
The purified anti-MRSA substance (200 mg) was dissolved in

300 ml of deuterium oxide (D2O, 99.96% D, Cambridge Isotopes

Laboratories, Cambridge, MA) that also contained 100 mM 2,2-

dimethyl-2-silapentane-5-sulfonate sodium salt (DSS). The sample

was pipetted into a D2O-matched Shigemi NMR tube (Shigemi

Co., Ltd., Tokyo, Japan) for NMR analysis. NMR experiments

were performed on the sample using a Varian Inova 800-MHz

spectrometer equipped with a triple resonance HCN probe and Z-

axis pulsed field gradients.

Partial purification of amicoumacin A
For routine purposes such as MIC and growth inhibitory assay

experiments, partially purified amicoumacin A was used. B. pumilus

C9 culture supernatant was extracted with one-fourth volume of n-
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butanol and shaking for 2 h at 200 rpm. The mixture was then

poured into a separatory funnel and allowed to stand for another

2 h. The organic layer was collected and evaporated at 55uC
overnight. The dried sample was dissolved in 10 mM Tris-HCl

(pH 7.0) and passed through an Amicon ultra filtration membrane

(MW 3,000 cutoff) and the filtrate was re-extracted with butanol.

The dried sample was resuspended with 10 mM Tris-HCl

(pH 7.0) and then passed through LH-20 Sephadex column with

1 ml/min flow rate. The active fractions were pooled and

extracted with butanol. The evaporated sample was dissolved in

10 mM Tris-HCl (pH 7.0) and aliquots were frozen at 280uC
until use.

Growth profile and survival assay of S. aureus COL in the
presence of amicoumacin A

A fresh colony of S. aureus was inoculated and cultured in TSB

overnight at 37uC. Two hundred ml of the overnight culture was

inoculated into a 250 ml flask containing 20 ml of TSB. The flask

was incubated in a 37uC shaker until the OD600 reached 0.4–0.5.

The culture was divided into two flasks, 50 ml of amicoumacin A

or 10 mM Tris-HCl (pH 7.0) was added to each flask and

incubation was continued at 37uC. The readings at OD600 were

recorded at every 1 h. In order to determine the cell survival

profile in response to amicoumacin A, the cells were withdrawn at

0 h and every 1 h after the drug treatment, serially diluted, and

plated onto TSB agar. Numbers of colonies were counted after

overnight incubation at 37uC.

MIC assays
MICs for S. aureus COL were determined by broth microdilu-

tion assays in 96 well microtiter plates. Fifty ml of 2-fold serial

dilutions of amicoumacin A were mixed with an equal volume of

1:100 diluted overnight COL cultures in TSB. Control wells

without drug were also included. The microtiter plate was

incubated at 37uC for 24 h.

Transcriptome analysis
A fresh colony of COL was used to inoculate 2 ml of BHI. The

overnight culture (0.5 ml) was transferred to 50 ml BHI and

incubated at 37uC until OD600<0.5 (t0), when 20 ml of cultures

were withdrawn into 10 ml of ice-cold killing buffer (20 mM

sodium azide, 5 mM MgCl2, 20 mM Tris-HCl, pH 7.5). To the

remaining cultures, amicoumacin A was added at the concentra-

tion leading to around 12% and 20% reduction of OD600 after

10 min and 40 min, respectively. At 10 min and 40 min (t10 and

t40) after the addition of amicoumacin A, 10 to 15 ml of cultures

were harvested by mixing a half volume of ice-cold killing buffer.

Harvested cells were immediately centrifuged at 4uC for 5 min at

7,0006g and washed once with killing buffer before being frozen

at 280uC. Each experiment was performed in biological triplicate.

RNA was prepared from harvested cells using glass beads/phenol

method as previously described [54] and DNA was removed using

RNase-free RQ1 DNase (Promega, Madison, WI). The quality of

RNA was checked by gel electrophoresis and an Agilent

bioanalyzer.

The design and evaluation of the customized StaphChip

oligoarray manufactured by Agilent Technologies (Palo Alto,

CA, USA) used in this study has been described elsewhere [55].

Microarray analysis was employed as described previously [56]. In

short, cDNA was synthesized from 10 mg of total RNA and labeled

by incorporation of Cy5-dCTP or Cy3-dCTP (GE Healthcare,

Little Chalfont, United Kingdom) by direct reverse-transcription

using Superscript II (Invitrogen, Karlsruhe, Germany) and

random hexamers (Promega Madison, WI) as primers. After

denaturation of the RNA primer mix for 10 min at 70uC, cDNA

synthesis was performed in a 50 ml reaction volume at 42uC for

60 min. The concentrations of enzyme and reagents in the reverse

transcription reaction were as follows: Superscript II (400 units),

Cy-dye (1.25 nmol), dATP, dGTP, dTTP (5 nmol each), dCTP

(2.5 nmol), random hexamers (1.25 mg), DTT (0.01 M) and 16
first strand buffer. The Superscript II was heat-inactivated for

10 min at 70uC and template RNA degraded by incubation for

30 min at room temperature with E. coli RNase H (2 units)

(Invitrogen, Karlsruhe, Germany). Labeled cDNA was purified

with the CyScribe GFX Purification Kit following the instructions

of the manufacturer (GE Healthcare, Little Chalfont, United

Kingdom) and Cy-dye incorporation was analysed with a

NanoDrop ND-1000 spectrophotometer (NanoDrop Technolo-

gies, Inc., Rockland, DE). Approximately 500 ng of each labelled

cDNA corresponding to 3–6 pmol of incorporated dye were used

in two-color pool-cDNA (Cy3) versus sample cDNA (Cy5)

competitive hybridization experiments. For the pool-cDNA

synthesis equal amounts of all RNA samples were mixed. The

pool was used as common reference. For each time point (t0, t10,

and t40), three biologically independent cDNAs were synthesized.

Hybridizations were done in a total sample volume of 40 ml for

17 h at 65uC at 10 rpm in a dedicated hybridization chamber

(Agilent Technologies) and hybridization oven (Robbins Scientific,

Sunnyvale, CA, USA). After hybridization, the slides were washed

for 1 min at room temperature in wash buffer 1 followed by a 1-

min washing step at 37uC with wash buffer 2. The slides were

dried by submersion in acetonitrile for 30 sec. Blocking reagents,

hybridization buffer (Gene Expression Hybridization Kit) and

washing solutions (Gene Expression Wash Buffer Kit) were

purchased from Agilent. Slides were scanned at a 5 mm resolution

(Agilent Technologies Scanner) and fluorescence intensities were

extracted and processed using the Feature ExtractionTM software

version 9.5.3.1 (Agilent Technologies). Local background-sub-

tracted signals of both fluorescence channels were normalized with

the linear LOWESS function. To test whether genes were

differentially expressed in response to amicoumacin A, a Welch’s

t-test (a of ,0.05) with a Bejamini and Hochberg FDR correction

for multiple testing was calculated in Genespring (Agilent

Technologies). Genes that passed the significance test for at least

one time point (t0 versus t10, t0 versus t40 or t10 versus t40) and with

a mean 2.5-fold up or 2.5-fold down regulation were considered

differentially expressed. Grouping of genes based on expression

profiles was calculated with the hierarchical clustering algorithm

implemented in the multiple experiment viewer MeV [57]. The

complete microarray data set is available at the NIH Gene

Expression Omnibus (GEO) database under record number

GSE31342.

Northern blot analyses
Digoxigenin-labeled RNA probes were prepared by in vitro

transcription with T7 RNA polymerase by using a PCR fragment

(SACOL0678) or plasmid (asp23: pKSAP23 [58]) as template. The

PCR fragment was generated from COL chromosomal DNA

purified with a chromosomal DNA isolation kit (Promega,

Madison, WI) and the respective oligonucleotides (SA0678_-

COL_F: 59-ATGAATAA AGTAGAAGCGAT-39 and SA0678_-

COL_RT7: 59-CTAATACGACTCACTATAGGG AGACTA-

TAATTGTA ATGAAATAT-39). Northern blot analyses were

carried out as previously described [59]. The digoxigenin-labeled

RNA marker I (Roche, Indianapolis, IN) was used to calculate the

sizes of the transcripts. The hybridization signals were detected

using a Lumi-Imager (Roche Diagnostics, Mannheim, Germany)
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and analyzed using the software package Lumi-Analyst (Roche

Diagnostics, Mannheim, Germany).

Autolysis assay
Cultures at OD600 of around 0.3 were either treated with

amicoumacin A for 45 min or left untreated. Harvested cells from

each culture were washed with cold water and suspended at

OD600 of 1.0 in 50 mM Tris-HCl (pH 7.5) with 0.05% Triton X-

100. Autolysis was measured during incubation at 37uC with

shaking as a decrease in optical density at OD600.

Preparation of purified cell wall
Purified cell wall was prepared as described previously [60]. In

short, cells harvested at OD600 of 0.6 were boiled for 30 min in

4% SDS and washed with water for 4 times. Cells were broken

with glass beads on a Vortex mixer, followed by treatment with a-

amylase (100 mg/ml), DNase (10 mg/ml), RNase (50 mg/ml), and

trypsin (100 mg/ml). The enzymes were inactivated by boiling for

15 min in 1% SDS. Cell wall was collected by centrifugation and

washed twice with water, once with 8 M LiCl, once with 100 mM

EDTA, and twice with water. Acetone-washed pellet was

resuspended in water and lyophilized.

Crude autolytic enzyme extracts
Cells untreated or treated with amicoumacin A for 45 min were

harvested by centrifugation, washed twice with 50 mM Tris-HCl

(pH 7.5). After centrifugation, pellet was suspended in 50 mM

Tris-HCl-2% SDS (at the concentration of 200OD600/ml). After

centrifugation, supernatant was saved as cell-wall-associated

autolysin. As for a source of extracellular autolysins, culture media

were filtered through Millipore filter (0.22 mm) and concentrated

around 40-fold using Amicon Ultra 3 K. The concentrated culture

media were adjusted by standardizing by OD600 harvested cells.

Protein concentration of concentrated media was measured by

BioRad assay and extracellular protein concentrations were at

0.6 mg/ml in thus concentrated cultured media from untreated

and treated cells.

Cell wall hydrolysis in vitro
Purified cell wall isolated from S. aureus COL cultured in the

absence and presence of amicoumacin A was suspended in 50 mM

Tris-HCl (pH 7.5) to an OD600 of 0.7. Cell wall hydrolysis was

initiated by addition of extracellular proteins (90 mg) prepared as

described above. As a control, equal volume of 10 mM Tris-HCl

(pH 7.5) was added. Activities of autolysins were monitored by a

decline in OD600 during incubation at 37uC.

Detection of murein lytic activity was also carried out by

zymographic analysis. Cell-wall-associated proteins prepared from

0.2 OD600 amicoumacin-A-treated or untreated cells (1 ml of

200OD600/ml cell wall extract) and 1.9 mg of extracellular

proteins were separated in an SDS-10% polyacrylamide gel

containing purified cell wall (1 mg/ml). After electrophoresis, the

gel was rinsed with water and incubated overnight at 37uC in

25 mM Tris-HCl (pH 8.0) containing 1% Triton X-100. The gel

was rinsed with water and stained with 0.1% methylene blue in

0.01% KOH.

Isolation of mutants with decreased susceptibility to
amicoumacin A and fusidic acid

Mutants were isolated by multiple passage methods through

progressively increasing concentration of amicoumacin A or

fusidic acid. Bacterial cultures that grew at the highest concentra-

tions of the drug were used as an inoculum for the subsequent

culture. Three amicoumacin A-resistant strains (SA-1, SA-3, and

SA-6) and one fusidic acid-resistant strain (SA-7) were used for

further studies.

Genotypic characterization of amicoumacin A-resistant
mutants

Comparative genome sequencing (CGS) was used to identify

chromosomal mutations in amicoumacin A-resistant mutants of S.

aureus COL, SA-1 (2-fold increase in MIC), SA-3 (8-fold), and SA-6

(16-fold). Genomic DNA was purified from the wild-type and

mutant strains using WizardH Genomic DNA Purification Kit

(Promega, Madison, WI). DNA was sheared to the fragments of less

than 800 bp using Nebulizer kit (Invitrogen, Carlsbad, CA). The

fragments were blunt-ended using end-it DNA repair kit (Epicentre,

Madison, WI) and ‘‘A-tailing’’ of the fragments was done using

Klenow exo-minus and dATP. The adapters with different barcodes

and an overhang-T were ligated to the A-tailed fragments using fast

link kit (Epicentre, Madison, WI). The ligated products were loaded

onto 2% agarose gels. A 400–450 bp range of DNA was cut from

the gel to exclude the unligated adapters and eluted using gel

extraction kit (Qiagen, Valencia, CA). PCR was carried out using

primers DL139 (59-AATGATACGGCGACCACCGAGATCTA-

CACTCTTTCCCTACACGA-39) and DL140 (59-CAAGCA-

GAAGACGGCATACGAGATCGGTCTCGGCATTCCTGC-

TGA AC-39) and PfuUltraTM II Fusion HS DNA polymerase

(Stratagene, Santa Clara). The PCR fragments were cloned using

TOPO blunt kit (Invitrogen, Carlsbad, CA) and 10 randomly

chosen clones from each library were sequenced to check the quality

of genomic DNA library. The library DNA was diluted to 20 nM

and sent to the Genomics Core Facility at Tufts University School of

Medicine for single-end sequencing in Illumina HiSeq 2000. The

analysis was carried out using the wild-type COL genome as a

control and later comparing with S. aureus COL genome available at

NCBI (Accession no. NC_002951).

Construction of ksgA mutants
The ksgA gene carrying the mutation (L260stop) was amplified

using primers, ksgAFEcoRI (59-GCTCGAATTCGGATAATAAA-

GATA TTGCAACACC-39, EcoRI site is underlined) and ksgAR-

BamHI (59-GATCGGATCCGCCTCCATTGGCTTTCAG TA-

CAATAC-39, BamHI site is underlined), and chromosomal DNA

isolated from the SA-6 strain as a template. The PCR product

digested with EcoRI and BamHI was cloned into pMAD vector [61]

digested with the same enzymes to generate pALG26. pALG26 was

introduced into RN4220 by electroporation with selection for

erythromycin resistance (Ermr) at 30uC. Bacteriophage w11-mediat-

ed transduction was used to introduce pALG26 from the RN4220

transformant into COL by selecting transductants on TSB agar plates

containing erythromycin and X-gal at 30uC. A single clone of the

transductants was grown in TSB containing erythromycin at 30uC for

3–4 h and at 42uC for 6 h before plating on TSB agar plates

containing erythromycin and X-gal. After incubation at 42uC, light

blue colonies were obtained, which resulted from a single crossover

recombination between the plasmid-born and the chromosomal ksgA

genes. The recombinant strain, SA-8, was checked for resistance

against kasugamycin and amicoumacin A.

Overexpression of fusA carrying the mutant alleles in S.
aureus COL

The wild-type and the fusA mutant (G530V, G531S, R464H)

genes were amplified using primers fusASalIF (59-GATCGTC-

GACATGGCTAGAGAATTTTCA-39, SalI site is underlined)

and fusASphIR (59-GATCGCATGCTTATTCACCTTTATT-
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TTT C-39, SphI site is underlined) from chromosomal DNA

isolated from SA-3, SA-6, and SA-7, respectively. Each PCR

product was digested with SalI and SphI, and ligated with pDG148

[62] digested with the same enzymes to generate pALG43 (for

G530V), pALG44 (for G531S), and pALG45 (for R464H). These

plasmids were first transformed into RN4220, then introduced

into COL by w11-mediated transduction as described above. The

resultant COL strains, SA-9 (G530V), SA-10 (G531S), and SA-11

(R464H), were examined for fusidic acid- and amicoumacin A-

susceptibility by microdilution method.

Supporting Information

Table S1 Changes in global transcription of S. aureus
COL in response to amicoumacin A. Hierarchical clustering

has been done to classify the regulated genes based on their

expression profiles. Genes in clusters 1–4 were upregulated and

those in clusters 5–8 were downregulated.

(PDF)
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