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prediction with a machine-
learned reaction representation and on-the-fly
quantum mechanical descriptors†
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Accurate and rapid evaluation of whether substrates can undergo the desired the transformation is crucial

and challenging for both human knowledge and computer predictions. Despite the potential of machine

learning in predicting chemical reactivity such as selectivity, popular feature engineering and learning

methods are either time-consuming or data-hungry. We introduce a new method that combines

machine-learned reaction representation with selected quantum mechanical descriptors to predict

regio-selectivity in general substitution reactions. We construct a reactivity descriptor database based on

ab initio calculations of 130k organic molecules, and train a multi-task constrained model to calculate

demanded descriptors on-the-fly. The proposed platform enhances the inter/extra-polated performance

for regio-selectivity predictions and enables learning from small datasets with just hundreds of examples.

Furthermore, the proposed protocol is demonstrated to be generally applicable to a diverse range of

chemical spaces. For three general types of substitution reactions (aromatic C–H functionalization,

aromatic C–X substitution, and other substitution reactions) curated from a commercial database, the

fusion model achieves 89.7%, 96.7%, and 97.2% top-1 accuracy in predicting the major outcome,

respectively, each using 5000 training reactions. Using predicted descriptors, the fusion model is end-

to-end, and requires approximately only 70 ms per reaction to predict the selectivity from reaction

SMILES strings.
1 Introduction

The ability to correctly anticipate chemical reactivity enables
chemists to assess whether given substrates might undergo
a desired transformation and thus realize the synthesis of
a target product more quickly. In this respect, chemical reac-
tivity screening or optimization through automated platforms
open the door to the accelerated reaction discovery.1–6 Despite
many successes in experimental reactivity exploration, fast and
accurate in silico chemical reactivity modeling (e.g. selectivity
and yield) remains challenging due to the complex relationship
between chemical structures and reactivity.

Quantum mechanical (QM) methods, especially density
functional theory (DFT), provide powerful tools to infer reac-
tivity trends of organic reactions, for example via the local
reactivity descriptors of an individual molecule within the
conceptual density functional theory (CDFT).7–10 These reactivity
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descriptors, such as condensed Fukui functions,11 indicate how
the electron density of a given molecule responds upon the
approach of a second reactant, and have been successfully
applied to identify the site most prone to either electrophilic or
nucleophilic attack.12–15 A set of such chemical meaningful
descriptors for individual reactants can thus carry key infor-
mation about chemical reactivity.

Machine learning (ML) algorithms, especially feature engi-
neering methods, aim to learn the correlation between
a sequence of descriptors and chemical reactivity (Fig. 1A). In
the late 1990s, Norrby and co-workers16,17 predicted the regio-
and stereo-selecitivity for palladium-catalyzed allylation using
QSAR and steric descriptors through molecular mechanics.
Later works by Lipkowitz and Pradhan18 and Melville et al.19

developed QSSR (quantitative structure–selectivity relation-
ships) methods for predicting enantioselectivity by using
comparative molecular eld analysis (CoMFA). The recent
advance in high-throughput experimentation and data-mining
techniques and thus the presence of high-quality data, have
signicantly populated ML methods in chemical reactivity
predictions.20–28 Recently, Sigman and co-workers21,22 advanced
multivariate linear regression to predict the selectivity of
a reaction (formally, the difference of free energy barriers), by
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Chemical reactivity predictions using (A) Chemically meaningful
descriptors. (B) Machine learned molecular representation. (C) Fusion
model with learned reaction representation and on-the-fly calculated
quantum mechanical descriptors. REPR: representations.
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relying on sophisticated electronic and steric descriptors of
substrates and catalysts. An alternate statistical approach built
on support vector machines (SVM) and feed-forward neural
networks (FFNN) was demonstrated by Denmark and
coworkers,23 in which the authors proposed a new 3D shape
descriptor for catalysts, the average steric occupancy (ASO).
Usingmore than 4000 data points obtained via high-throughput
experimentation, Doyle and co-workers24 demonstrated the
prediction of reaction yields of C–N cross-coupling reactions via
a random forest (RF) model (among other architectures) by
selecting reaction-specic descriptors. Although descriptors
© 2021 The Author(s). Published by the Royal Society of Chemistry
tailored to a specic reaction class, as seen in feature engi-
neering ML, can be effective representations for predicting
chemical reactivity, they might not be generally applicable
across reaction and substrate classes.2 In other words, such
methods are not universal and still require human insight and
expertise to design or select corresponding descriptors for each
individual task. Moreover, expensive computations associated
with QM descriptors oen cause bottlenecks in the feature
engineering workow. For example, featurizing a molecule
through QM calculations usually requires 3D conformer
generation and structure optimization, which usually leads to
tedious and time-consuming processes to featurize all mole-
cules in a given dataset.

In addition to expert-guided descriptors, chemical reactivity can
be predicted through non-expert descriptors.29–32 Typically, reac-
tants and/or reagents are encoded into a 1D vector based on the
presence or absence of substructures. Although those structural
representations do not carry explicit physicochemical information
aboutmolecules, and do not benet from the insight of experts, the
simplicity of this inexpensive ngerprint generation allows fast
high-throughput prediction with minimal demands on the user.
For example, very recently, Glorius and co-workers32 reported
success of ngerprint-based ML models in multiple tasks of pre-
dicting properties of chemical reactivity.

In feature engineering ML methods described above, reac-
tion representations are built through human intelligence. In
contrast, feature learning methods learn representations that
capture properties relevant to the prediction task through end-
to-end learning (e.g. from SMILES strings and 2D/3D structures
to properties directly). Compared with other ML models, such
feature learning methods including graph neural networks
(GNN) and language models have achieved state-of-the-art
accuracy in property predictions,33–37 and reaction predictions
(Fig. 1).38–44 With respect to chemical reactivity, GNN models
have been demonstrated to be able to predict reaction outcomes
given a set of reactants and reagents,39 or predict potential
electrostatic substitution sites given an aromatic compound.40

We note that such feature learning methods usually require
considerable training data to offset the lack of functional
information in plain molecular graphs or strings to achieve
successful end-to-end learning. Furthermore, molecular repre-
sentations learned from the training set usually show poor out-
of-domain performance. Since data deciency is ubiquitous in
the eld of chemical reactivity predictions (i.e., oen the reac-
tions wemost want to predict with are those with the least data),
methods that learn well from sparse datasets and exhibit
outstanding extrapolation performance are highly desirable.

In the present work, we bridge the gap between feature
engineering and feature learning methods discussed above and
propose a strategy that unies the machine learned reaction
representation and QM descriptors to predict properties of
chemical reactivity, i.e., regio-selectivity (Fig. 1C). We hypothe-
size that the proposed fusion method could inherit advantages
from both feature engineering and feature learning in terms of
accuracy, generality, and demand for training data. To over-
come the bottleneck of relatively slow QM computations, we
construct an ab initio database for selected reactivity descriptors
Chem. Sci., 2021, 12, 2198–2208 | 2199
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and train a multitask neural network to predict QM descriptors
for a given molecule on-the-y. Predicted descriptors are then
combined with the machine learned reaction representation to
predict regio-selectivity. We note that a number of ML models
have been developed to predict some QM descriptors in real
time.37,45–49 However, to our knowledge, there have not been
such a database and model focusing on reactivity descriptors.

We select reactions involving a pair of reacting heavy atoms,
such as substitution reactions, to demonstrate the proposed
platform. The studied reactions are extracted from a commer-
cial database, Pistachio,50 which are more heterogeneous and
challenging to predict than the more homogeneous reaction
sets obtained through high-throughput experimentation. First,
we demonstrate and discuss the fusion model, using QM
calculated descriptors, on the task of site-selectivity prediction
in electrophilic aromatic substitution (EAS) reactions. A thor-
ough benchmarking shows that machine learned representa-
tion and chemically meaningful descriptors complement each
other in the fusion model, enhancing performance, and allow
learning from a tiny experimental dataset. Second, we imple-
ment a multi-task neural network that is trained on DFT
calculations of 136k organic molecules to enable on-the-y
calculations for six key atomic/bond descriptors. Finally, we
demonstrate the fusion model using on-the-y descriptors on
three general types of substitution reactions including aromatic
C–H functionalization, aromatic C–X substitution, and other
selective substitution reactions.

2 Results
2.1 Predicting regioselectivity with machine learned
representations and QM descriptors

We start our discussion by implementing the fusion model
using machine learned reaction representation and descriptors
through QM calculations. First, a dataset containing selective
aromatic nitration and halogenation reactions was curated
from the Pistachio database via reaction templates. Reaction
templates were rst extracted from selected reactions using
RDChiral,51 which were then reapplied to enumerate possible
products and identify reactions that are site- or regio-selective.
The dataset was further ltered to exclude reactions with
<50% yield, due to our inability to know with certainty that the
reported product in the Pistachio database is the major one and
not merely the desired one. In total, 3003 aromatic nitration and
halogenation reactions were selected to demonstrate our
protocol. Details about the dataset curation and statistics are
provided in the ESI S1.2.1 and S1.2.2.†

A graph neural network (GNN), modeled aer the Weisfeiler-
Lehman network (WLN) architecture for reaction outcome
predictions of Jin and Coley,38,39 was implemented to predict
regio-selectivity. As GNN is a deep data-driven method that is
highly dependent on molecular structures it has seen from the
training data, it is oen challenging to make predictions on
structures out of the scope of training set or when training on
sparse data. To benet the model with heuristic information
derived from quantum mechanics in addition to the experi-
mental information in the available reaction database, we feed
2200 | Chem. Sci., 2021, 12, 2198–2208
the model quantum mechanical (QM) information of the
reactants.

QM methods enable denition of many molecular and local
quantities characterizing physicochemical properties of a given
molecule. In principle, each such quantity can be employed as
a descriptor.52 However, many descriptors may carry redundant
information. Due to the computational complexities of various
descriptors obtained under different levels of theory, covering
all accessible descriptors is beyond the scope of this study. In
the present work, we focus on a series of the most frequently
used local reactivity quantities generated by QM methods,
including (1) atomic charges, condensed Fukui functions or
Fukui indices,53 and shielding constants as atomic descriptors;
(2) bond lengths and bond orders as bond descriptors. These
descriptors can provide precise quantitative descriptions of
electrostatic properties and local environments for each atom.
An automated workow was developed to calculate these
descriptors for all reactants starting from a SMILES string. Aer
automated conformer searching via Merck Molecular Force
Field (MMFF94s),54 chemically meaningful descriptors were
calculated at the B3LYP/def2svp level of theory.55–57 Detailed
computational methods are provided in themethod section and
ESI S1.2.3.†

Calculated descriptors were then incorporated into the GNN
model to predict site-selectivity. The architecture of the QM
enhanced graph neural network (QM-GNN) is shown in Fig. 2.
Atomic descriptors and bond descriptors are taken as inputs in
different parts of QM-GNN. In the conventional GNN, bonds are
oen featurized via their bond type and ring status. Those
discrete bond features are replaced by the continuous bond
order and bond length in QM-GNN (in analogy to the 3D SchNet
model of Schütt et al.36), which carry more information than
a plain 2D graph. The continuous bond order and bond length
were converted into a continuous vector through the radial
basis function (RBF) expansion before passed in the WLN
encoder. In principle, the atomic features could also be con-
verted from discrete choices of atomic number to continuous
QM descriptors. For example, MoleculeNet34 and ChemProp35

both provide options of using fast calculated empirical
descriptors as atomic features. However, our recent studies
suggested such a strategy using heuristically-calculated
descriptors usually fails to improve the model performance
for reactivity predictions.40 We feel the critical information
carried by QM descriptors could degrade during the message
passing due to mixing with other atoms. To best leverage the
benet of QM descriptors, we incorporate atomic QM descrip-
tors only aer the WLN encoder and global attention layer have
generated the learned atomic embedding, while discrete atom
features (including atomic number, degree of connectivity,
valence, and aromaticity) are still used as input of the GNN
model. The QM atomic features are rst expanded via RBF
expansion and then concatenated with the machine learned
atomic representation. The RBF expansion is chosen to ensure
the size of the QM descriptor vector matches that of the learned
atomic representation thus to prevent the model biasing
towards the graph representation. The RBF expansion also
serves as a good normalization method for QM descriptors.
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 Scheme of theQM-GNNmodel illustrated on a bromination reaction. Potential reacting centers as well as resulting products are given on
the right side. The model starts with a graph-type neural network, WLN, which initializes a feature vector for each heavy atom and bond in the
two reactants. The bond is featurized through the RBF expansion ofQM computed bond order and bond length. Atom-centered feature vectors
are iteratively updated L times in theWLN encoder. The updated local atomic embedding is further updated trough a global attentionmechanism
to capture the influence of atoms further than L bonds away, also including atoms on disconnected molecules (i.e., attentions between atoms
from the substrate and reagent). Expanded atomic descriptors through RBF are then concatenated to the learned atomic embedding, followed
by sum pooling in the reacting core to generate the reaction representation, which finally goes through a dense layer to give the final prediction.
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Fusion atomic representations combining the graph
embedding and QM information are then sum-pooled over
reacting atom pairs, e.g. the highlighted sp2 C and Br atoms in
Fig. 2, to represent the reactivity between atom pairs leading to
the corresponding major/minor product. We note that in order
for the model to automatically determine reacting centers, atom
mapping numbers need to be included, which can be obtained
through several automatic mapping toolkits.58–60 The reacting
pair hidden state was then passed through a feed-forward
neural network (FFNN) to generate a selectivity score, which is
nally scaled to values between zero and one by a somax
function across available products. The somax function is
chosen so that the model is trained to rank major/minor reac-
tions in a relative way. A full description of the model archi-
tecture is provided in the ESI S1.3.†

We train and evaluate the developed QM-GNN model on the
curated EAS reaction dataset for the task of regio-selectivity
predictions. The parent models, GNN and QM, were selected
as baselines. The GNN model does not use human-specied
chemically meaningful descriptors and predicts selectivity
based only on machine learned representations. The QMmodel
is a FFNN using QM calculated descriptors for the reacting
atoms as input (a full description of baselinemodels is provided
in the ESI†). We chose top-1 success rate of predicting the major
reaction to evaluate the model. We rst compare the model
performance on random splits of data through 10-fold cross-
validation. Average values and standard error of the mean of
top-1 prediction accuracy for each fold are depicted in Fig. 3A
(additional statistics analysis are provided in ESI
Fig. S14†).Using all training data, feature learning and semi-
feature learning methods including GNN and QM-GNN
outperforms the QM feature engineering method (e.g. 90.8% vs.
87.4% in average prediction accuracy for QM-GNN and QM). To
examine the model sensitivity to the size of the training set, we
© 2021 The Author(s). Published by the Royal Society of Chemistry
trained models with gradually decreasing training set size, but
retain the size of validation and test sets (303 for each fold) so
that performance comparisons across different training sizes
are based on the same testing examples. As the size of the
training set drops down, the accuracy ofGNN rapidly declines to
77.8% with 200 training points (an increase of 124% in the
error). However, QM and QM-GNN models remain high per-
forming even with a tiny training set (an increase of 11.1% and
29.3% in error for QM and QM-GNN, respectively, with 200
training points). Essentially, QM descriptors carrying more
physicochemical information enable a comparatively simpler
function to map from descriptors to complex properties.61,62 For
example, given a set of optimized and expert designed
descriptors, even a linear function can predict enantio-
selectivity well.22 The trend observed above demonstrates that
the correlation between QM descriptors and reactivity can be
learned even with a training set of just 200 examples. However,
since one does not know what the optimized descriptors are for
a task a priori, the QM model using selected descriptors and
relatively simple mapping function is eventually outpaced by
the GNN model, as we expose the model to more training
examples. Consequently, QM-GNN, the fusion model—inherit-
ing advantages from both QM and GNN—overcomes the limi-
tation of its parent models and achieves superior performance
using both the full and reduced training set sizes.

Next, we examine the extrapolated performance of the model
via scaffold-based splitting. We split the whole dataset based on
the scaffold of aromatic rings in a ratio of 80 : 10 : 10 so that
training, validating, and testing set do not share common
backbones (Fig. 3B). Instead of using cross-validation, we test
a single split decided through greedy bin-packing. The scaffold
split represents a more challenging evaluation, as molecules in
the testing set require a greater degree of extrapolation than in
the random split.61 Again, the QM-GNN model outperforms
Chem. Sci., 2021, 12, 2198–2208 | 2201



Fig. 3 Performance comparison of the QM, GNN, QM-GNN, and ml-QM-GNN models on predicting the regioselectivity of selected EAS
reactions. Prediction accuracy indicates the success rate of correctly predicting major products for the testing set. (A) 10-Fold cross-validation
based on random splitting of the dataset, where the training set is optionally downsampled to contain only 200, 300, 500, 1000, or 2000
examples for each iteration, while the size of testing set is fixed to 303 for each iteration across different training size. The error bar shows the
standard error of the mean of top-1 regioselectivity prediction accuracy on the testing set for each of the 10 cross-validation folds. (B)
Performance based on scaffold splitting. (C) Average computation time for predicting the regioselectivity for a given reaction on a single CPU (full
training size: N ¼ 2397).
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GNN (88.5% vs. 84.4%). The supplemental QM descriptors
implemented in the QM-GNN model facilitate prediction of the
out-of-domain unseen examples, which are common in many
practical chemical and biochemical problems. In order to
further understand the role of QM descriptors in the QM-GNN
model, an iodination reaction of compound 1 was selected to
study the latent space of GNN and QM-GNNmodels. The output
from the second-to-last layer of the NN in Fig. 2 was extracted
from both models as continuous high-dimensional vectors
representing two potential reactions (“major” and “minor”). We
calculate the Euclidean distance between those two latent
vectors and compare it with distances between the major reac-
tion and its neighboring reactions in the training set. Intui-
tively, for an unseen selective reaction, if the minor reaction is
closer to the major reaction than any of its neighbors in the
training set, it will be hard to distinguish the two possible
outcomes. Here, the distance between the major/minor reac-
tions are similar for the two models (10.7 vs. 7.1). However, the
neighborhood of the major reaction in the QM-GNN model is
far more dense than that in the GNNmodel (ESI Fig. S16†). The
top-2 nearest neighbors of the major/minor reactions in the
latent space of two models are shown in Fig. 4. The GNN model
tries to distinguish the major/minor outcomes based solely on
recognizing structural patterns it learned from the training set
(i.e., reactions of compound 3), and thus results in a high
overlap between the neighborhood of major/minor reactions
(identical top-2 nearest neighbors for major/minor reactions).
On the other hand, aer incorporating the QM chemically
meaningful descriptors, the QM-GNN model is able to look
beyond the molecular structure and lead to drastically different
neighborhoods for major/minor reactions, which suggests that
the QM-GNN model is capable of capturing fundamental
2202 | Chem. Sci., 2021, 12, 2198–2208
physicochemical rules. A statistical analysis on the above trends
for the whole testing set is provided in ESI Fig. S16.†

Overall, the QM-GNN model demonstrates outstanding
performance in prediction accuracy compared to the conven-
tional GNN and QM models. However, a prominent disadvan-
tage of using QM descriptors is the extra computing time. We
can see from Fig. 3C that the computational time forQM-GNN is
more than six orders of magnitude larger than that of the GNN
model, even with a relatively fast semi-empirical structure
optimization method. Calculating the descriptors for a single
molecule inQM-GNN took an average of 6200 CPU-seconds. The
large computational cost involved impedes the application on
large-scale or real-time predictions. In the next section, we
describe the development of a deep learning model to rapidly
and accurately predict QM descriptors using a multitask and
constrained deep learning model, to avoid this CPU-time issue.
2.2 Multitask constrained neural network for the fast
calculation of QM descriptors

180k organic molecules containing C, H, O, N, P, S, F, Cl, Br, I,
Si, B were selected from the ChEMBL63 and Pistachio50 data-
bases. The automated workow described in the above section
was employed here to perform the high-throughput calcula-
tions. About 30% of the initially selected molecules were dis-
carded throughout the workow, primarily due to imaginary
frequencies or timing out. The successful QM calculations on
136k molecules provided a set of more than 26 million data: 4
atomic descriptors (charge, two Fukui indices, NMR shielding
constant) for each of 4 363 861 atoms (2 004 079 H atoms and
2 359 782 heavy atoms) plus the bond length and bond order for
each of 4 487 376 bonds. More details about data curation are
provided in the ESI S1.2.3.†
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 Scheme of the multi-task constrained model to predict
chemical meaningful descriptors. The D-MPNN layer, as illustrated in
literature,35 encodes a molecule into atom features and bond features,
which then go through multiple feed forward neural networks (NN) to
predict the target descriptors. For constrained descriptors, an atten-
tion-based constraint is applied. The constraining function f is defined
as in eqn (1).

Fig. 4 Value of including QM-calculated chemically meaningful
descriptors is illustrated using an iodination reaction. Blue dots indi-
cate the major and minor iodination sites. Numbers next to the major/
minor site are the predicted score for the selectivity, using GNN or
QM-GNN model. The GNN model predicts the wrong major product,
assigning reaction to form 2 a lower score (0.35) than formation of the
minor product (0.54). The QM-GNN model gives the correct selec-
tivity. For each major/minor site, two most-similar reactions in the
training set as judged by each model are given, with the red dot
indicating the reacting site. For QM-GNN model, QM descriptors are
given for the major/minor site in the order of atomic charge (1e–2 e),
electrophilic Fukui index (1e–2 e), nucleophilic Fukui index (1e–2 e),
and NMR shielding constant (ppm).

Edge Article Chemical Science
A multitask GNN model was developed to predict multiple
QM descriptors from a 2D molecular structure (Fig. 5). The
approach was modeled aer the directed message passing
neural network (D-MPNN).35 The D-MPNN encodes a molecular
graph into node features and edge features. In principle, we
could train a D-MPNN for each type of the chemically mean-
ingful descriptors described above. However, this approach
would result in multiple independent models leading to inef-
ciency and inconvenience in both training and inference.
Instead, we constructed a multitask predictor by connecting
multiple FFNNs with a single D-MPNN encoder to read out
different atomic/bond properties, as shown in Fig. 5. This
multitask encoder-readout model uses shared atomic/bond
feature vectors as input for different FFNNs, which is inspired
by quantum chemical intuition that our target properties, for
example partial charges, chemical shi, and bond orders, are
derived from the same electronic structure of a given chemical
© 2021 The Author(s). Published by the Royal Society of Chemistry
system. Therefore, this synergy is expected to improve the
model's ability to learn meaningful functional representations
of molecules. Another benet of the proposed multitask model
described above is its ability to systematically handle
constraints applied to different atomic descriptors. Taking the
atomic charge as an example, a NN is rst used to translate the
learned atomic representation into initial atomic charges (qi in
Fig. 5). However, throughout the NN, each atomic charge is
predicted independently so that the sum of qi does not neces-
sarily equal the net charge of the molecule. This discrepancy
between

P
i
qi and the true net charge Q can be corrected by

spreading the excess charge over the molecule.64 Inspired by the
word attention mechanism used in natural language processing
(NLP),65 we developed an attention-based constraining method
that determines a weight for each atom to tune how much they
need to be corrected. That is, we measure the contribution of
each atom to the net correction as the similarity of the atomic
hidden representation ai with a learnable atomic level vector u
that can be seen as a high level representation of a xed query
“which atom needs more correction?”, and get a normalized
weight wi through a somax function. The nal predicted
atomic charge qnali can then be generated from the initial
predicted charge qi and the weight wi as:

qfinali ¼ qi þ
wi

�
Q�P

i

qi

�
P
i

wi

(1)

Due to the multitask architecture of our model, the end-to-
end constrained learning can be implemented independently
for each desired property. All molecules curated are neutral so
that the summation constraint is 0 for atomic charges and 1 for
nucleophilic/electrophilic Fukui indices, while no constraints
Chem. Sci., 2021, 12, 2198–2208 | 2203



Fig. 6 Correlation betweenQM computed chemical meaningful descriptors and those predicted through the multi-task constrained model on
the held-out testing set.
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are required for NMR shielding constants, bond orders, and
bond lengths. Performance of the model was tested on the held-
out testing set, consisting of 431 858 atoms and 444 100 bonds.
Good correlations between predicted and DFT computed values
shown in Fig. 6 suggest that the developed model is reliable in
predicting atomic and bond descriptors. More benchmarking
studies are provided in ESI S2.3.†

We then use rapidly generated QM descriptors via the multi-
task constrained model to predict site-selectivity for the 3003
EAS reactions discussed above. We note that compounds
involved in those 3003 EAS reactions have been excluded from
the 136k training molecules so that the descriptor predicting
model does not predict based on memorizing the training data.
The prediction accuracy for descriptors of those EAS reactants is
similar to the testing set accuracy shown above (ESI S2.3†). The
QM calculated descriptors in the QM-GNN model are then
replaced by ML predicted ones, referred as ml-QM-GNN. Using
the same training and testing methods described above, we
evaluate the accuracy and speed of the ml-QM-GNN model on
3003 EAS reactions against the QM-GNN model (Fig. 3).
Considering inter/extra-polated behavior, the ml-QM-GNN
model maintains a high performance close to the QM-GNN
model and signicantly outperforms the GNN and QM models.
Considering computation time, the ml-QM-GNN model
requires only 70 milliseconds to predict the selectivity for
a reaction from SMILES strings, which is almost six orders of
magnitude faster than the QM-GNN model.
2.3 Predicting regioselectivity for general substitution
reactions

With the fast and accurateml-QM-GNN model, we are now able
to explore other reaction spaces more efficiently. In this section,
2204 | Chem. Sci., 2021, 12, 2198–2208
we further demonstrate this protocol on more general selective
reactions. The ml-QM-GNN model predicts the chemical reac-
tivity using a pair of reacting heavy atoms. Therefore, we extend
the present model to all selective substitution and addition
reactions involving a pair of approaching heavy atoms, while
other types of reactions will be studied in extensions of this
work.

Using the same ltering method discussed above, we extract
20 438 selective reactions from Pistachio, which are further
grouped into three classes according to the rough mechanism:
(1) 7378 aromatic C–H functionalization (Fig. 7B); (2) 7045
aromatic C–X substitution (Fig. 7C); and (3) 6715 other substi-
tution and addition reactions (Fig. 7D). In contrast to the high-
throughput datasets used in pioneering works for descriptor-
based chemical reactivity predictions,22,24,27,32 reactions curated
here are much more heterogeneous in terms of both reaction
types and substrate scopes. For example, the 7378 member
aromatic C–H functionalization class is composed of 10 types of
reactions, involving 5963 unique aromatic substrates and 147
reagents. The pairwise Tanimoto similarity distribution for
aromatic substrates shows a single peak at 0.2, indicating the
high diversity of molecules studied here (detailed statistics for
each reaction class is provided in the ESI S1.2.4†). The ml-QM-
GNN model is trained and evaluated on the three curated
datasets. 10-Fold cross-validation with gradually downsampled
training set and consistent testing set, as discussed above, was
applied again to evaluate the model. GNN and a ngerprint-
based (FP) model were selected as baseline models here. In
the FP-baseline model, the Morgan reaction ngerprint with
2048 bits and a radius of 2, as implemented in RDKit,66 was
used to encode the major/minor reaction, followed by a FFNN to
score the selectivity. This strategy of encoding reactions has
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 7 (a) Prediction accuracy comparison of ml-QM-GNN, GNN, and the FP-baseline model in regioselectivity predictions as a function of the
training set size for three classes of selective substitution reactions. The error bar shows the standard error of the mean of top-1 regioselectivity
prediction accuracy on the testing set for each of the 10 cross-validation folds. Detailed statistics comparison of model performance are
provided in ESI Fig. S15.† (b–d) Three classes of selective reactions curated from the Pistachio database along with selected examples. Distri-
bution plots show pairwise Tanimoto similarity between each pair of aromatic substrates (class (1)–(2)) or reactants (class (3)). (d) Blue dots
indicate themajor reacting site. Dashed circles indicate theminor reacting site(s). The red number shows the predicted selectivity score for major
products usingml-QM-GNN. For the example in (d), chemically meaningful descriptors are labeled for major/minor sites in the order of atomic
charge, nucleophilic Fukui index, electrophilic Fukui index.
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been demonstrated to be successful to predict the plausibility of
a given reaction on a heterogeneous dataset.67 As seen from
Fig. 7A, in general, the FP-baseline model showed a poor to
medium performance. The ml-QM-GNN model maintains the
highest accuracy throughout three classes of reactions. When
using 5000 training reactions, the model correctly predicts the
major product for 89.7% reactions in class (1); the top-1 accu-
racy is 96.7% and 97.2% for class (2) and (3), respectively. The
ml-QM-GNN model retains a high accuracy with reduced
training sets (e.g. 84.3%, 92.1%, and 94.3% for classes (1)–(3)
when using 300 training points, respectively, which is about
half the size of the testing set). The GNN model also achieves
a remarkable performance that is comparable to ml-QM-GNN
when trained on a large training set. However, the performance
of GNN quickly declines as we downsample the training set,
especially for the more challenging class 1 dataset.

Selected examples from three reaction classes are also
provided in Fig. 7B–D. Selectivity for the class (1) example is
mainly driven by the nucleophilicity of competing sites, while
the selectivity for the class (2) example is dominated by elec-
trophilicity. The class (3) example is an alkylimino-de-oxo-
bisubstitution reaction, which follows the nucleophilic addi-
tion mechanism. Regarding proneness toward the nucleophilic
attack, the minor reacting site (site 2) is more or at least
equivalently likely to react compared to the major site (site 1), as
indicated by the Fukui indices in Fig. 7D. The preference for the
© 2021 The Author(s). Published by the Royal Society of Chemistry
major site is dominated by the steric hindrance at theminor site
from two t-Bu groups. Theml-QM-GNNmodel correctly predicts
the major reacting site with high condence, suggesting that in
addition to the electrostatic effect captured by the chemical
meaningful descriptors, the machine learned molecular repre-
sentation implemented is also able to learn the steric effects by
recognizing similar structure patterns.
3 Conclusion and outlook

This work introduced a novel platform to predict the selectivity
of chemical reactions that combines machine-learned reaction
representation and quantummechanical descriptors, including
local reactivity descriptors and bond descriptors. The platform
leverages the benets of QM descriptors while minimizing the
additional computational cost through the use of an auxiliary
multi-task prediction network based on molecular structures
alone. A thorough benchmarking on regio-selectivity predic-
tions demonstrates that the fusion model achieves better
performance than the conventional graph neural network and
descriptor-based feature engineering model in both inter/extra-
polated predictions. The fusion model overcomes limitations of
feature learning methods and enables learning from a tiny
dataset (e.g. 200 training points for 300 testing examples).
Further latent space analysis reveals that by using chemically
meaningful descriptors, the model can learn richer functional
Chem. Sci., 2021, 12, 2198–2208 | 2205
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representations of reactions in addition to substructural
patterns. The combination of learned reaction representation
and on-the-y QM descriptors therefore leads to a fast, end-to-
end, generally applicable, and accurate model for chemical
reactivity predictions, which is further demonstrated on the
prediction of regio-selectivity for three general types of organic
reactions. The model achieves 89.7%/96.7%/97.2% top 1 accu-
racy for aromatic C–H functionalization, aromatic C–X substi-
tution, and other substitution reactions curated from the
Pistachio database, within seconds.

In the present work, we have demonstrated the efficacy of
combining graph representation and ML predicted QM
descriptors in predicting the regio-selectivity for substitution
reactions. In addition to ranking relative reactivity (i.e., selec-
tivity), we note that the fusion ml-QM-GNN model can also be
adapted to predict quantitative reactivity measures (e.g. reaction
yields) for a given reaction, requiring minimum modications.
We further evaluated the ml-QM-GNN model on yield predic-
tions including regression and binary classication tasks using
both datasets discussed above and high-throughput experi-
mentation data from Doyle and co-workers.24 The unbiased ml-
QM-GNN model showed comparable performance to expert-
guided feature engineering methods on the regression task
and provided a measurable improvement over GNN-based and
reaction ngerprint-based models on the binary classication
task (ESI S2.5†).

The framework presented here still leaves room for
improvement. For example, the fusion model performance
could be further improved by using higher level of theory to
construct the QM descriptors database and including more
explicit steric descriptors such as the solvent accessible surface
area (SASA). At this stage, on-the-y QM descriptors calculation
in the proposed platform only supports neutral molecules with
C, H, O, N, P, S, F, Cl, Br, I, B elements. However, for more
general applications, explicit coverage of charged molecules
and transition metals in the QM descriptors calculation will
signicantly improve the performance of the proposed plat-
form. We mention that in contemporary work, Isayev and co-
workers68 extended the AIMNet model towards open-shell
molecules to predict atomic QM descriptors. Compared with
the AIMNet model, our model includes less atomic descriptors,
but covers essential bond descriptors and is more automated
and straightforward to use requiring only the SMILES string of
the reactions of interest as input. Both ourml-QM-GNN and the
AIMNet model are not able to predict reactivity descriptors for
charged molecules, since those require electron structure
information for the double-charged species (e.g. to compute
nucleophilicity Fukui indices for a cation). Including
a comprehensive set of reactivity descriptors for charged states
of a molecule therefore would be the next challenging step in
the real-time QM descriptors computations.

More broadly, this study demonstrates the power of con-
necting feature engineering and feature learning in addition to
providing a useful and convenient tool for chemical reactivity
prediction. Future work will look to expand these approaches to
reactions involving more complex intermolecular interactions
and mechanisms.
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4 Computational methods

To generate a computational database covering the proposed
atomic/bond descriptors, an automated computing workow
was developed. The workow started by sampling conformers
from SMILES strings using the RDKit library,69 and the Merck
Molecular Force Field (MMFF94s).54 The lowest-lying conformer
was then optimized at the GFN2-xtb level of theory.70 GFN2-xtb
is parametrized for all the elements through radon with
emphasis on yielding reasonable structures. Since descriptors
of interest within this study are more sensitive to molecular
structures rather than energetic values, the selected semi-
empirical method can provide reliable structures at low
computational cost for more than 136k molecules. A variety of
convergence checks were performed to ensure the optimization
converged to a correct structure, including checks for imaginary
frequencies and ensuring that the molecule did not further
converge into other species. The nal chemically meaningful
descriptors were calculated with the B3LYP functional55,56 and
the def2svp basis set.57 All DFT computations were performed
using Gaussian 16.71 Bond orders were calculated through NBO
6.0.72 More details about the descriptor calculation are provided
in the ESI.†

The reaction database used in this work is the Pistachio
patent database fromNextMove (v3.0 released in June 2019). See
ESI† for detailed model structures and training procedures. All
code used in this work can be found on GitHub (ESI S1.1†)
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