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Abstract: Polygenic risk scores are a popular means to predict the disease risk or disease susceptibility
of an individual based on its genotype information. When adding other important epidemiological
covariates such as age or sex, we speak of an integrated risk model. Methodological advances for
fitting more accurate integrated risk models are of immediate importance to improve the precision
of risk prediction, thereby potentially identifying patients at high risk early on when they are still
able to benefit from preventive steps/interventions targeted at increasing their odds of survival, or at
reducing their chance of getting a disease in the first place. This article proposes a smoothed version
of the “Lassosum” penalty used to fit polygenic risk scores and integrated risk models using either
summary statistics or raw data. The smoothing allows one to obtain explicit gradients everywhere for
efficient minimization of the Lassosum objective function while guaranteeing bounds on the accuracy
of the fit. An experimental section on both Alzheimer’s disease and COPD (chronic obstructive
pulmonary disease) demonstrates the increased accuracy of the proposed smoothed Lassosum penalty
compared to the original Lassosum algorithm (for the datasets under consideration), allowing it to
draw equal with state-of-the-art methodology such as LDpred2 when evaluated via the AUC (area
under the ROC curve) metric.

Keywords: integrated risk model; lassosum; nesterov; polygenic risk scores; smoothing

1. Introduction

Polygenic risk scores are a statistical aggregate of risks typically associated with a
set of established DNA variants. If only genotype information of an individual is used to
predict its risk, we speak of a polygenic risk score. A polygenic risk score with added epi-
demiological covariates (such as age or sex) is called an integrated risk model [1]. The goal
of both polygenic risk scores and integrated risk models is to predict the disease risk of an
individual, that is the susceptibility to a certain disease. Such scores are usually calibrated
on large genome-wide association studies (GWAS) via high-dimensional regression of a
fixed set of genetic variants (and additional covariates in case of an integrated risk model) to
the outcome. In this article, we focus on the more general case of an integrated risk model.

As the potential for broad-scale clinical use to identify people at high risk for certain
diseases has been demonstrated [2], polygenic risk scores and integrated risk models
have become widespread tools for the early identification of patients who are at high risk
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for a certain disease and who could benefit from intervention measures [3–5]. However,
the accuracy of current polygenic risk scores, measured with the AUC metric (area under
the ROC Curve, where ROC stands for receiver operating characteristic, see in [6]), varies
substantially across application areas. For instance, the AUC achieved by state-of-the-
art methods ranges from around 0.8 for type 1 diabetes to around 0.7 for coronary artery
disease and schizophrenia [7], while for atrial fibrillation the AUC is around 0.64 [8], a value
which is considered less than acceptable [6,9]. For this reason, increasing the accuracy of
scores is desirable, which is the focus of the proposed smoothing approach.

One popular way to fit a polygenic risk score is the “Lassosum” approach of the
authors of [7]. Note that in [7], no integrated risk models are considered. The Lassosum
method is based on a reformulation of the linear regression problem y = Xβ + ε, where
X ∈ Rn×p denotes SNP data for n individuals and p SNP locations, y ∈ Rn denotes
a vector of outcomes, β ∈ Rp is unknown, and ε ∼ Nn(0, σ2 In) is an n-dimensional,
independently and normally distributed error term with mean zero and some variance
σ2 > 0 (where In denotes the n-dimensional identity matrix). The authors start with the
classic Lasso objective function L(β) = ‖y− Xβ‖2 + 2λ‖β‖1, where λ ≥ 0 denotes the
Lasso regularization parameter controlling the sparseness of the solution, and rewrite it
using the SNP-wise correlation r = X>y as

L(β) = y>y + (1− s)β>X>r Xrβ− 2β>r + sβ>β + 2λ‖β‖1, (1)

where Xr denotes the matrix of genotype data used to derive estimates of LD (linkage
disequilibrium), λ ≥ 0 is the Lasso regularization parameter controlling the sparseness
of the estimate, and s ∈ (0, 1) is an additional regularization parameter used to ensure
stability and uniqueness of the Lasso solution. As in [7], we assume in this article that
estimates of the correlations r can be obtained from publicly available summary statistics
databases, and that estimates of the LD matrix X>r Xr are obtained from publicly available
genotype databases (such as the 1000 Genomes Project). However, the Lassosum objective
function can also be used to compute a polygenic risk score using raw data. Importantly,
in [7] the authors derive an iterative scheme to carry out the minimization of Equation (1)
which only requires one column of Xr at a time, thus avoiding the costly computation of
the matrix X>r Xr ∈ Rp×p.

In this work, we consider a different approach for minimizing Equation (1). Us-
ing the methodology in [10], we propose to smooth the non-differentiable L1 penalty
in Equation (1), thus allowing us to compute explicit gradients of Equation (1) every-
where. This in turn allows us to efficiently minimize the Lassosum objective function
using a quasi-Newton minimization algorithm such as BFGS (Broyden–Fletcher–Goldfarb–
Shanno). Besides enabling a more efficient and more accurate computation of the score,
our work extends the one of [7] in that we do not solely consider polygenic risk scores,
but the more general integrated risk models. The proposed smoothed Lassosum can be
applied to either summary statistics (when using X and r as previously described), as well
as individual-level data (when using X and y directly in either the Lasso or Lassosum
objective function; in the latter case, y is converted into “correlations” r via r = X>y).

Our approach follows as a special case from in [11,12], who propose a general frame-
work to smooth L1 penalties in a linear regression. Importantly, employing a smoothing
approach has a variety of theoretical advantages following directly from in [11]. Apart from
obtaining explicit gradients for fast and efficient minimization, the smoothed objective is
convex, thus ensuring efficient minimization, and it is guaranteed that the solution (the
fitted integrated risk model) obtained by solving the smoothed Lassosum objective is never
further away than a user-specified quantity from the original (unsmoothed) objective of [7].

We evaluate all aforementioned approaches by computing an integrated risk model
in two experimental studies, one on Alzheimer’s disease using the summary statistics
of [13,14], and one on COPD (chronic obstructive pulmonary disease) using individual-
level spirometry data [15]. In the first case, the endpoint is binary, whereas in the second
study the endpoint is continuous. Our experiments demonstrate that smoothing the Lasso-
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sum objective function results in a considerably enhanced performance of the Lassosum
approach for the datasets we consider, allowing it to draw equal with approaches such as
LDpred2 [16] or PRScs [17].

Analogously to the original Lasso of [18], the L1 penalty employed in Equation (1)
causes some entries of arg minβ∈Rp L(β) to be shrunk to zero exactly (provided the regular-
ization parameter λ is not too small). Therefore, Lassosum performs fitting of the polygenic
risk score or integrated risk model and variable selection simultaneously.

This article is structured as follows. A literature review is given in Section 1.1. Section 2
introduces the smoothed Lassosum objective function and discusses its minimization,
the theoretical guarantees it comes with, and its drawbacks. Section 3 evaluates the
proposed approach, the original Lassosum approach, as well as additional state-of-the-art
methods in two experimental studies on both Alzheimer’s disease and COPD. The article
closes with a discussion in Section 4, and some final remarks are given in the conclusions
of Section 5. The appendix contains two figures showing plots of principal components for
the genotype dataset employed in Section 3.1.

The methodology of this article is implemented in the R package smoothedLasso (see
the function prsLasso in the package), available on CRAN [19].

1.1. Literature Review

Several methodological approaches have been considered in the literature to compute
a polygenic risk score or an integrated risk model for a given population [20], and to predict
a given outcome (disease status).

A simple way to calculate a polygenic risk score is to threshold p-values coming from
GWAS summary statistics. If all genetic markers are used, we speak of an unadjusted
polygenic risk score. However, if SNPs in linkage disequilibrium (LD) with each other
are included in the score, their contribution will be exaggerated, thus making informed
LD-pruning of single nucleotide polymorphisms (SNPs) in LD necessary [21]. The selective
removal of less significantly related SNPs to reduce LD is called LD-clumping [22]. Such
approaches are computationally simple and fast, but have limited accuracy [23]. However,
the (optimal) choice of the threshold is an issue, as this determines the number of SNPs to
be included [22]. As a result, scores are often constructed for a variety of thresholds [7,24].

Accuracy can be increased by incorporating GWAS summary statistics via Bayesian
methods. Notable approaches include LDpred [23] and LDpred2 of [16], which compute
a polygenic risk score (but not an integrated risk model) by fitting a Bayesian model to
given effect sizes via Gibbs sampling. A score is then obtained by inferring the posterior
mean effect size of each marker using a prior on the effect sizes and LD information from
an external reference panel. Using a normal mixture model offers enhanced flexibility
and accuracy through the incorporation of genome-wide markers and different genetic
architectures [25,26]. One weakness of Bayesian methods consists in the choice of the
required discrete mixture priors on SNP effect sizes, potentially causing computational
issues and inaccurate adjustment for local LD patterns.

PRScs of [27] utilizes a high-dimensional Bayesian regression framework which places
a continuous shrinkage prior (thus the suffix CS for continuous shrinkage) on SNP effect
sizes, an innovation which makes a conjugate block update of the SNP effect sizes in
posterior inference possible and which is robust to varying genetic architectures.

SBayesR in [26] is a linear regression likelihood which takes into account GWAS
summary statistics and a reference LD correlation matrix, and is coupled to a finite mixture
of normal priors on the genetic effects. The normal priors allow one to incorporate sparsity
and to perform Bayesian posterior inference on the model parameters, such as genetic
effects, variance components, and mixing proportions.

The main innovation of MegaPRS [28] consists in the fact that it allows the user to
specify how SNPs contribute toward the phenotype. This is done via the specification of
a heritability model, which describes how the expected heritability contributed by each
SNP varies across the genome. In contrast to current tools which assume that the expected
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heritability per SNP is constant, the authors show in [28] that realistic heritability models
can result in more accurate polygenic risk scores.

Fitting genotype data to a disease outcome can also be achieved by means of a simple
penalized regression using the least absolute shrinkage and selection operator (Lasso)
in [18], for instance, using the glmnet package on CRAN, see in [29,30]. Glmnet is a fast
variant of the FISTA proximal gradient algorithm, the current gold standard for minimizing
the Lasso objective function [31]. Glmnet is almost identical to FISTA, but performs a cyclic
update of all coordinates, whereas FISTA updates all coordinates per iteration, thus making
Glmnet faster than FISTA.

More favorable scaling of polygenic risk score computations (in the size of the input
data) has also been a focus in the recent literature [32]. Importantly, machine learning has
become increasingly popular for constructing polygenic risk scores [33–37], as machine
learning approaches do not assume SNP independence or near independence. How-
ever, the resulting prediction model cannot be easily interpreted, in contrast to the linear
weighting schemes computed by traditional methods. Examples of traditional approaches
outperforming machine learning models are also available in the literature [38].

2. Methodology

The Lassosum function of Equation (1) consists of a smooth part, given by
y>y + (1− s)β>X>r Xrβ− 2β>r + sβ>β, and a non-smooth part, the L1 penalty 2λ‖β‖1.
Only the latter needs smoothing, which we achieve with the help of Nesterov smoothing
introduced in Section 2.1. Section 2.2 applies the Nesterov methodology to Lassosum and
introduces our proposed smoothed Lassosum objective function. The proposed smoothed
Lassosum actually follows from the more general framework of [11,12]. We demon-
strate this in Section 2.3, where we also state the theoretical guarantees following from
the framework.

2.1. Brief Overview of Nesterov Smoothing

In [10], the author introduces a framework to smooth a piecewise affine and convex
function f : Rq → R, where q ∈ N. As f is piecewise affine, it can be written for z ∈ Rq as

f (z) = max
i=1,...,k

(
A[z, 1]>

)
i
, (2)

using k ∈ N linear pieces (components), where [z, 1] ∈ Rq+1 denotes the vector obtained
by concatenating z and the scalar 1. In Equation (2), the linear coefficients of each of the
k linear pieces are summarized as a matrix A ∈ Rk×(q+1) (with the constant coefficients
being in column q + 1).

The author then introduces a smoothed version of Equation (2) as

f µ(z) = max
w∈Qk

{
〈A[z, 1]>, w〉 − µρ(w)

}
, (3)

where Qk =
{

w ∈ Rk : ∑k
i=1 wi = 1, wi ≥ 0 ∀i = 1, . . . , k

}
⊆ Rk is the unit simplex in

k dimensions. The parameter µ ≥ 0 controls the smoothness of the approximation f µ

to f , called the Nesterov smoothing parameter. Larger values of µ result in a stronger
smoothing effect, while the choice µ = 0 recovers f 0 = f . The function ρ is called the
proximity function (or prox-function) which is assumed to be non-negative, continuously
differentiable, and strongly convex.

Importantly, f µ is both smooth for any µ > 0 and uniformly close to f , that is the
approximation error is uniformly bounded as

sup
z∈Rq
| f (z)− f µ(z)| ≤ µ sup

w∈Qk

ρ(w) = O(µ),
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see ([10], Theorem 1). Though several choices of the prox-function ρ are considered in [10],
we fix one particular choice (called the entropy prox-function) in the remainder of the article
for the following reasons: (a) The different prox-functions are equivalent in that all choices
yield the same theoretical guarantee and performance and (b) the entropy prox-function
leads to a closed-form expression of Equation (3) given by

f µ
e (z) = µ log

(
1
k

k

∑
i=1

e
(A[z,1]>)i

µ

)
, (4)

which satisfies the uniform bound

sup
z∈Rq

∣∣∣ f (z)− f µ
e (z)

∣∣∣ ≤ µ log(k), (5)

see [10–12].

2.2. A Smoothed Version of the Lassosum Objective Function

The proposed smoothed Lassosum approach is obtained by applying Nesterov smooth-
ing to the L1 penalty of the Lassosum objective function, see Equation (1). A detailed study
on the behavior of Nesterov smoothing applied to an L1 penalty using synthetic data can
be found in [11].

As observed at the beginning of Section 2, it suffices to smooth the non-differentiable
penalty 2λ‖β‖1 of the Lassosum objective function, where ‖β‖1 = ∑

p
i=1|βi|. To this end,

we apply Nesterov smoothing to each absolute value independently.
We observe that the absolute value can be expressed as piecewise affine function with

k = 2 components, given by f (z) = max{−z, z} = maxi=1,2
(

A[z, 1]>
)

i, where

A =

(
−1 0
1 0

)
and z ∈ R is a scalar. Substituting this specific choice of A into Equation (4) leads to a
smoothed approximation of the absolute value given by

f µ
e (z) = µ log

(
1
2

e−z/µ +
1
2

ez/µ

)
. (6)

Substituting the absolute value in the L1 norm in Equation (1) with the approximation
in Equation (6) results in a smoothed version of the Lassosum objective function, given by

Lµ(β) = y>y + (1− s)β>X>Xβ− 2β>r + sβ>β + 2λ
p

∑
i=1

f µ
e (βi). (7)

The first derivative of f µ
e is explicitly given by

∂

∂z
f µ
e (z) =

−e−z/µ + ez/µ

e−z/µ + ez/µ
=: gµ

e (z),

see also in [11,12], from which the closed-form gradient of the smoothed Lassosum objective
function of Equation (7) immediately follows as

∂

∂β
Lµ = (1− s)2(X>X)β− 2r + 2sβ + 2λ

p

∑
i=1

gµ
e (βi).

Using the smoothed version of the Lassosum objective function, given byLµ, and its
explicit gradient ∂

∂β Lµ, an integrated risk model can easily be computed by minimizing
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Lµ using a quasi-Newton method such as BFGS (Broyden–Fletcher–Goldfarb–Shanno),
implemented in the function optim in R [39].

In Equation (7), the quantity X is not limited to contain only genotype information.
Any data on the individuals (including additional epidemiological covariates) to compute
the integrated risk model can be summarized in X. The other quantities in Equation (7) are
the outcome y (either binary/discrete or continuous), the correlations r = X>y, and the
additional regularization parameter s ∈ (0, 1) introduced in [7] used to ensure stability and
uniqueness of the Lasso solution.

2.3. Theoretical Guarantees

Using the fact that the absolute value can be expressed as a piecewise affine function
with k = 2, see Section 2.2, the error bound of Equation (5) can be re-written as

sup
z∈R

∣∣∣ f (z)− f µ
e (z)

∣∣∣ ≤ µ log(2). (8)

As in our proposed smoothed version of Equation (7) only the non-smooth L1 con-
tribution of the original Lassosum objective function of Equation (1) has been replaced,
the bound of Equation (8) immediately carries over to a bound on the smoothed Lassosum.
In particular,

sup
β∈Rp

∣∣∣L(β)− Lµ
e (β)

∣∣∣ ≤ sup
β∈Rp

2λ

∣∣∣∣∣ p

∑
i=1
|βi| −

p

∑
i=1

gµ
e (βi)

∣∣∣∣∣ ≤ 2λpµ log(2). (9)

For a given computation of an integrated risk model, the Lasso parameter λ > 0 and
the dimension p are fixed by the problem specification. According to Equation (9), this
allows one to make the approximation error of our proposed smoothed Lassosum to the
original Lassosum arbitrarily small as the smoothing parameter µ→ 0.

As stated in Section 2.1 in [7], the Lassosum objective of Equation (1) is equivalent
to a Lasso problem, in particular its convexity is preserved. According to Proposition 2
in [11], the smooth approximation of Equation (7) obtained via Nesterov smoothing is
strictly convex. As strictly convex functions have one unique minimum, and as a closed-
form gradient ∂

∂β Lµ of Lµ is available (see Section 2.2), this makes the minimization of our
proposed smoothed Lassosum in lieu of the original Lassosum very appealing.

Furthermore, two additional properties of Equation (7) can be derived from ([11],
Section 4.3). First, the arg minβ∈Rp Lµ(β) is continuous with respect to the supremum
norm ([11], Proposition 4), which implies that the minimum of our proposed smoothed
Lassosum Lµ converges to the one of the original Lassosum as µ→ 0. Second, in addition
to this qualitative statement, the error between the minimizers of the smoothed and original
Lassosum function can be quantified a priori ([11], Proposition 5).

3. Application to Experimental Data

In this section, we evaluate the performance of our proposed smoothed Lassosum
approach of Section 2.2 in two experimental studies, one fitting an integrated risk model
to binary outcomes in the context of Alzheimer’s disease (Section 3.1) using summary
statistics, and one fitting an integrated risk model to continuous outcomes using individual-
level data in the context of COPD (Section 3.2). We benchmark our smoothed Lassosum
approach, which we refer to as “SmoothedLassosum”, against the following state-of-the-
art approaches:

1. “Lassosum”: the Lassosum algorithm of [7], implemented in the R package lassosum
available on github [40].

2. “LDpred2”: the LDpred2 algorithm of [16], implemented in the R package bigsnpr on
CRAN [41].

3. “PRScs”: the PRScs algorithm of [27], available on github [17].
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4. “Glmnet”: the standard lasso of [18], implemented in the Glmnet package on CRAN [30].
5. “Lasso”: the unsmoothed Lasso of [12], implemented in the R package smoothedLasso

on CRAN [42].
6. “SmoothedLasso”: the smoothed Lasso of [12], implemented in the R package smoothed-

Lasso on CRAN [42]. Both the unsmoothed and smoothed Lasso are included in the ex-
periments to showcase how the unsmoothed (original) and smoothed Lasso compare.

7. “NeuralNetwork”: a neural network implemented with the Keras interface [43] to the
Tensorflow machine learning platform [44]. We train a network with four layers, having
20, 8, 4 and 2 nodes. We employ the LeakyReLU activation function; a dropout rate
of 0.1; a validation splitting rate of 0.1; the he_normal truncated normal distribution
for kernel initialization; and kernel, bias, and activity regularization with L1 penalty.
The last layer employs the sigmoid (for Section 3.1) or ReLU (for Section 3.2) activation
functions. The model is compiled for binary crossentropy loss (for Section 3.1) or mean
absolute error loss (for Section 3.2) using the Adam optimizer, evaluated with the
AUC (for Section 3.1) or the mean squared error (for Section 3.2) using 1000 epochs.

8. “SBayesR”: the SBayesR algorithm of [26], implemented in the toolbox GCTB [45].
9. “MegaPRS”: we employ the robust version Bolt Predict of the MegaPRS algorithm [28]

as suggested by the authors. We use default parameters given in the example section
of the MegaPRS website (a cross validation proportion of 0.1, the—ignore-weights
option and a power parameter of −0.25). MegaPRS is implemented in the LDAK
package [46].

10. “EpiOnly”: we perform a simple linear regression using epidemiological covari-
ates only.

Unless noted otherwise, all aforementioned methods are run with default parameters.
The Lassosum, LDpred2, PRScs, SBayesR, and MegaPRS algorithms are only designed
to fit polygenic risk scores, but not integrated risk models. To include epidemiological
covariates for these methods (and thus fit an integrated risk model), we first perform
a linear regression of the epidemiological covariates to the outcome, and then run the
aforementioned methods on the residuals. Importantly, in order to apply Lassosum with
epidemiological covariates, we additionally have to recompute the SNP-wise correlation
r = X>y as in Equation (1) using the residuals in place of y.

Note that Glmnet, as well as Lasso and SmoothedLasso, can be applied in two ways:
First, they can be applied to both the epidemiological covariates and genotype informa-
tion in one go, given all information is summarized in the design matrix. Second, they
can likewise be applied to residuals after regressing out all epidemiological covariates.
For consistency with the way the Lassosum, LDpred2, PRScs, SBayesR, and MegaPRS
algorithms are applied, we also employ Glmnet, Lasso, and SmoothedLasso to residuals
after regressing out all epidemiological covariates. Throughout the section, we fix the
Lasso regularization parameter at λ = 2−3. This value was chosen in a data-driven way to
ensure that the resulting estimates are not too dense (which happens if the regularization
parameter is too small), or zero (which happens if the regularization parameter is too large).
The Lassosum regularization parameter s in Equation (1) (which ensures stability and
uniqueness of solution) was chosen as s = 0.5 as recommended in Section 3 of [7], and the
smoothing parameter of Section 2.2 was chosen as µ = 0.1, see Section 3 of [12].

3.1. Alzheimer’s Disease Study

We performed training and testing of different PRS algorithms using summary statis-
tics for Alzheimer’s disease (AD), together with genotype data imputed on the Haplotype
Reference Consortium (HRC), see in [47]. The HRC-imputed genotype data was down-
loaded from Partners Biobank [48] (described below). The summary statistics are matched
to genotype data for chromosomes 1–22 of 2465 patients available in the Partners Biobank.
We considered two sets of summary statistics from two of the largest available AD GWAS:
the one of clinically defined AD cases of [13], and the one of AD-by-proxy phenotypes
of [14].
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The dataset in [13] contains a total of 11,480,632 summary statistics, given by p-value,
effect size (denoted as variable “Beta”), and standard deviation of the effect size. Each entry
is characterized by its chromosome number, position on the chromosome, as well as the
effect allele and non-effect allele. The dataset in [14] contains a total of 13,367,299 summary
statistics in the same format as the one in [13].

Partners Biobank is a hospital-based cohort from the Mass General Brigham (MGB)
hospitals. This cohort includes collected DNA from consented subjects linked to electronic
health records. We have obtained a subset in April 2019, which included AD cases and
controls. Cases were defined as subjects who were diagnosed with AD based on the
International Statistical Classification of Diseases and Related Health Problems (ICD-10),
see in [49]. Controls were selected as individuals of age 60 and greater, who had no
family history of AD, no diagnosed disease of nervous system (coded as G00-G99 in ICD-
10), no mental and behavioral disorders (coded as F01-F99 in ICD-10), and a Charlson
Age-Comorbidity Index of 2, 3, or 4 [50,51].

We performed the following quality control steps on the HRC-imputed genotype
data from Partners Biobank. Relatedness was assessed with KING [52,53] and population
structure was assessed with principal components. Principal components were calculated
on a pruned subset (PLINK2 parameters:–indep-pairwise 50 5 0.05) of common variants
(MAF > 0.1). We excluded subjects which had a KING kinship coefficient > 0.0442
(third degree of relatedness or closer) and which were at least 5 standard deviations away
from the mean value of the inbreeding coefficient. We kept only self-reported non-hispanic
white (NHW) individuals and excluded outliers, defined as subjects which are at least
5 standard deviations away from the mean value of each of the ten principal components
(see Appendix A). There was a total of 2465 subjects (481 cases) left for analysis.

To compare performance across both datasets, we determined the set of variants which
are found in both datasets, as well as in the genotype data of the Partners Biobank. We
randomly selected 20,000 loci with the–thin-count option in PLINK2 [54]. The precise
number of 20,000 loci is arbitrary, and was chosen to include a large number of loci while
still being able to run all simulations in reasonable time. Although APOE variants are
known to have a very high effect size for AD, explaining around a quarter of the total
heritability [55], including the APOE region in a polygenic risk score or integrated risk
model has been shown to be insufficient to account for the large risk attributed to APOE [56].
To fine tune our integrated risk models on other non-APOE variants with much smaller
effect sizes and good prediction power, we decided to keep APOE status as a separate
predictor. At the same time, we made sure that the extended APOE region (from 45,000,000
to 46,000,000 bp on chromosome 19) is excluded while the two APOE loci 19:45411941:T:C
and 19:45412079:C:T are kept in the data. This leaves 18,038 loci.

The final data used for the computation of the integrated risk models consist of these
18,038 loci, as well as the following epidemiological covariates: age, sex, and APOE status
with classes “none” (encoded as 0), “single e4” (encoded as 1), or “e4/e4” (encoded as
2). As the data do not exhibit a separation by genomic chip (see Figure A1) we did not
include principal components into the model. However, we recommend doing so if a clear
separation in the principal component plots is visible.

In the following experiments, we considered the datasets of [13,14] separately and
extracted SNP weights based on corresponding effect sizes. This gives us the three quanti-
ties X, r, y required to fit the Lassosum model of Equation (1). Next, we only consider a
proportion p ∈ {0.1, . . . , 0.9} of the pool of indices of the Partners genotyped subjects as a
training dataset (selected uniformly at random), that is a proportion p of the rows of X and
corresponding entries of y (r is updated using X and y) and fit an integrated risk model
using Equation (1) to these training subjects with the aforementioned methods. In the case
of the neural network, we use the training dataset to tune its hyperparameters. Finally, we
evaluate the performance of all methods on the unseen proportion 1− p of the data, that is
we compute an estimate of the outcome y with the help of Equation (1) on the unseen data,
and compare the outcome estimate to the true outcomes. We report the mean of absolute
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residuals 1
n ∑n

i=1 |ri| (where n is the number of subjects in the validation set and ri is the
residual for subject i), the AUC (Area under the ROC Curve), and the correlation between
predicted and true outcomes.

Figure 1 shows results for the dataset of [13]. A series of observations are noteworthy.
First, the mean of absolute residuals decreases with an increasing proportion of the data
used for training, as expected.

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

proportion used for training

m
ea

n 
of

 a
bs

ol
ut

e 
re

si
du

al
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lassosum
LDpred2
PRScs
Glmnet
Lasso
SmoothedLasso
SBayesR
MegaPRS
EpiOnly
SmoothedLassosum
NeuralNetwork

A

0.
2

0.
4

0.
6

0.
8

1.
0

proportion used for training

A
U

C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lassosum
LDpred2
PRScs
Glmnet
Lasso
SmoothedLasso
SBayesR
MegaPRS
EpiOnly
SmoothedLassosum
NeuralNetwork

B

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

proportion used for training

co
rr

el
at

io
n 

be
tw

ee
n 

pr
ed

ic
te

d 
an

d 
tr

ue
 o

ut
co

m
es

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lassosum
LDpred2
PRScs
Glmnet
Lasso
SmoothedLasso
SBayesR
MegaPRS
EpiOnly
SmoothedLassosum
NeuralNetwork

C

Figure 1. Dataset of clinically defined AD cases of [13]. Mean of absolute residuals (A), AUC (B),
and correlation between predicted and true outcomes (C) as a function of the proportion of data used
for training. Plotted with jittering.

Second, the AUC is very high (reaching almost 0.80) for all methods apart from
Lassosum, Lasso, and NeuralNetwork. Interestingly, it is much less affected than the
residuals by the proportion of data used for training and stays essentially constant for all
training proportions. This is in line with previous observations that the AUC is invariant
to the prior class probabilities [57]. A similar picture is observed when looking at the
correlation between predicted and true outcomes, which is roughly equally high for all
methods apart from Lassosum, Lasso, and NeuralNetwork. After training, NeuralNetwork
achieves a very low mean of absolute residuals, though its AUC and its correlation between
predicted and true outcomes somewhat lacks behind the other methods. This is likely
a result of the binary cross-entropy loss, which implicitly tunes the behavior towards
low residuals. Tensorflow allows for the specification of other loss functions (such as
the mean absolute error loss or AUC), though for a binary response the binary cross-
entropy loss is a natural choice. NeuralNetwork does manage to achieve an increased
performance for higher proportions of training data (in both the AUC metric and with
respect to the correlation between predicted and true outcomes). This can be explained
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with the observation that neural networks typically have many more parameters than
conventional methods and thus traditionally require larger amounts of data to be trained
on. For instance, the number of nodes per layer, the activation function, dropout rate, etc.
per layer all depend on how many layers were chosen in the first place can be freely tuned,
thus quickly resulting in large numbers of parameters.

Third, using epidemiological covariates only in a simple linear regression fit seems
to perform very well on this dataset. This seems to suggest that actually, the response is
well explained by the genetic factor of APOE status as well as the other non-genetic factors
(such as age), and that the remaining genetic information is rather negligible for prediction.

Fourth, our proposed SmoothedLassosum considerably improves upon Lassosum
of [7], now drawing equal with state-of-the-art methodology such as LDpred2 with respect
to, e.g., the AUC measure. Moreover, our proposed SmoothedLassosum achieves a consid-
erably improved mean of absolute residuals compared to Lassosum, and a state-of-the-art
correlation between predicted and true outcomes. The reason for the reduced performance
of Lassosum is not fully understood. However, it is likely related to the fact that Lassosum
is not designed to incorporate epidemiological covariates (see Section 4 for more details).

The results for the dataset of [14], reported in Figure 2, are almost identical to the ones
for the dataset of [13] in Figure 1. In particular, the Lassosum, Lasso, and NeuralNetwork
algorithms generally have the weakest performance on this dataset, while the other methods
perform equally well. Importantly, SmoothedLassosum considerably improves upon
Lassosum by achieving a mean of absolute residuals, AUC, and correlation between
predicted and true outcomes that is similar to the others methods.
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Figure 2. Dataset of AD-by-proxy phenotypes of [14]. Mean of absolute residuals (A), AUC (B),
and correlation between predicted and true outcomes (C) as a function of the proportion of data used
for training. Plotted with jittering.



Genes 2022, 13, 112 11 of 18

The similarity between Figures 1 and 2 is expected. The two experiments differ only
in the way the response (AD status) is defined. The response provided in [13] consists of
clinically defined AD cases, while the one in [14] contains AD-by-proxy phenotypes which
are based on 13 independent GWS loci having a strong genetic correlation of (at least) 0.81
with the AD status.

3.2. COPD Study

The datasets considered in Section 3.1 are characterized through binary outcomes.
In this section, we consider a continuous response in the context of Chronic Obstructive
Pulmonary Disease (COPD). To be precise, we look at the COPDGene study in [15], a case–
control study of COPD in current and former smokers which has been sequenced as part of
the TOPMed Project.

The dataset we consider contains TOPMed WGS data of smokers with COPD, selected
as having an age at enrollment of 45–80 years, a smoking history of at least 10 pack-
years, non-Hispanic White or non-Hispanic African American descent, and a diagnosis of
COPD Stages 2, 3, and 4 by GOLD criteria (post-bronchodilator FEV1/FVC < 0.70 and
FEV1 < 80% predicted), where FEV1 is defined as the air volume in liters a person can
exhale during the first second of a forced expiration, and FEV1/FVC (also called Tiffeneau–
Pinelli index) is the proportion of a person’s vital capacity that they are able to expire in the
first second of forced expiration (FEV1) to the full forced vital capacity (FVC), see in [58].
We focus on chromosome 15 and consider the risk loci for spirometric measures which
have been identified in [59]. Overall, we consider 8881 loci of 3495 individuals.

We aim to predict the raw FEV1 value from the WGS data and four epidemiological
covariates, that is, in this section we fit an integrated risk model using individual-level
data only. The final data used for the computation of the integrated risk models consists
of the raw FEV1 value (the quantity y in Equation (1)) and the 8881 loci plus age, sex,
pack-years of smoking, and height (the quantity X in Equation (1) from which r = X>y
can be computed). As in Section 3.1, we use a classic training (proportion p ∈ (0, 1)) and
validation (proportion 1− p) setup. Precisely, we only consider a randomly drawn pool of
proportion p of the rows of X and corresponding entries of y for fitting the integrated risk
model using Equation (1). After fitting, we compute an estimated outcome by evaluating
Equation (1) on the unseen rows of X and entries of y, allowing us to compare predicted
and true outcomes. We apply all algorithms as outlined in Section 3. As the AUC is only
defined for a categorical response, we only report the mean of absolute residuals and the
correlation between predicted and true outcomes.

Results of this experiment are given in Figure 3. We observe that measurements are
overall more unstable than in Section 3.1, though as usual, the mean of absolute residuals
in Figure 3A decreases with an increasing proportion of the data used for training.

Lassosum is again not performing at its best, which is likely related to the fact that we
are aiming to predict a continuous response (see Section 4 for more details). The Lasso and
SmoothedLasso approaches are better, showing a good and robust performance throughout
all training proportions, although they do not reach the performance of methods such as
LDpred2 or PRScs. Together with LDpred2 and PRScs, our proposed SmoothedLassosum
approach performs very well and again considerably improves upon the original Lassosum.
Glmnet is again one of the best methods together with SBayesR, MegaPRS, though a fit of
epidemiological covariates only also seems to have high predictive power. NeuralNetwork
seems to be very suited in this experiment to learn the continuous FEV1 responses from the
input data.

The correlation between predicted and true outcomes, shown in Figure 3B, con-
firms that most state-of-the-art algorithms achieve a comparable correlation of around
0.6. The performance of our SmoothedLassosum is slightly worse than those methods
with regards to the correlation between predicted and true outcomes, though it again
considerably improves upon Lassosum (as well as Lasso and SmoothedLasso) which seem
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to have difficulties to predict the continuous FEV1 response from this data (see Section 4
for more details).
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Figure 3. Dataset of the COPD study of [15]. Mean of absolute residuals (A) and correlation between
predicted and true outcomes (B) as a function of the proportion of data used for training.

4. Discussion

This article considered the calculation of an integrated risk model by minimizing a
smoothed version of the Lassosum objective function (see Equation (1)) introduced in [7].
Utilizing a smoothing approach circumvents the non-differentiability of the L1 penalty of
Lassosum, thus allowing for an efficient minimization with quasi-Newton algorithms. Our
proposed smoothed Lassosum approach can be applied to both summary statistics and
individual-level data.

An experimental study on Alzheimer’s disease and COPD demonstrates that our
smoothed Lassosum improves upon the original Lassosum of [7], measured with respect
to the mean of absolute residuals, the AUC, and the correlation between predicted and
true outcomes, thus making it draw equal in accuracy with state-of-the-art approaches (for
the datasets under consideration). The reduced performance of Lassosum we observe in
the real data applications is likely attributed to the fact that (a) Lassosum is not designed
to incorporate epidemiological covariates in integrated risk models, and (b) Lassosum is
not designed for continuous responses (as in the COPD study), which occurs, for instance,
when regressing out epidemiological covariates and using the residuals as input to Las-
sosum. In particular, in its original formulation in [7], Lassosum only considers genotype
data X, and the incorporation of additional covariates is not possible in the Lassosum
R package [40]. Moreover, although recomputing the SNP-wise correlation r = X>y in
Equation (1) and using them in place of y is a valid approach, the distribution of residu-
als is different from the one of the original binary response (without regressing out the
covariates), which might cause a suboptimal behavior of the Lassosum algorithm. For in-
stance, it is not guaranteed any more that each entry of r lays in the open interval (−1,+1)
for arbitrary y, and it is not straightforward how to transform the input to comply with
this condition. In contrast, our smoothed Lassosum works well for both epidemiological
covariates and continuous responses.

Using an L1 penalty in Equation (1) has the advantage that, in analogy to the original
Lasso of [18], computing arg minβ∈Rp L(β) performs both regression of the polygenic
risk score or integrated risk model and variable selection simultaneously. One potential
drawback of our proposed smoothed Lassosum is that it yields dense minimizers (i.e.,
unused predictors are not necessarily shrunk to zero), meaning that the variable selection
property is not preserved. This is not necessarily a disadvantage, as usually the fitted
models are only used for risk prediction, for which our dense models achieve a high
accuracy. Moreover, other widespread methods such as neural networks likewise do not
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provide variable selection. If necessary, sparseness can be restored after estimation via
thresholding, meaning that all entries βi of the estimate β of Equation (1) satisfying |βi| < τ
for some threshold τ are set to zero, although this might also cause a decrease in predictive
performance [60]. Determining an optimal threshold, as well as the trade-offs incurred
compared to working with dense polygenic risk scores, remains for future research.

5. Conclusions

We observe that for the prediction of Alzheimer’s disease and COPD, computing
an integrated risk model involving genetic information provides little benefit in addition
to using epidemiological covariates only. In [61], the authors show that the odds ratio
achieved by current polygenic risk scores is too small to warrant their usage as a screening
method, and that it would be equally sensible to offer the intervention regardless, given it
is effective and inexpensive. In the case of Alzheimer’s disease and COPD, this means that
the usage of an integrated risk model is only sensible for costly treatments.

Additional genotype data used in the simulations is available from the Partners
Biobank [48]. The summary statistics in [13,14] used in the simulations are available online,
see in [62,63].
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Appendix A. Principal Component Plots

Figures A1 and A2 show the first eight principal components of the HRC-imputed
genotype data downloaded from Partners Biobank. All individuals we kept in the dataset
are self-reported non-Hispanic white (NHW) individuals. We excluded outliers which
are at least 5 standard deviations away from the mean value of each of the ten principal
components. In Figure A1, we observe a negligible amount of stratification based on the
genotyping chip, but given the even distribution of cases/controls across chips displayed
in Figure A2; this should not affect the results. Figure A3 shows a projection of our dataset
onto the reference 1000 Genomes populations with bigsnpr, indicating that our dataset is
clustered within the European population of 1000 Genomes.
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Figure A1. First eight principal components of the HRC-imputed genotype data downloaded from
Partners Biobank. Stratification by genomic chip.

Figure A2. First eight principal components of the HRC-imputed genotype data downloaded from
Partners Biobank. Stratification by affection status.

Figure A3. Using bigsnpr we have projected our dataset onto the reference 1000 Genomes populations.
As the readers can see now, our dataset is clustered within the European population of 1000 Genomes.
The population acronyms are: AFR (Africa), AMR (America), EAS (East Asia), EUR (Europe), SAS
(South Asian).
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Table A1. TOPMed Omics Support Table. Broad Genomics = Broad Institute Genomics Platform.
NWGC = Northwest Genomics Center.

TOPMed TOPMed Study TOPMed TOPMed Omics Center Omics Support Omics Type
Accession # Short Name Phase Project Short Name

phs000951 COPDGene 5 COPD NWGC HHSN268201600032I Methylomics
phs000951 COPDGene 2.5 COPD Broad Genomics HHSN268201500014C WGS
phs000951 COPDGene 1 COPD NWGC 3R01HL089856-08S1 WGS
phs000951 COPDGene 2 COPD Broad Genomics HHSN268201500014C WGS
phs000951 COPDGene 4 COPD NWGC HHSN268201600032I RNASeq
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