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Abstract

Emulating the highly resource-efficient processing of visual motion information in the brain

of flying insects, a bio-inspired controller for collision avoidance and navigation was imple-

mented on a novel, integrated System-on-Chip-based hardware module. The hardware

module is used to control visually-guided navigation behavior of the stick insect-like hexapod

robot HECTOR. By leveraging highly parallelized bio-inspired algorithms to extract near-

ness information from visual motion in dynamically reconfigurable logic, HECTOR is able to

navigate to predefined goal positions without colliding with obstacles. The system drastically

outperforms CPU- and graphics card-based implementations in terms of speed and

resource efficiency, making it suitable to be also placed on fast moving robots, such as flying

drones.

Introduction

A prerequisite for autonomous behavior in mobile robots is the ability to navigate in cluttered

terrain without colliding with obstacles. This ability requires an agent to process sensory infor-

mation in order to generate appropriate motor commands. Nowadays autonomous mobile

robots rely on active sensors (e.g. laser range finders, [1]) or extensive computations (e.g.

Lucas-Kanade optic flow computation, [2]) to acquire and process relevant environmental

information. Insects—despite their relatively small body size—show a remarkable behavioral

performance when navigating in cluttered environments with minimal energy and computa-

tional expenditure. It seems plausible, that the application of these navigational abilities on a

mobile robot also requires a resource-efficient approach. An important source of information

for navigation is the extraction of visual motion cues from optic flow (i.e. the field of retinal
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image velocities during ego-motion or motion of objects in the environment), as it provides an

agent with information about self-motion, moving objects, and also about the three-dimensional
structure of the environment [3]. In flying insects the processing of optic flow has been shown

to be relevant in the control of flight stabilization, object detection, visual odometry and spatial
navigation [4–7]. From an engineer’s perspective the underlying mechanisms for processing

optic flow are of great interest as they might help to reduce energy expenditure and to over-

come computational restrictions of conventional approaches in robotic vision and behavioral

control [8].

In this study, a highly resource- and energy-efficient embedded hardware platform is

presented which was specifically designed to perform insect-inspired visual processing on

autonomous mobile robots. The platform is based on the Xilinx Zynq architecture, a reconfi-

gurable system on chip (SoC) combining a field programmable gate array (FPGA) and a dual-

core ARM Cortex-A9 processor in a single chip. Standard optical flow implementations have

already been realised on the Zynq architecture providing high performance to power ratios

combined with high flexibility using HLS (High Level Synthesis) [9]. Within this project, the

bio-inspired visual processing on the FPGA is realised using VHDL (Very High Speed Inte-

grated Circuit Hardware Description Language), which enables a high potential for optimiza-

tion in terms of performance and resource utilization. Additional to the embedded hardware

platform a high-speed panoramic camera system allows to emulate the wide field of vision of

flying insects. To assess the performance of the embedded processing platform in a real-

world scenario the system is used to control visual collision avoidance and navigation behav-

ior on the insect-inspired hexapod walking robot HECTOR (Fig 1A; [10, 11]). Recent work

on hexapod robots focusses on different aspects, such as manufactuability [12], different gaits

preferable for climbing [13] or bio-inspired visually guided navigation [14]. Due to the

mechanical coupling to the ground the application of visually guided navigation on a walking

Fig 1. (A) The hexapod walking robot HECTOR is inspired by the stick insect Carausius morosus. For its design, the relative

positions of the legs as well as the orientation of the legs’ joint axes have been adopted. The size of the robot has been scaled up by a

factor of 20 as compared to the biological example which results in an overall length of roughly 0.9 m. All 18 drives for the joints of

the six legs are serial elastic actuators. The mechanical compliance of the drives is achieved by an integrated, sensorized elastomer

coupling. The bio-inspired control of walking is achieved via a conversion of the WALKNET approach. Bottom view (B) and

rendered side view (C) of the front segment of HECTOR. The upper compartment of HECTOR’s front segment has been equipped

with a panoramic camera system and an embedded hardware module for processing of visual information. This allows the robot to

perform visually-guided tasks such as collision avoidance or navigation.

https://doi.org/10.1371/journal.pone.0230620.g001
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rather than a flying system is challenging as stride-coupled motion of the camera might

obfuscate nearness estimation from optic flow [15]. The controller architecture implemented

on the embedded hardware module [16] comprises a simple model for insect-inspired visual

collision avoidance which has been proposed recently [17]. In contrast to bio-inspired

approaches using binocular vision [18] or models of visual motion processing in cortical areas
[19] the model presented here is based on the extraction of nearness information from optic
flow using so-called correlation-type elementary motion detectors (EMDs, [20]). EMDs can be

used to model the neuronal mechanisms for estimating optic flow in flying insects [21, 22],

avian [23] and other vertebrate species including man (for review, see [24]). The responses of

EMDs to pure translational optic flow have been concluded to resemble a representation of

the relative contrast-weighted nearness to objects in the environment, or, in other words, of

the contours of nearby objects [16, 25–28]. The collision avoidance model (a) extracts near-
ness information from optic flow by EMDs, (b) determines a collision avoidance direction
from the map of nearness estimates and (c) computes a collision avoidance necessity, i.e.

whether to follow (i.e. potential obstacles are close) or not to follow the collision avoidance

direction (i.e. potential obstacles are still rather distant). When coupled with a goal direction,

the algorithm has been shown to successfully guide HECTOR to a goal in different simulated

cluttered environments while avoiding collisions with obstacles [16]. In this study, the above

introduced, bio-inspired algorithms are implemented on a dedicated, resource-efficient

hardware and their performance with respect to obstacle avoidance and navigation is opti-

mized in simulation and tested in a minimal real-world scenario with one obstacle in an oth-

erwise visually cluttered environment.

Embedded hardware platform for bio-inspired visual processing

Insect vision is characterized by a wide field of view, low image resolution and an efficient neu-

ral processing of visual information based on the comparatively small computational power of

an insect brain. These aspects are mirrored in the presented hardware that was designed to

work on mobile platforms like the walking robot HECTOR (Fig 1A). The hardware offers high

flexibility and can be deployed as a universal platform for implementing bio-inspired vision

algorithms. An integrated high frame rate, high resolution camera allows the adjustment of

frame rate and resolution over a wide range of parameters, enabling scalability towards a large

number of vision processing approaches. To meet the abilities of the biological example, the

hardware platform makes use of raw images from the CMOS-chip and reduces resolution and

frame rate to low values efficiently. The preprocessed images are subsequently fed into a bio-

inspired model for the processing of visual motion. The hardware platform is mounted in the

upper compartment of HECTOR’s front segment (Fig 1B and 1C) and consists of a processing
module, a carrier board providing physical interfaces and power-management functionality, as

well as a high-speed camera system equipped with a panoramic fisheye lens. The main compo-

nents of the system are described in the following.

Processing module

The processing module (Fig 2B) is based on the Apalis Computer on Modules (CoM) standard

(Toradex, Horw, LU, Switzerland) and comprises a Zynq XC7Z020-CLG484 SoC (Xilinx, San

José, CA, USA) with 1GByte external DDR3 Memory for image processing tasks. The Zynq

architecture features a dual-core ARM Cortex-A9 processor running at 667MHz and an Artix-

7 based reconfigurable fabric on a single chip. The ARM-CPU and the reconfigurable logic

share an AXI communication bus, which allows for high bandwidth and low-latency commu-

nication between the on-chip devices. Furthermore, a 16-core Adapteva Epiphany multicore
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Fig 2. (A) The dedicated hardware module for bio-inspired vision processing consists of a carrier board—providing

physical interfaces and power-management functionality—as well as an Apalis Zynq processing module. (B) The Apalis

Zynq processing module is based on a Zynq-7000 SoC and provides a dual-core ARM Cortex-A9 processor, an Artix-7
based programmable FPGA fabric, as well as an Epiphany multicore coprocessor. The processing module allows the

highly efficient implementation of bio-inspired algorithms for the processing of visual information provided by the

camera system.

https://doi.org/10.1371/journal.pone.0230620.g002
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coprocessor (Epiphany E16G301, Adapteva Inc., Lexington, MA, USA) that is directly coupled

to the programmable logic of the Zynq-SoC allows for additional processing power. In addi-

tion, a dedicated low-power microcontroller (ATxmega128A4U, Atmel Corporation, San José,

CA, USA) on the module facilitates power monitoring at runtime.

Carrier board

For the integration of the processing module in HECTOR, a modular embedded architecture

(carrier board) has been developed (Fig 2A). The architecture is scalable with respect to its sen-

sor and actuator interfaces and can be easily extended by new processing systems. As a result,

the carrier board can be utilized for a wide range of applications. The architecture allows the

integration of two Apalis-based CoMs and provides the interfaces for the integration in HEC-

TOR as well as the power supply for the processing modules. To gain further flexibility and

compatibility to different robotic platforms, the carrier board is equipped with a broad range

of system interfaces (e.g. Gigabit Ethernet, USB, HDMI, CAN, SPI, I2C, UART). Moreover,

two serial (CSI) and parallel (CPI) camera interfaces allow for a resource- and energy-efficient

image data transmission since the data transmission is realized by transferring only the raw

image data without additional protocol overhead.

High-speed panoramic camera system

For the acquisition of images a VITA 2000 camera module (VITA 2000 NOIV1-

SE2000A-QDC, ON Semiconductor, Phoenix, AZ, USA) is used. The camera module sup-

ports frame rates of up to 1730 fps and a resolution of 1920x1080 pixels. Although for the

visual collision avoidance and navigation model implemented on HECTOR a frame rate of

20Hz at a resolution of 128x30 pixels proved to be sufficient, a high-speed camera has been

chosen, allowing for the implementation of a wide variety of vision processing algorithms,

possibly requiring higher frame rates. The VITA 2000 camera is attached to HECTOR’s

front segment and is directly coupled to the programmable logic of the Zynq device. The

camera’s CMOS sensor delivers images in a raw format (Color Bayer Pattern, 8/10 bit per

pixel, linear mode, 60 dB dynamic range) so that no additional protocol overhead is

required, resulting in a resource-efficient and frame rate independent image data transmis-

sion without storing the incoming image. For internal data transmission, three different

AXI-based communication mediums are used inside the FPGA implementation: The

AXI-HP bus is used for high data rates, meanwhile the AXI4-Lite bus serves for controlling

aspects with lower data rates. Both AXI buses act as an interface between the FPGA and the

dual-core CPU inside the Zynq. The third AXI-bus consisting of the AXI4-Stream interfaces

the individual bio-inspired IP-Cores to transmit the visual data in a resource-efficient way.

The Camera Receiver core inside the FPGA (see Fig 4) allows access to the image data of the

camera via an AXI4-Stream bus [29] and furthermore enables the configuration of the cam-

era via the processing system by means of an AXI4-Lite bus. Additionally, the camera is

equipped with a non-linear fisheye lens (Lensagon BF2M2020S23, Lensation GmbH, Karls-

ruhe, Germany) with a circular field of vision (FOV) of 195˚ to emulate the wide field of

view of flying insects [30]. The weight of the dedicated embedded hardware module (Fig 2A)

merely amounts to 178 g with a size of 10 cm x 4.2 cm x 8 cm. The related camera module

containing the fisheye lens (Fig 1C) contributes additional 39 g and a size of 3 cm x 4 cm x 4

cm to the overall visual processing system that results to a total weight of 252 g, including

the high-speed camera cable (Fig 1B).
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Vision-based direction controller

To enable HECTOR to navigate in cluttered environments a vision-based direction controller

framework (Fig 3; [16]) was implemented on the embedded hardware platform. The controller

is based on a recently proposed model for insect-inspired visual collision avoidance [17]. In a

previous simulation study it could be shown that the controller framework enables HECTOR

to successfully navigate to goal positions in different cluttered environments while avoiding

collisions solely based on the extraction of nearness information from optic flow. The control-

ler processes the sequences of images obtained from the panoramic camera system based on

four consecutive steps (Fig 3; see [16]):

1. preprocessing of images, in order to emulate the characteristics of the visual input of flying

insects,

2. estimation of a relative nearness map by processing of optic flow via EMDs,

3. computation of a collision avoidance direction based on the relative nearness of objects and

a goal direction, and

4. controlling the walking direction of the robot.

The hardware-based realization of the pixel-based processing that consists of the processing

steps a)—b) is realized inside the FPGA of the Zynq SoC, while the feature extraction described

Fig 3. The controller framework used for implementing the visual collision avoidance model in simulation and on the

embedded hardware module [16]. The dashed box (Vision-Based Direction Controller) indicates the algorithm used for controlling

HECTOR’s behavior based on nearness estimation from optic flow.

https://doi.org/10.1371/journal.pone.0230620.g003
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in c) is implemented on the dual-core CPU of the Zynq. This hardware-software-partitioning

allows a highly resource-efficient parallelized implementation of the bio-inspired visual pro-

cessing. The final processing step d) is outsourced to the main processing system placed in the

middle segment of HECTOR. The details of all processing step are described in the subsequent

sections. The respective processing cores inside the FPGA were implemented using the hard-

ware description language VHDL.

Preprocessing of images

Flying insects, such as flies or bees, are able to perform complex visually-guided behaviors with

a minimum of neuronal computing power. Hence, in the vision-based direction controller

used to control collision avoidance and navigation behavior on HECTOR [16] aspects of the

early visual stages of the visual system of flies are adopted. Due to the large panoramic visual

field and the low spatial resolution of the visual system of flies [30] the computational require-

ments of processing optic flow can be reduced, since optic flow induced on the retina by self-

motion or motion in the environment can be processed with a relatively small number of

computational units. Hence, the preprocessing of camera images is based on a) remapping and
scaling of the visual input to emulate the relatively low spatial resolution of the fly’s compound

eye, as well as, b) brightness adaptation to varying light intensities, such as performed by pho-

toreceptors and peripheral visual interneurons [31, 32], which allows flies to navigate their

environment even under dynamic brightness conditions [26].

Remapping and scaling. The non-linear fisheye lens attached to the camera possesses dis-

tortion characteristics, that visually enlarges objects along the optical axis of the lens. Objects

near the periphery occupy a smaller area of the image. Thus, objects in the vicinity of the opti-

cal axis are transmitted with much greater detail than objects in the peripheral viewing region,

which obfuscates nearness estimation from optic flow. Hence, images obtained from the fish-

eye lens are remapped to a rectilinear representation [33] according to

Ru ¼ f � tan 2 � arcsin
Rd

2f

� �

; ð1Þ

where Ru represents the undistorted radial pixel position after remapping, Rd the radial pixel

position in the image obtained from the camera and f the focal length of the fisheye lens.

The compound eye of insects consists of a two-dimensional array of hexagonally aligned

ommatidia comprising the retina. Each ommatidium consists of a lens that forms an image

pixel of the surrounding world onto the top of a rhabdom, a light-guiding structure of photo-

pigment-containing membrane that is formed by a small number of photoreceptor cells [34].

The image points sensed by the hexagonally arranged ommatidia form the actual images that

serve as the input into the visual system. Although blowflies possess color vision, evidence sug-

gests that the pathways involved in motion detection are monochromatic [35]. Therefore, only

the green color channel of the camera images is used. To mimic the relatively low spatial reso-

lution of the compound eyes of flies [30], each camera image is scaled down to a rectangular

grid of photoreceptors with an interommatidial angle of 1.5˚, resulting in an array of 128x30

pixels (i.e. luminance values) covering a field of view of 192˚ horizontally and 45˚vertically

[16].

The remapping and pixel-wise downscaling of the camera images is implemented in the

ReMap core on the FPGA (see Fig 4). The stream-based processing of the image data is realized

using a look-up table (LUT), thus enabling a frame rate independent (low latency) processing.

The MATLAB toolbox OCamCalib [36] was used for the generation of the mapping table and

the corresponding coefficient files that are stored in the internal memory of the FPGA. This
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stream-based approach based on mapping tables significantly reduces the required storage by

a factor of 28 inside the FPGA compared to the direct computation of the image remapping.

Since the remapping is directly performed on the incoming video stream, no memory is

required for data buffering.

Brightness adaptation. Facing a vast dynamic range of light intensities, visual systems

have to adjust their operating range according to the prevailing light conditions. The sensitivity
adaptation (SA) core (see Fig 4) implemented on the FPGA adopts the mechanism of bright-

ness adaptation of the photoreceptors and the early processing stages of the visual system of

insects. Since photoreceptors have to cope with a wide range of light intensities, while their

operating range is limited, they adjust their sensitivity dynamically to the current brightness

level [31, 32]. In contrast to the insect’s visual system the brightness adaptation is implemented

globally within the SA core using gamma correction, which maps an input image g to a bright-

ness-adapted image g0:

g 0ðgÞ ¼ wmax �
g � wmin

wmax � wmin

� �gc

þ wmin: ð2Þ

The maximum value of the prevailing light intensity is indicated by wmax, the minimum by

wmin, respectively. The gamma value γc depends on the mean value of the input image gmean as

well as the mean value of the dynamic light intensity range and can be adjusted dynamically

Fig 4. The bio-inspired vision processing framework implemented in HECTOR is realized by the novel Apalis Zynq CoM

(green box). The processing of the image data is implemented within the Xilinx Zynq SoC (blue box) consisting of a programmable

logic (FPGA) and a dual-core CPU (ARM Cortex-A9). The computationally expensive steps of the vision-based direction controller

are implemented via FPGA-based IP-Cores while the remaining processing steps are implemented in software on the CPU.

(Explanation of abbreviations: CSI: Camera Serial Interface; SPI: Serial Periphal Interface; ReMap: Remapping and downscaling

IP-Core; SA: Sensivity Adaption IP-Core; μr: Contrast-weighted relative nearness Map IP-Core; HPF: High-Pass Filter IP-Core; LPF:

Low-Pass Filter IP-Core; EMD: Elementary Motion Detector IP-Core; ME: Motion Energy IP-Core; ANV: Average Nearness Vector

IP-Core; VDMA: Video Direct Memory Access IP-Core; AXI-Lite: Advanced eXtensible light-weight Interface Bus; AXI-HP:

Advanced eXtensible high-performance Interface Bus).

https://doi.org/10.1371/journal.pone.0230620.g004

PLOS ONE Bio-inspired visual processing on a walking robot

PLOS ONE | https://doi.org/10.1371/journal.pone.0230620 April 1, 2020 8 / 25

https://doi.org/10.1371/journal.pone.0230620.g004
https://doi.org/10.1371/journal.pone.0230620


according to

gc ¼
gmean

wmean
: ð3Þ

Gamma correction is implemented within the FPGA via a gamma correction IP-Core pro-

vided by Xilinx. The mean luminance value of the input image gmean is calculated for each

frame by the ReMap core and then read by the SA core via the AXI4-Lite bus (Fig 4). Based on

the mean luminance value, the computation of the gamma value γc and the gamma correction

are performed by the processing system. Finally, the updated mapping function is written to

the SA core via an AXI4-Lite bus. The range of ambient light conditions HECTOR is able to

compensate for equals 56 dB by using 8 bit per pixel resolution and 60 dB for 10 bit resolution.

Compared to 8 bit resolution, the precision of the measured light intensity increases by a factor

of 4 when 10 bit resolution is applied. Therefore, the use of 10 bit per pixel resolution is advan-

tageous for the brightness adaption, especially in low-contrast environments. In natural envi-

ronments with high contrast the 8 bit variant is adequate with respect to brightness adaptation

and beneficial in terms of resource efficiency.

Processing of optic flow

In flying insects as well as in vertebrate species, optic flow is estimated by a mechanism that

can be modelled by correlation-type elementary motion detectors (EMDs; [20]). In the vision-

based direction controller [16], optic flow estimation is based on two retinotopic arrays of

either horizontally or vertically aligned EMDs. Individual EMDs are implemented on the

FPGA within the EMD core (Fig 4) by a multiplication of the delayed signal of a receptive

input unit with the undelayed signal of a neighboring unit. Only interactions between direct

neighbors are taken into account for both horizontally and vertically aligned EMDs. The lumi-

nance values from the photoreceptors are filtered with a first-order temporal high-pass filter

(HPF core; τhp = 20 ms) to remove the mean from the overall luminance of the input. The fil-

tered outputs are subsequently fed into the horizontally and vertically aligned EMD arrays.

The delay operator in each halfdetector is modelled by a temporal first-order low-pass filter

(LPF core; τhp = 35 ms). The time constants τhp and τlp are adjustable by the processing system

via the AXI4-Lite bus during runtime. Each EMD consists of two mirror-symmetric subunits

with opposite preferred directions. Their outputs are subtracted from each other. For each reti-

notopic unit the motion energy μr(x, y) [25] is computed within the motion energy (ME) core

(see Fig 4) by taking the length of the motion vector given by the combination of the responses

of a pair of the horizontal hEMD and the vertical vEMD at a given location (x, y) of the visual

field according to

mrðx;yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
EMDðx; yÞ þ h2

EMDðx; yÞ
p

: ð4Þ

The array of the absolute values of these local motion vectors μr due to translatory self-

motion resembles a map of contrast-weighted relative nearness to objects in the environment,

providing information on the contours of nearby objects [25, 26].

Computation of the collision avoidance direction

Once the relative nearness map μr has been computed, collision avoidance is achieved by mov-

ing away from the maximum nearness value (e.g. objects that are close). However, the con-

trast-weighted nearness map also depends on the textural properties of the environment. To

reduce the texture dependence, the nearness map is averaged along the elevation � in the ANV
(average nearness vector) core on the FPGA (see Fig 4), giving the average nearness for a given
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azimuth ϕ [17]. Each of these averaged nearness values can be represented by a vector in polar

coordinates. The norm of this vector is the averaged nearness and its angle corresponds to the

azimuth. The averaged nearness values are transmitted to the ARM-processor via an AXI-High

Performance port into an additional video direct memory access core (VDMA). The sum of

these vectors points towards the average direction of close objects. This vector is denoted cen-
ter-of-mass-average-nearness-vector (COMANV, [17]) and is computed by the ARM Cortex-

A9 processor based on the output data of the ANV core:

COMANV ¼
P

cos ð�Þ

sin ð�Þ

0

B
B
B
@

1

C
C
C
A

1

n

X
mr �; �ð Þ

0

B
B
B
@

1

C
C
C
A
: ð5Þ

The parameter n describes the number of elements in the azimuth. The inverse of the

COMANV vector, scaled to the horizontal field of view θ of the photoreceptor array, points

away from the closest object and, thus, can be used as the direction of the robot to avoid colli-

sions (collision avoidance direction, CADfov, [16, 17]):

CADfov ¼
� arctan ðCOMANVy;COMANVxÞ

2p

y

: ð6Þ

The length of the COMANV vector increases with nearness and apparent size of objects. Its

length is a measure of the collision avoidance necessity CAN:

CAN ¼k COMANV k : ð7Þ

The CADfov as well as the CAN value are calculated by the ARM-Processor and then trans-

mitted to HECTOR’s central processing system via Ethernet.

Controlling the walking direction

In the vision-based direction controller the CAN-measure and the collision avoidance direc-

tion CADfov obtained from the embedded processing platform is used to control the heading

direction γ of the robot to compromise between avoiding collisions and following the direction
to a goal [16]:

g ¼WðCANÞ � CADfov þ ð1 � WðCANÞÞ � a: ð8Þ

W is a sigmoid weighting function based on the CAN:

WðCANÞ ¼
1

1þ
CAN
n0

� �� g ;
ð9Þ

and driven by a gain g and a threshold n0 [17]. To reduce the influence of abrupt directional

changes induced by the estimation of the CAD from optic flow the heading direction γ is fil-

tered with a temporal first order low-pass filter (τlp = 20 ms). The temporally filtered heading

direction γlp is subsequently used to directly control the walking direction of HECTOR. The

walking controller is based on the WALKNET concept of Cruse [37, 38]. In this concept, the

legs are separate agents that independently carry out swing and stance movements. In order to

obtain a coordinated walking pattern, neighboring legs exchange information about their

current state and evaluate it with the so-called coordination rules [37]. The information
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exchanged between the legs includes, for example, whether a leg is in its swing or stance phase,

the distance of the leg from its lifting point (swing to stance transition) or the strength of its

momentary mechanical load. In addition to the coordination to achieve a cyclical, adaptive

walking pattern, the locomotion itself must also be given a direction. In concrete terms, this

means that all legs in their stance phase must choose the direction of their stance movement in

such a way that the central robot body moves in the desired direction. This goal is achieved

with the help of an internal body model, which represents the kinematic structure of the robot

(see Fig 5A).

In order to specify a walking direction, pull points (p0, p1, blue) are defined centrally

between the attachment points of the front and hind legs. The connection line between the

two pull points (p0, p1) represents the longitudinal axis of the robot’s body. At both pull points,

a control vector with the angle γ (heading direction) relative to the body axis is constructed.

The length of the control vector correlates with the desired movement speed of the robot. As

shown in Fig 5B and 5C, the pull points (p0, p1) are shifted according to the control vector

(p0
0
; p0

1
) and their distance is then normalized to the robot length. Since the positions of all foot

points of legs with ground contact must be maintained, the body model can be used to deter-

mine the corresponding displacement vectors for the individual legs and to generate individual

stance movements (Fig 5D). Thus, a path trajectory for the longitudinal axis of the robot body

is obtained, as exemplary shown in Fig 5E. The explicit version of the body model used here

can also be replaced by a body model based on neural networks [39].

For the control of visual collision avoidance of HECTOR, the temporally low-pass filtered

heading direction γlp is fed into the walking controller. However, due to the camera’s restricted

horizontal field of view, no information on the nearness of objects outside of the field of view

can be obtained. Nevertheless, as the camera is pointing forward along the direction of walking

during translation, information on the nearness of objects sidewards or behind the robot is not

essential. In situations where the goal direction α does not reside within the field of view, the

CAN is set to zero, effectively inducing a turn of the robot until the goal direction lies within

the camera’s field of view [16].

Visual collision avoidance in a real-world scenario

The performance of the collision avoidance and vision-based direction control on the embed-

ded processing platform was assessed in a confined experimental navigation task (see Fig 6).

The task required the robot to reach different goal positions in an experimental arena while

avoiding collisions with an object (i.e. a bush) placed in the center of the arena. In a first step,

the parameters threshold n0 and gain g of the vision-based direction controller were optimized

in a software simulation of the experimental paradigm (Fig 6A). Based on the optimized val-

ues, the performance of the vision-based direction and collision-avoidance controller embed-

ded in the physical hardware was assessed in a real-world experiment in the arena (Fig 6B).

Experimental paradigm

To evaluate the performance of visual collision avoidance and navigation on the embedded

vision processing platform experiments were performed in the Teleworkbench (TWB; see Fig

6; [40]) located at CITEC, Bielefeld University. The TWB offers a standardized environment

for the evaluation of autonomous robotic agents and comprises a main experimental arena of

7 m x 7 m. The arena can be partitioned into four sub-fields. Four 1-megapixel cameras are

mounted above the experimental arena and are assigned to one sub-field each. Each camera is

connected to a video server that processes the video data to provide the 3D-position and orien-

tation of visual markers (see Fig 6) located within the arena. In the experimental paradigm the
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Fig 5. Body model for generation of stance trajectories in omnidirectional walking. (A) Body model (top view) with pull points

between front leg coxae and hind leg coxae which define the end points of the longitudinal body axis (blue). Control vectors with

angle γ w.r.t. the longitudinal body axis are constructed at the pull points. These vectors define the displacement of the pull points

(B) and lead to a rotation and shift of the longitudinal axis which is normalized to the robot length afterwards (C). (D) Rotation and

shift of longitudinal body axis lead to a displacement of the foot points of all legs with ground contact (displacements calculated with

body model). These displacements are used in the single leg controllers to move the robot on a desired trajectory. (E) Exemplary

movement of the body axis with constant heading direction γ.

https://doi.org/10.1371/journal.pone.0230620.g005
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Fig 6. (A) Software simulation of the experimental setup (top view). A 3D reconstruction of the Teleworkbench was

used to optimize the threshold n0 and gain g parameters of the vision-based direction controller in simulation. In the

experimental setup visual markers (goal markers) were placed to indicate four different goal positions. The robot was

placed 4 m apart and opposite of the goal position facing an object (i.e. a bush) located in the center of the arena. An

experimental trial was successful, when the robot reached the goal position without it’s front segment crossing a radius
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visual markers were used to obtain the global position and orientation of the robot’s front seg-

ment as well as to mark four goal positions within the arena (see Fig 6A). The robot was placed

at either one of four starting positions in front of an object (i.e. a bush), located in the center of

the arena, facing a goal position behind the object (see Fig 6A). The distance between starting

position and goal was set to 4 m. An experimental trial was assumed to be successful, if the

robot reached the goal position without the robot’s front segment crossing a radius of 0.5 m

around the object (dashed circle in Fig 6A).

Parameter optimization in simulation

In a first step, the initial parameters of the vision-based direction controller consisting of the

threshold n0 and gain g were optimized in a software simulation of the experimental paradigm.

Hence, in the first part of the experiment, a three-dimensional model of the TWB (see Fig 6A)

was used to render images of the camera attached to the robot’s front segment and emulate the

processing steps of the vision-based direction controller as implemented on the embedded

hardware module [16]. The robot’s orientation and position as well as the location of the goal

were obtained from a software module emulating the positional tracking of the TWB.

To obtain the three-dimensional model of the experimental arena a set of 120 digital photo-

graphs taken from different positions and viewing angles were used to reconstruct the TWB

using photogrammetry software (Autodesk ReMake, Autodesk Inc., San Rafael, CA, USA).

The extraction of nearness information from optic flow via EMDs, such as performed by the

vision based direction controller, strongly depends upon the local contrast of the input images

[25]. Hence, the local contrast of the 360˚ panoramic images of the simulated and of the physi-
cal environment (see Fig 7A–7D) was computed as the root mean square (RMS) contrast
between each pixel of the image down-sampled to ommatidial resolution, and its four direct

orthogonal neighbors. The RMS contrast was calculated by taking the standard deviation of

the brightness I(x, y) of all pixels (x, y) of the local region divided by the mean brightness I of

the same region [41].

Although the mean of the average local contrast distributions along vertical extent of the

images differ (see Fig 7E), prominent features are locally discernible in both environments.

Hence, a similar performance of the vision-based direction controller in the simulation as well

as in the physical environment using the same parametrization of the controller was expected.

For each of the possible parameter combinations of the gain g = [0.0, 0.1, . . ., 2.0] and

threshold n0 = [0.0, 2.0, . . ., 50.0] the mean trajectory length (n = 3 trials) for reaching each of

the four goal positions without colliding with the object was taken as a benchmark of the per-

formance of the vision-based direction controller in simulation (see Fig 8A). When the

threshold n0 is set to low values, the computation of the heading direction γ [see Eq (8)]

mainly depends on the collision avoidance direction CADfov, whereas the goal direction α is

only taken into account to a small extent. Hence, the robot will more likely avoid collisions

than navigate to the goal (G). Further, a steeper slope of the sigmoid weighting function W,

set by the gain g, leads to higher temporal fluctuations of the heading direction γ. As a conse-

quence, when setting the threshold to n0 = 0.0 and the gain to g = 2.0, the resulting trajecto-

ries were relatively long (Fig 8A) and showed erratic movement patterns as can be seen in the

example trajectory depicted in Fig 8B. In contrast, when setting the threshold n0 to high val-

ues, the computation of the heading vector γmainly takes the goal direction α into account,

of r = 0.5 m around the object (dashed circle). (B) Experimental trial in the real world. After parameter optimization

the visual collision avoidance task was performed on the physical robot. A visual marker was placed on top of the

robot’s front segment to obtain the relative direction to the goal α [Eq (8)].

https://doi.org/10.1371/journal.pone.0230620.g006
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whereas the influence of the collision avoidance direction (CADfov) is reduced. As a conse-

quence, the robot will more likely follow the direction to the goal without avoiding obstacles

[16]. Therefore, when setting the threshold to n0 = 50.0 and the gain to g = 2.0, the robot

directly approached the goal position, consequently, colliding with the object (Fig 8A and

8C). Fig 8D shows an example of a trajectory for a combination of the parameters gain and

threshold which resulted in short trajectory lengths without collisions (n0 = 24.0, g = 1.0).

Here, the robot almost directly approached the goal, while effectively avoiding the object.

This combination of the threshold and gain parameters was implemented on the physical

robot to test the performance of the embedded hardware module in subsequent experiments

in the TWB.

Fig 7. 360˚ panoramic images of (A) the real environment and (B) the simulated environment reconstructed using photogrammetry.

Both images represent the orthographic reprojections using a cylindrical lens positioned at the center of the experimental arena (x, y
= [0.0, 0.0]). (C) and (D) depict the color-coded local root-mean-square (RMS) contrast. To compare the local contrast distributions

along the horizontal axis for the real and the simulated environments, the vertical mean RMS contrast was computed (E).

https://doi.org/10.1371/journal.pone.0230620.g007
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Collision avoidance in the real world

After optimization of the parameters in simulation, the performance of the vision-based direc-

tion controller was evaluated on the physical robot. In order to obtain the relative direction to

the goal α a visual marker was placed at the robot’s front segment as well as at the goal position

in the respective experimental trial (Fig 6B). For each goal position (n = 1) trial of the visual

collision avoidance task was performed. In each trial the robot was able to successfully reach

the goal position without colliding with the obstacle (i.e. crossing a radius of r = 0.5 m around

the object) as can be seen in Fig 9A. When comparing the trajectories obtained from the physi-

cal robot with the trajectories obtained from simulation with the same threshold n0 and gain g
parameters (Fig 9B), a similar performance can be observed. However, in the real-world sce-

nario the robot kept a higher distance to the object while avoiding collisions. This behavior

can most likely be attributed to imperfections in the simulation of the robot’s walking aparatus

resulting in different optic flow patterns obtained by the camera, as well as in the virtual recon-

struction of the experimental arena. A higher mean amplitude of local contrast distributions,

as measured in the real environment, leads to a higher influence of the collision avoidance

direction CADfov [Eq (6)] when computing the heading direction γ [Eq (8)]. Hence, the

Fig 8. (A) Length of simulated trajectories (color-coded) in the simulated environment (see Fig 6A) for different combinations of the

weighting function parameters gain g = [0.0, 0.1, . . ., 2.0] and threshold n0 = [0.0, 2.0, . . ., 50.0] [see Eq (9)]. The size of the simulated

environment is 7 m x 7 m (length x width). When the trajectory crossed a circle of a radius of 0.5m around the center of the object

(dashed line in B-D) a collision was assumed (white areas). B-D) Simulated trajectories (n = 10) in the reconstructed environment.

Starting positions are given as S and goal positions as G. Weighting function parameters were set to (B) g = 2.0 and n0 = 0.0, (C)

g = 2.0 and n0 = 50.0 and (D) g = 1.0 and n0 = 24.0.

https://doi.org/10.1371/journal.pone.0230620.g008
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physical robot moves away from the object more strongly as compared to the collision avoid-

ance behavior observed in simulation.

Further, it is noteworthy that the trajectories show a tendency of the robot to navigate

around the object along certain boundaries of the experimental arena both in the real scenario

and in simulation (Fig 9A and 9B; arena boundaries are represented by the edges of the axes).

When comparing the local probability density distribution of the trajectories for all simulation

trials (Fig 9C) with the mean vertical local contrast distribution within the experimental arena

(Fig 9D) it can be seen, that the vision-based direction controller preferably chooses routes

along areas of low spatial frequency and contrast. A characteristic property of EMDs is that the

output does not exclusively depend on velocity, but also on the pattern properties of a moving

stimulus, such as its contrast and spatial frequency content [42, 43]. Furthermore, the vision

Fig 9. (A) Trajectories obtained in the real-world scenario for different goal positions (color-coded; G). The dotted circle (r = 0.5 m)

indicates the object (bush) located in the center of the arena. The distance between the starting position and the goal position was 4

m. (B) Trajectories obtained in simulation for different goal positions (color-coded; G). For each goal position n = 3 trials were

performed. (C) Spatial probability density distribution for all trajectories obtained from simulation. Different combinations of the

weighting function parameters [see Eq (9)] threshold n0 = [0.0, 2.0, . . ., 50.0] and gain g = [0.0, 0.1, . . ., 2.0] were used. For each

parameter combination n = 3 trials were performed. (D) Vertical mean RMS contrast plotted in polar coordinates as also depicted in

Fig 7E.

https://doi.org/10.1371/journal.pone.0230620.g009
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based direction controller is most sensitive to vertical texture patterns, due to the averaging of

EMD outputs along the elevation � [see Eq (5)]. Hence, nearness information can not be

extracted unambiguously from EMD responses, as visual motion consisting of vertical low

contrast and spatial frequency patterns induces a lower EMD response amplitude as compared

to vertical high contrast and spatial frequency patterns. Within the vision-based direction con-

troller this results in a reduced weighting of nearnesses obtained from marginally textured

objects (i.e. white walls) when computing the collision avoidance direction CADfov [Eq (6)].

Hence, the controller’s preference for routes along certain boundaries of the experimental

arena is a result of the inconsistent distribution of spatial frequency and contrast within the

environment (see Figs 7 and 9D).

Evaluation of power consumption and resource efficiency

The vision-based direction controller used for collision avoidance and navigation on the hexa-

pod walking robot HECTOR is based upon computational mechanisms found in the visual

pathway of insects. Since the biological and the technical substrate of the respective computa-

tional system are inherently different, a direct comparison between the two is not possible.

Therefore, this project concentrates on a resource efficient implementation of the bio-inspired

algorithms on a suitable hardware. This raises the question which hardware approach is suit-

able to a) host the bio-inspired vision processing algorithms and b) reach a level of efficiency

during vision processing that—as compared to concurrent technical implementations—is

optimal w.r.t. number of frames per second (application of the complete vision algorithm for

each frame) related to invested power. In order to compare the resource efficiency of the

FPGA-based implementation (Apalis module with Zynq SoC) used on HECTOR two addi-

tional hardware implementations were tested. These implementations comprise a serialized

CPU-based design, as well as a parallelized design on the embedded graphics processor (GPU)

of an Apalis module with a highly energy-efficient SoC that also can be directly integrated in

HECTOR. It will be shown that the FPGA-based implementation is more efficient than the

implementations based on either CPU or GPU processing. For the direct comparison of the

different implementations and the simulation results, a resolution of 8 bit per pixel is chosen.

In this mode, the bits [9:2] from the 10 bit ADC are transmitted and therefore the dynamic

range of the camera decreases merely by 5.87% compared to the 10 bit per pixel transmission.

The two following sections focus on the use of FPGA resources (device utilization) and the

power consumption of the implementation on the Zynq SoC. The final section compares the

efficiency of the three designs.

Resource consumption of the FPGA-based SoC implementation

The first implementation of the proposed bio-inspired vision processing algorithm uses the

novel Apalis Zynq module which is based on a Xilinx Zynq XC7Z020 SoC. The FPGA device

utilization of the proposed design is shown in Table 1. The architecture needs 39.35% of the

slices and 35.71% of the internal 36KB BRAMs for the processing of camera images with a

downscaled resolution of 128 x 128 pixels (comparable with the low resolution in insect vision)

after the first processing step (ReMap core, see Fig 4). An extension of the pixels to 10 bit reso-

lution in the proposed FPGA design results in an increase of the required resources: slices by

3.48%, internal 36kB BRAMs by 4.29% and DSPs by 1.82%.

The total amount of resources required for the FPGA-based vision processing is presented

in Table 2. The overall number of slices needed for the insect-inspired processing amounts to

1342, which corresponds to 10% of the total number of the available slices within the Zynq

SoC. 31 BRAMs (36KB) and 4 DSP48s are used for building the individual processing cores.
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Most of the logic resources are used in the SA and EMD cores. The ReMap core uses most of

the BRAMs with an amount of 17.5 followed by the HPF and LPF cores with 8.5 and 4.5

BRAMs. The size of the memories within the cores is resolution dependent and scales linearly

with the image size. The DSPs are used for the elementary motion detectors (EMD core) and

the following calculation of the motion energy (ME core).

Comparison of the FPGA-based design with CPU- and GPU-based designs

In order to compare the efficiency of the FPGA-based implementation of the vision-based

direction controller on the Zynq SoC, two software implementations based on an Apalis CoM

with Exynos SoC [44] have been tested. The Samsung Exynos 5250 architecture used on the

CoM comprises an ARM Cortex-A15 Dual Core and a Mali T604 graphics processor; it is an

SoC used in smartphones, which is highly optimized towards energy-efficient processing. The

vision-based direction controller was implemented in a) an optimized CPU implementation as

well as b) a parallelized design using OpenCL on the Mali-GPU of the Exynos SoC. For the

benchmark of the FPGA-based design and the two software implementations the time to pro-

cess a single frame (ms/frame) as well as the power dissipation was considered. The efficiency

of the different designs was estimated by computing the frame rate to power ratio. Table 3

summarizes the benchmark results.

Table 1. Total FPGA resources for bio-inspired processing.

Zynq XC7Z020 Slices FF LUT BRAM (36K) DSP48 BUFG

Max. Amount 13300 106400 53200 140 220 32

Complete Design 5233 16666 11700 50 16 5

Percentage 39.35% 15.66% 22.12% 35.71% 7.27% 15.63%

https://doi.org/10.1371/journal.pone.0230620.t001

Table 2. FPGA IP-core resources for bio-inspired processing.

IP-Cores Slices FF LUT Logic LUT Memory LUT BRAM (36K) DSP48

ReMap 122 389 239 232 7 17.5 0

SA 319 835 426 404 22 0.5 0

HPF 189 169 132 130 2 8.5 0

LPF 142 194 128 125 3 4.5 0

h / v EMD 341 949 681 586 95 0 2

ME 130 516 732 671 61 0 2

ANV 99 225 208 132 76 0 0

SUM 1342 3277 2546 2280 266 31 4

https://doi.org/10.1371/journal.pone.0230620.t002

Table 3. Comparison of the software and FPGA-based hardware implementation.

Processing System Processing Time [ms] Frame rate [fps] Power (Processing) [W] Efficiency [fpJ]

Exynos CPU 13.519 74 0.200 370

Exynos GPU 0.792 1262 2.050 615.6

Zynq FPGA 0.1 10000 0.136 73529.4

https://doi.org/10.1371/journal.pone.0230620.t003
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The benchmark results show a significant reduction in processing time when comparing

the serialized CPU-based implementation (13.519 ms, corresponds to 74 fps) with the paralle-

lized GPU-based implementation (0.792 ms, corresponds to 1262 fps) of the vision-based

direction controller on the Exynos SoC. By implementing the control architecture on the

FPGA a further significant reduction of the processing time to 0.1 ms (10000 fps) has been

achieved. The FPGA implementation uses the data types unsigned, signed and integer as data

format while the CPU and GPU implementation use the data type floating-point in addition to

the data type integer. This difference affects the accuracy of the computed data. The division

within the temporary filter stages HPF/LPF in the FPGA is implemented by shift operations

and subsequent additions. The IP core for the calculation of the motion energy (ME) uses the

Xilinx CORDIC IP to implement the root square function. Here, the datatype unsigned integer

is used. For the FPGA implementation, bit widths of the integer operations have been chosen

to minimize the possible error, hence, leading to accuracy comparable to the CPU/GPU imple-

mentation. Simulations have shown that the results achieved with the integer calculations

deliver a very accurate mapping of the desired bio-inspired application. Both, the Exynos as

well as the Zynq CoM module require approx. 3.5 W in idle when using a Linux-based operat-

ing system [45]. This base power measured directly on the modules is mainly required for the

highly flexible power distribution and networking interfaces. In future optimized versions of

the hardware, base power can be significantly reduced by just supporting the interfaces

required in the used robot platform. Therefore, our main optimization goal is the additional

power that is required when running the vision-based direction controller, which amounts to

0.2 W for the CPU-based Exynos implementation and 2.05 W for the GPU-based design. For

the FPGA-based implementation, although providing the highest performance, the power con-

sumption increases just by 0.136 W compared to the base implementation. The total power

dissipation is determined by measuring the supply voltage and the current consumption of the

complete module. The power consumptions of the individual CPU and GPU software imple-

mentations are determined by the difference of the measured module power dissipation for

the different operating states. By contrast, the power dissipations of the individual FPGA-

based IP-Cores are determined by applying the Vivado Power Analysis and the Xilinx Power

Estimator (XPE) tools.

The individual power needed for the single processing cores implemented on the FPGA is

shown in Fig 10. The most power is consumed by the motion energy core (ME) and amounts

to 38.04 mW, which is only 1.73% of the overall power consumption of the Zynq XC7Z020

SoC (2.2W). The ANV core requires the least power with merely 3.08 mW (0.14%). The power

needed for the FPGA-based bio-inspired visual processing cores corresponds to 6.19% of the

overall power consumption of the Zynq SoC.

The non-accelerated solution on the Exynos CPU has the second lowest power consump-

tion and the highest calculation time. Once the embedded graphics processor is used for the

calculation, the power consumption of the Exynos module increases strongly, but it achieves

significantly lower processing times. Due to the massive parallelization on the FPGA, a signifi-

cantly faster processing than on the graphics processor is achieved combined with the lowest

power consumption of the vision-based direction controller (in total as well as for the incre-

mental part). The hardware implementation has an efficiency of 73529.4 fpJ (frames per

Joule), which is nearly 119 times more than the 615 fpJ of the GPU solution on the Exynos

SoC. The lowest energy efficiency is achieved using the serialized processing on the ARM pro-

cessor of the Exynos with 370 fpJ. Correlating the inverse of the energy efficiency with the

frame rate of 20 fps and the resolution of 128 x 30 pixels results in an energy per pixel of 14.1

μJ/pixel for the CPU and 8.5 μJ/pixel for the GPU at 20Hz. The FPGA implementation uses

the lowest energy per pixel with 70.8 nJ/pixel at 20Hz. Thus, the hardware implementation on
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the FPGA is most energy efficient for the implementation of the vision-based direction

controller.

Conclusion

Compared to man-made machines animals show a remarkable behavioral performance in

many respects. Although there has been tremendous progress in building mobile autonomous

robots in the last decades, even insects outperform current robotic systems in terms of compu-

tational and energy efficiency, speed and robustness in different environmental contexts.

Hence, from an engineer’s perspective the evolutionary optimized mechanisms underlying

sensory processing and behavioral control in biological systems are potentially of great interest

(for a recent overview see [46]). In this paper, an insect-inspired vision-based navigation and

collision avoidance controller [16] was implemented on a novel embedded hardware module

based on the Xilinx Zynq SoC. The module is based on the Apalis CoM (computer on module)

standard and has been specifically designed for the highly efficient bio-inspired processing of

visual information on autonomous robots. By leveraging a combination of optimized parallel

processing on FPGA, serialized computing on CPU and direct communication without addi-

tional protocol overhead, different mechanisms found in the visual pathway of flying insects

have been adapted to control the collision avoidance behavior of the stick insect-like walking

robot HECTOR in a highly resource-efficient way. After optimization of the parameters of the

vision-based direction controller in simulation, the relative nearness information obtained

from optic flow estimation via EMDs is sufficient to direct HECTOR to a goal location in a

Fig 10. Power dissipation for the implementation of the vision-based direction controller on the Zynq SoC. Power consumption

of the IP-cores implemented on FPGA (Explanation of abbreviations: ReMap: Remapping and downscaling; SA: Sensivity Adaption;

HPF: High-Pass Filter; LPF: Low-Pass Filter; EMD: Elementary Motion Detector; ME: Motion Energy; ANV: Average Nearness

Vector).

https://doi.org/10.1371/journal.pone.0230620.g010
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real-world scenario without colliding with obstacles. In a recent study, the vision-based direc-

tion controller described in this paper was also tested in computer simulations of the same and

two other scenarios [16]. The other scenarios consisted of a) an artificially created arena with

30 randomly placed objects and b) a scenario reconstructed from 3D laser scans of a meadow

with trees. In all scenarios HECTOR was able to navigate to the target location without collid-

ing with obstacles from different starting positions and using the same set of parameters

obtained from the optimization. However, in different environments—e.g. in outdoor scenar-

ios with dynamic lighting conditions—the generalizability of a certain parameter set might no

longer be given. The bio-inspired walking controller of HECTOR [37] allows the robot to

robustly navigate even in difficult terrain [10]. The FPGA-based implementation of the control

architecture shows a drastic increase in performance and energy efficiency when compared to

CPU- or GPU-based software implementation. This demonstrates the potential of the Apalis

Zynq CoM presented here for the implementation and analysis of new bio-inspired vision pro-

cessing algorithms. Due to the high frame rate, low weight and low energy consumption the

module is ideally suited to be placed on fast moving robotic platforms, such as flying drones,

where size or weight are limiting factors. In comparison to other recently proposed hardware

solutions for bio-inspired processing of visual information on autonomous robots [47], the

direct implementation of the processing unit on the robot avoids computational bottlenecks

such as the transmission-related reduction of the frame rate. By employing behavioral strate-

gies such as active head stabilization—which is also found in insects—it might be possible to

further reduce the influence of rotational optic flow components which potentially obfuscate

the estimation of relative nearness from optic flow [15]. Hence, a prototype for mechanical

gaze-stabilization will be implemented on the robot in order to increase the collision avoidance

performance of the vision-based direction controller.
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