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Angiogenin (ANG) is reportedly multifunctional, with roles in angiogenesis and autoimmune diseases. This protein is involved
in the innate immune system and has been implicated in several inflammatory diseases. Although ANG may be involved in the
anti-inflammatory response, there is no evidence that it has direct anti-inflammatory effects. In this study we sought to determine
whether ANG has an anti-inflammatory effect in human corneal fibroblasts (HCFs) exposed to media containing tumor necrosis
factor-alpha (TNF-𝛼). We found that ANG reduced the mRNA expression of interleukin-1 beta (IL-1𝛽), -6, -8 and TNF-𝛼 receptors
(TNFR) 1 and 2. In contrast, ANG increased themRNA expression of IL-4 and -10. Protein levels of TANK-binding kinase 1 (TBK1)
were reduced by ANG in HCFs treated with TNF-𝛼. Moreover, ANG diminished the expression of IL-6 and -8 and monocyte
chemotactic protein- (MCP-) 1. The protein expression of nuclear factor-𝜅B (NF-𝜅B) was downregulated by ANG treatment.
These findings suggest that ANG suppressed the TNF-𝛼-induced inflammatory response in HCFs through inhibition of TBK1-
mediated NF-𝜅B nuclear translocation.These novel results are likely to play a significant role in the selection of immune-mediated
inflammatory therapeutic targets and may shed light on the pathogenesis of immune-mediated inflammatory diseases.

1. Introduction

Ocular inflammation is one of the main causes of blindness
and visual disturbance. A number of ocular inflammatory
diseases cause visual impairment and chronic immune-
mediated inflammation in the eye can lead to blindness [1–4].
Inflammation is a main component in the pathophysiology
of several ocular diseases including corneal and autoimmune
diseases. It has generally been accepted that inflammatory
cytokines and chemokines are significantly increased inmany
ocular diseases and immune rejection of corneal transplanta-
tion [5–8].

The corneal stroma is a thick, transparent layer that is fre-
quently subjected to the inflammatory response [9]. Chronic
inflammation of corneal fibroblasts causes corneal scarring,
neovascularization, edema, opacity, injury, ulceration, and
ultimately impaired vision and blindness [4, 9–11]. Human
corneal fibroblasts (HCFs) in the corneal stroma perform
a significant function in the control of local immune and
inflammation [12]. It has been widely reported that corneal
fibroblast cells act as sentinel cells of the immune system
and participate in the regulation of stromal inflammation
through the production of cytokines and chemokines [13–15].
Corneal fibroblast cells secrete proinflammatory cytokines
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and chemokines including interleukin (IL)-6 and IL-8 in
response to external inflammatory stimuli [12, 15, 16].

Tumor necrosis factor-𝛼 (TNF-𝛼) is a cytokine involved
in the inflammatory response that binds two receptors and
tumor necrosis factor receptors (TNFR) 1 and 2. It has been
demonstrated that TNF-𝛼 plays a critical role in corneal
inflammation [17]. TNF-𝛼 promotes nuclear factor-𝜅B (NF-
𝜅B) translocation, and the NF-𝜅B signaling pathway, which is
found in all mammalian cell types, comprises several genes
that influence immune and inflammatory responses [18, 19].
NF-𝜅B is activated by phosphorylation of the regulatory
protein I-kappa-B (I𝜅B) and TANK-binding kinase 1 (TBK1).
TBK1 promotes NF-𝜅B activation and may act downstream
of the NF-𝜅B transcriptional pathway [20, 21]. It is well
documented that TBK1 inhibitors decrease inflammation
[22].

Angiogenin (ANG) is a 14.4 kDa single chain protein
containing 123 amino acids. Several studies have demon-
strated its function with respect to immunity. This protein
is a component of tears and protects the ocular surface as it
is an antimicrobial peptide [23, 24]. ANG mRNA expression
and ANG protein concentrations in serum are increased
during the inflammatory response [25, 26]. Serum ANG
was found to be increased in patients with inflammatory
bowel disease, and ANG mRNA expression was shown to be
elevated by TNF-𝛼 and IL-1𝛽 [27, 28]. ANG was also shown
to have bactericidal activity [29] and has been reported to be
a microbial recognition protein related to innate immunity
[30]. This evidence suggests that ANG may play a role in
modulating the inflammatory response.

We hypothesized that ANG has an inhibitory effect on
the inflammatory response in the ocular surface. The aim
of this study was to determine whether ANG has an anti-
inflammatory effect in HCFs treated with TNF-𝛼. Thus, we
attempted to clarify themolecular activity ofANGunderlying
its inhibition TNF-𝛼 mediated transduction, which involves
the production of TBK1 and nuclear translocation of NF-𝜅B.

2. Methods

2.1. Isolation and Primary Culture of Human Corneal Fibrob-
last Cells. Human corneal donor tissues were obtained dur-
ing penetrating keratoplasty. The corneal epithelium was
eliminated and then the corneal fibroblast cells were detached
from explant tissue. The corneal tissues were rinsed with
phosphate-buffered saline (PBS) mixed with 5% penicillin-
streptomycin. After the corneal epithelium was eliminated,
the corneal stroma was cut into explants of approximately
1mm3. Each piece of explant was placed on a culture
dish and immersed in culture medium for one week. The
HCFs were then subcultured by trypsin digestion. HCFs
were cultured in alpha-minimum essential medium (𝛼-
MEM) (Invitrogen-Gibco, USA) containing 10% FBS and 1%
penicillin-streptomycin. The cells were maintained at 37∘C
under 5% CO

2
and used for experiments after three to five

passages. The study protocol and informed consent were
approved by the institutional review board of the Chung-Ang

University Hospital.This study conformed to the tenets of the
Declaration of Helsinki.

2.2. Cell Treatment. HCFs were cultured in six-well plates for
three days. They were washed twice with PBS. The medium
of confluent corneal fibroblast cells was changed to serum-
free MEM for one day before treatment. The cells were
treated with TNF-𝛼 purchased from PROSPEC (20 ng/mL)
for eight hours, and with or without ANG (2 𝜇g/mL) at the
last 30minutes of incubationwith TNF-𝛼. ANGwas obtained
from the Department of Biochemistry at Chungbuk National
University and the identity of the purified ANG has been
confirmed by western blotting with ANG specific antibodies
bymethods described in a previous report [31].The biological
activity of the purified ANG has also been confirmed by its
nuclear translocation in HUVE cells by procedure described
in detail [31]. The purification and endotoxin levels of
recombinant ANG expressed in E. coli are shown in Supple-
mentary Figures 1 and 2 (see the Supplememtery Material
available online at http://dx.doi.org/10.1155/2014/861435).The
cells were then collected for total RNA isolation and protein
extraction.

2.3. RNA Isolation and Real-Time RT-PCR. Total RNA was
isolated from cultured HCFs using FavorPrep Tri-RNA
reagent, according to the manufacturer’s protocols. The
quantity and quality of the RNA were determined using a
NanoDrop ND-1000 spectrophotometer (ND-1000, Nano-
Drop Technologies, Inc. Wilmington, DE, USA). Single-
stranded complementary DNA (cDNA) was synthesized
from 500 ng of total RNA using a cDNA synthesis kit (Takara
Bio Inc., Otsu, Japan). Real-time RT-PCR was conducted
using theCFX96Real-Time PCRDetection System (Bio-Rad,
Hercules, CA, USA) in a total volume of 20𝜇L containing
10 𝜇L of SYBR Premix Ex Taq (Takara Bio Inc., Otsu,
Japan), diluted cDNA template, and forward and reverse
primers. The primer sequences and product size are listed
in Table 1. The PCR amplification for selected genes was
run for 40 cycles. Gene expression was analyzed by real-
time reverse transcriptase polymerase chain reaction (RT-
PCR). Real-time PCRquantificationwas done in triplicate for
each sample and the mean was calculated. Expression levels
were analyzed by RT-PCR using values of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) as a reference.

2.4. Immunodot Blot Assay. The expression of 42 human
cytokines and chemokines was assessed using a commercially
available cytokine assay (RayBio Human Cytokine Anti-
body Array 3, RayBiotech, Norcross, GA, USA) that utilizes
membrane-bound cytokine-specific antibodies to assess the
presence of several cytokines in biological fluids.The analysis
was conducted according to the manufacturer’s instructions.
Briefly, membranes were blocked for 30 minutes and then
incubated with HCFs culture supernatant for two hours at
room temperature. The membranes were washed with Wash
Buffer I three times for five minutes each and then withWash
Buffer II twice for fiveminutes each. After washing, themem-
branes were incubatedwith a biotin-conjugated antibodymix
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Table 1: PCR primers used in this study.

Gene Sense primer (5 → 3) Antisense primer (3 → 5) PCR product size (bp)
GAPDH CGAGATCCCTCCAAAATCAA TGTGGTCATGAGTCCTTCCA 294
IL-1𝛽 CCTGTCCTGCGTGTTGAAAGA GGGAACTGGGCAGACTCAAA 150
IL-4 TGTCTGTTACGGTCAACTCG ACATTGTCACTGCAAATCGA 195
IL-6 TTCGGTCCAGTTGCCTTCTC GAGGTGAGTGGCTCTCTGTG 122
IL-8 ACATGACTTCCAAGCTGGCCG TTTATGAATTCTCAGCCCTC 303
IL-10 GCCTAACATGCTTCGAGATC TGATGTCTGGGTCTTGGTTC 206
TNFR1 GTGCTGTTGCCCCTGGTCAT GCTTAGTAGTAGTTCCTTCA 163
TNFR2 AAACTCAAGCCTGCACTC GGATGAAGTCGTGTTGGAGA 209
TBK1 TTCTGGAAGTCCATACGCAT ACTGGTGATCTCTATGCTGT 237

for two hours, and then streptavidin-conjugated peroxidase
was added for two hours at room temperature. The mem-
branes were subsequently washed thoroughly and exposed to
chemiluminescence. The membranes were visualized using
the ECL Plus detection system and ChemiDoc XRS (Bio-
Rad Laboratories, Inc., Berkeley, CA, USA). The densities
for individual spots were calculated using ImageJ software
(Wayne Rasband, National Institutes of Health, USA). The
relative expression ratio was determined by subtraction of
the background signal and comparison with positive controls
on the membrane. Positive controls visible within each array
were used for comparison.

2.5. Nuclear and Cytosolic Protein Extractions. HCFs were
washed and scraped with cold PBS. The cells were lysed
in buffer A (10mM HEPES (pH 7.9), 10mM KCl, 0.1mM
EDTA, 0.1mM EGTA, 1mM DTT, 0.5mM PMSF, and
5 𝜇g/mL Leupeptin) and left on ice for 15min. After 10%
NP-40 was added to the sample, the cytosolic fraction was
collected by centrifugation at 14,000 rpm for 5min at 4∘C.
The nuclear fraction was resuspended in buffer C (20mM
HEPES (pH7.9), 0.4 n NaCl, 1mMEDTA, 1mMEGTA, 1mM
DTT, 1mM PMSF, and 10 𝜇g/mL Leupeptin) and left on
ice for 30min, then the nuclear fraction was collected by
centrifugation at 14,000 rpm for 5min at 4∘C.

2.6. Western Blot Analysis. Nuclear proteins and total cell
lysates were separated by 10% sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and elec-
trophoretically transferred to a polyvinylidene fluoridemem-
brane (PVDF; Merck Millipore, Billerica, MA, USA) at
100V (1 h) in buffer containing 0.3% Tris, 1.4% glycine,
and 20% methanol using a wet-blotting apparatus (Mini-
PROTEAN Tetra cell; Bio-Rad, Hercules, CA, USA). The
PVDF membrane containing the transferred proteins was
blocked with 5% BSA in PBS for one hour at room temper-
ature. Primary monoclonal antibodies against human TBK1
(Abcam, Inc.) andNF-𝜅B (BioworldTechnology, Inc.) diluted
in PBS (1 : 1000) were applied to the PVDF membrane and
incubated overnight at 4∘C. Secondary antibodies diluted
in PBS (1 : 2000) were subsequently applied to the PVDF
membrane and incubated for 1 h at room temperature. The
PVDF membrane was washed four times (10min each) with
Tris-buffered saline (TBS; 50mM Tris HCl pH 7.5, 150mM

NaCl) containing 0.1% Tween 20. The binding of specific
antibodies was visualized using an enhanced chemilumines-
cence western blotting detection kit (Pierce Biotechnology,
Inc., Rockford, IL, USA). Densitometric quantification of the
immunoblot was carried out using ImageJ software.The value
of each band was normalized to 𝛽-actin or lamin.

2.7. Immunocytochemistry. TheHCFs cultured on glass slides
were treated with TNF-𝛼 (20 ng/mL) for eight hours. Cells
were also treated with or without ANG (2 𝜇g/mL) for 0.5
hours. Cells were then fixed in 4% paraformaldehyde for
15min at room temperature. After being permeabilized by
incubation with 0.5% Triton X-100 for 15min at room tem-
perature, the slides were incubated with anti-NF-𝜅B (diluted
to 1 : 50 in PBS, Bioworld Technology, Inc.) for 1 h at room
temperature. Glass slides were incubated with secondary
antibody for 1 h at room temperature. At each step slides were
washed three times (5min each) with PBS. Cover slips were
mounted on the slides using Vectashield (Vector Laborato-
ries, Burlingame, CA, USA) containing 40,6-diamidino-2-
phenylindole (DAPI).

2.8. Statistical Analysis. Data are expressed as the mean ±
standard error (SE). Statistical analysis of three separate
experiments was conducted using one-way ANOVA followed
by a post hoc pairwise comparison adjustedwith a Bonferroni
correction. Statistical analyses were performed using SPSS
software version 19.0 (SPSS Inc., Chicago, IL, USA). Differ-
ences were considered statistically significant at 𝑃 < 0.05.

3. Results

3.1. ANG Inhibits mRNA Expression of Proinflammatory
Cytokines and Promotes mRNA Expression of Anti-
Inflammatory Cytokines in HCFs. In order to determine
whether ANG can reduce the inflammatory response in
HCFs, TNF-𝛼 (20 ng/mL, 8 h) was added to the culture
media and then cells were cultured in the presence or
absence of ANG (2 𝜇g/mL, 30min). Real-time PCR was
conducted to investigate the effects of ANG treatment on
the mRNA expression of proinflammatory (IL-1𝛽, -6, and
-8) and anti-inflammatory cytokines (IL-4 and -10). The
expression of proinflammatory cytokines (IL-1𝛽, -6, and
-8) induced by TNF-𝛼 treatment was reduced significantly
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Figure 1: Real-time PCR analyses of proinflammatory cytokines and anti-inflammatory cytokines in HCFs. (a)The relative level of IL-1𝛽, -6,
and -8 mRNA was diminished by ANG treatment. ANG treatment alone did not affect the mRNA expression of proinflammatory cytokines.
(b) The relative expression of IL-4 and -10 mRNA was increased by ANG treatment. ANG treatment alone increased the mRNA expression
of IL-4 and -10. The experiments were performed in triplicate (∗𝑃 < 0.05).

in cells treated with ANG (Figure 1(a)). ANG treatment
alone did not exert influence on the mRNA expression
of proinflammatory cytokines. Moreover, the mRNA
expression of anti-inflammatory cytokines (IL-4 and -10) was
increased significantly after ANG treatment (Figure 1(b)).
ANG treatment alone increased the mRNA expression of
IL-4 and -10.

3.2. ANG Suppresses the Expression of Inflammatory Cytokines
and Chemokines in HCFs. Immunodot blot assays were
conducted to determine whether ANG decreases inflamma-
tory cytokines and chemokines in media. Treatment with
TNF-𝛼 promoted the expression of inflammatory cytokines
and chemokines such as IL-6 and -8, growth-related pro-
teins (GRO), growth-related proteins-alpha (GRO-𝛼), and
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Figure 2: Inflammatory cytokine profiles in HCF culture medium. (a) Treatment with TNF-𝛼 (20 ng/mL) resulted in amplification of five
inflammatory cytokines and chemokines (GRO and -𝛼, IL-6 and -8, and MCP-1). Treatment with ANG (2 𝜇g/mL) resulted in reduction
of these inflammatory cytokines and chemokines. Treatment with ANG alone only induced upregulation of ANF area. (b) Custom human
growth factor antibody arraymap. Pos: positive control; Neg: negative control. (c) Relative density of inflammatory cytokines and chemokines.
The signal intensities were observed and quantified using a chemiluminescence imaging device. The values presented in the bar graph are
the mean ± SE from triplicate experiments (∗𝑃 < 0.05 versus control cells; #𝑃 < 0.05 versus TNF-𝛼 treated cells). GRO: growth regulated
oncogene; MCP: monocyte chemotactic protein.
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Figure 3: Real-time PCR analysis of TNFR1 and 2 and TBK1 in HCFs. (a) The relative level of TNFR1 and 2 mRNA was diminished by ANG
treatment. (b)The relative level of TBK1mRNAwas diminished byANG treatment.The experiments were performed in triplicate (∗𝑃 < 0.05).

monocyte chemotactic protein- (MCP-) 1. Production of
these cytokines and chemokines was downregulated in the
presence of ANG, but expression of ANG was upregulated
by ANG treatment (Figures 2(a) and 2(b)). We detected
significant differences when comparing media before and
after ANG treatment with respect to the presence of IL-6
and -8,MCP-1, andANG (Figure 2(c)). ANG treatment alone
increased only ANG expression. The expression of another
cytokines was not affected by ANG treatment alone.

3.3. ANG Suppresses TNFR mRNA Expression and TBK1
Production. Real-time PCR was performed to determine
whether ANG decreases TBK1 and TNFR1 and 2. TNF-𝛼
treatment increased the mRNA expression of TNFR1 and
2, but a significant downregulation was noted after ANG
treatment (Figure 3). ANG treatment alone did not affect the
mRNA expression of TBK1 and TNFR1 and 2. Western blot
analysis showed that ANG reduces the expression of TBK1.
TNF-𝛼 treatment produced a dose-dependent increase in
TBK1 phosphorylation and increased TBK1 expression. After
ANG treatment, TBK1 expression was decreased (Figure 4).

ANG treatment alone has little effect on the expression of
TBK1.

3.4. ANG Inhibits Nuclear Translocation of NF-𝜅B. HCFs
were either cultured with TNF-𝛼 (20 ng/mL, 8 h) or treated
withANG (2 𝜇g/mL, 0.5 h) to examinewhether ANG inhibits
nuclear translocation of NF-𝜅B. The cells were subjected to
immunofluorescent localization of NF-𝜅B. Treatment with
TNF-𝛼 induced the translocation of NF-𝜅B from the cytosol
to nucleus. However, the presence of ANG inhibited the
translocation of NF-𝜅B (Figure 5). ANG treatment alone did
not influence the expression of NF-𝜅B in nucleus.

4. Discussion

It is generally believed that ANG is an angiogenic molecule,
inducing angiogenesis, cell migration, proliferation, and
tumor growth [32–36]. Thus, previous studies have focused
on its role in a possible antiangiogenin-based cure for
cancer [37–39]. However, ANG is known to function as an
antimicrobial peptide and is related to diverse inflammatory
diseases and innate immunity [23, 28, 40–42]. AlthoughANG
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Figure 4: Western blot analyses of TBK1 protein expression and
TBK1 phosphorylation (pTBK1). (a) TNF-𝛼 treatment increased
the expression of TBK1 and TBK1 phosphorylation in HCFs. (b)
After ANG treatment, TBK1 protein expression was decreased in
HCFs. ANG treatment did not affect TBK1 protein expression.
(c) Densitometric analysis of the relative ratio of TBK1 in cells
treated with TNF-𝛼 only to those treated with TNF-𝛼+ANG. The
experiments were performed in triplicate (∗𝑃 < 0.05).

may have anti-inflammatory activity, there is currently no
evidence in the literature to support this notion. In this study,
we investigated the effect of ANG on inflamed HCFs and
discovered a previously unidentified function of ANG in the
anti-inflammatory mechanism.

The most substantial finding in our study is that ANG
reduced the TBK1-mediated inflammatory response induced
by TNF-𝛼 treatment. TBK1 is a member of the I𝜅B kinase
family and is involved in the inflammatory response as it is
related to NF-𝜅B activation [21]. TBK1 also has the ability
to modulate the expression of IL-6 and TNF-𝛼 [43, 44].

It has been widely demonstrated that TBK1 plays a critical
role in inflammatory diseases [45–47]. We have shown that
ANG treatment decreased the expression of TBK1 in inflamed
HCFs, suggesting that ANG may have possibility of anti-
inflammatory activity.

It has been suggested that TNF-𝛼 induces the production
of proinflammatory cytokines and chemokines including IL-
6 and -8 andMCP-1 [48, 49].These cytokines and chemokines
are known to cause corneal inflammation [12, 50–54]. IL-6
produced by T cells and macrophages act as a proinflam-
matory cytokine. There is evidence that IL-6 plays a signif-
icant role in the acute inflammatory response, escalation of
autoimmune reactions, and chronic inflammatory diseases
[55–57]. IL-8 is a chemokine and secreted by macrophages. It
has been reported that IL-8 is involved in acute inflammation
and plays a central role in the initiation and maintenance of
the inflammatory response in various inflammatory diseases
[58–60]. MCP-1 recruits monocytes and memory T cells to
the inflammation area. It has been well documented that
MCP-1 mediates both acute and chronic inflammation [61].
MCP-1 has also been shown to stimulate IL-6 secretion
and NF-𝜅B activation [62]. One significant finding of this
investigation is that IL-6 and -8 and MCP-1 expression was
decreased after ANG treatment, indicating that ANG likely
participates in attenuation of the inflammatory response
through inhibition of TBK1 expression.

IL-4 and -10 are known to suppress the inflammatory
response. IL-4 causes vitalization of triggered B-cell and T-
cell proliferation, and IL-10 improves B-cell survival and
proliferation. It has been suggested that IL-4 and -10 have
anti-inflammatory activity and repress the expression of
proinflammatory cytokines [63–65]. In this study, we found
that ANG treatment increased mRNA expression of both IL-
4 and IL-10. It can therefore be presumed that the expression
of IL-6 and -8 was downregulated by ANG.

TNF-𝛼 binds TNFR 1 and 2 and triggers the activation of
NF-𝜅B [66]. Phosphorylation of TBK1 and TNFR allows NF-
𝜅B nuclear translocation [21], which results in the inflamma-
tory response cascade including amplification of TBK1, IL-6
and -8, andMCP-1 [22, 67, 68]. NF-𝜅Bplays an important role
in regulating the immune response and inflammation. It has
been reported that NF-𝜅B is involved in several inflammatory
diseases [69–72]. The activation of NF-𝜅B is inhibited by I𝜅B
proteins such as TBK1, which deactivate NF-𝜅B by arresting
it in the cytoplasm. Our results suggest that ANGmay reduce
NF-𝜅B nuclear translocation through inhibition of TBK1
expression and reduction of TNFR1 and 2 mRNA expression.

A schematic illustration of the anti-inflammatory signal-
ing pathway induced by ANG treatment of HCFs inflamed by
TNF-𝛼 is shown in Figure 6. TNF-𝛼 induces an inflammatory
signal by binding TNFR1 and 2. The inflammatory response
is mediated by activation of TBK1, which is required for
NF-𝜅B nuclear translocation. ANG downregulates mRNA
expression of IL-1𝛽, -6, and -8. Moreover, ANG upregulates
mRNA expression of IL-4 and -10. ANG also inhibits NF-𝜅B
nuclear translocation through inhibition of TBK1 production.
The anti-inflammatory effect induced by ANG results in
a reduction of proinflammatory cytokines and chemokines
such as MCP-1 and IL-6 and -8.
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Figure 5: Western blot analyses of NF-𝜅B in the nucleus and cytoplasm. (a) NF-𝜅B nuclear translocation induced by TNF-𝛼 was diminished
after ANG treatment. ANG treatment alone did not affect NF-𝜅B nuclear translocation. (b) Densitometric analysis of the relative ratio of
NF-𝜅B in cells treated with TNF-𝛼 alone to those treated with TNF-𝛼+ANG. The experiments were performed in triplicate (∗𝑃 < 0.05). (c)
Immunocytochemistry of NF-𝜅B in the nuclei and cytoplasm of HCFs. After treatment with ANG, the cells were fixed and then labeled with
an anti-NF-𝜅B antibody. Immunofluorescent images at higher magnification demonstrate attenuation of the expression of NF-𝜅B in nucleus
after treatment with ANG ((c) arrow) in cells treated with TNF-𝛼 (scale bar, 100 𝜇m).

Since ANG is an inducer of new blood vessel growth,
ANG treatmentmay possibly generate injection on the ocular
surface. Because this study is confined to in vitro tests, we
cannot exclude the possible adverse effects of ANG in vivo.
However, this investigation is the first to report the function

of ANG in the inflammatory response. In vivo animal studies
are needed to further validate our hypothesis prior to the
clinical application of ANG in ocular inflammation.

There is little information in the literature regarding the
anti-inflammatory effects of ANG.TheANG functions newly
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Figure 6: Schematicmodel illustrating the signaling pathway bywhichANG suppresses the inflammatory response involving TBK1-mediated
NF-𝜅B nuclear translocation in HCFs inflamed by TNF-𝛼. ANG reduces the mRNA expression of proinflammatory cytokines (IL-1𝛽, -6,
and -8) and enhances the mRNA expression of anti-inflammatory cytokines (IL-4 and -10). ANG also inhibits NF-𝜅B nuclear translocation
through a reduction in TNFR1 and 2 mRNA expression and TBK1 production.The cascade underlying the effect of ANG results in a decrease
in inflammatory cytokines and chemokines such as MCP-1 and IL-6 and -8.

identified in this study indicate that it likely plays a critical
role in attenuating inflammation. The findings pointing to
the anti-inflammatory effects of ANG in inflamed HCFs
shed new light on the treatment of ocular inflammation.
We have demonstrated that ANG suppresses the TNF-𝛼-
induced inflammatory response and NF-𝜅B nuclear translo-
cation through inhibition of TBK1 expression in HCFs. This
preliminary evidence suggests that ANG could be a strong
candidate for the treatment of corneal inflammation.
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