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Abstract 

Microalgae are key players in the global carbon cycle and emerging producers of biofuels. 
Algal growth is critically regulated by its complex microenvironment, including nitrogen and 
phosphorous levels, light intensity, and temperature. Mechanistic understanding of algal 
growth is important for maintaining a balanced ecosystem at a time of climate change and 
population expansion, as well as providing essential formulations for optimizing biofuel 
production. Current mathematical models for algal growth in complex environmental 
conditions are still in their infancy, due in part to the lack of experimental tools necessary 
to generate data amenable to theoretical modeling.  Here, we present a high throughput 
microfluidic platform that allows for algal growth with precise control over light intensity 
and nutrient gradients, while also performing real-time microscopic imaging.  We propose 
a general mathematical model that describes algal growth under multiple physical and 
chemical environments, which we have validated experimentally. We showed that light 
and nitrogen colimited the growth of the model alga Chlamydomonas reinhardtii following 
a multiplicative Monod kinetic model. The microfluidic platform presented here can be 
easily adapted to studies of other photosynthetic micro-organisms, and the algal growth 
model will be essential for future bioreactor designs and ecological predictions. 

 

Significance Statement 

Mechanistic understanding of the impact of complex environmental parameters on the 
growth of photosynthetic micro-organisms is critical for maintaining the balance of 
ecosystems, as well as optimizing the production of clean biofuels. Here, we present the 
first microfluidic platform for providing well defined physical and chemical gradients to algal 
cells. Our measurements revealed that light and nitrogen colimit the growth of microalgae, 
and their effects are well described by a multiplicative Monod kinetic model. This work 
provides a microfluidic platform for quantitative studies of the growth of photosynthetic 
micro-organisms, and a general mathematical model for algal cell growth.   

 
 

Main Text 
 

Introduction 
 
Phytoplankton, including microalgae and cyanobacteria, are essential in maintaining the 
balance of ecosystems contributing to primary production and the carbon cycle. By 
producing and releasing oxygen as a byproduct of photosynthesis, cyanobacteria are 
known to be the first oxygen producers on Earth, dating back billions of years ago, and 
are essential for life on Earth. Disruption of phytoplankton growth can lead to 
environmental problems such as Harmful Algal Blooms (HABs) (1-3), which deplete 
threatened water resources. The problem of HABs has been recently exacerbated by 
climate change, including the effect of warming temperatures and increasing frequency of 
storms and flooding events (4-6). In contrary to HABs, lipid production from controlled 
growth of microalgae is a promising avenue for clean alternative bioenergy (7-9). A 
number of microalgae species have been found to be excellent nutritional food sources 
for animals as well as humans (10-12). As such, a mechanistic understanding of and the 
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ability to control algal growth is an essential step towards finding solutions for sustainable 
living.  
 
The biophysical (e.g., light and temperature) and biochemical (e.g., nitrogen and 
phosphorous) environment critically impacts the growth of microalgae. Traditionally, the 
environment has been considered as the major selection force acting on genes. Recent 
studies have revealed important roles played by the environment in ecology, evolution, 
and development of biological organisms, within the so-called “eco-evo-devo” field (13-
17). Phenotypic plasticity of cells can emerge under time-varying environments, which 
help cells respond quickly to environmental fluctuations (18-20). Also, the passing down 
of extra-cellular environments could serve as another mechanism for non-genetic 
inheritance, which could not only affect single cells, but also a community of cells and their 
interactions (21-25). For example, microorganisms and the interactions among them can 
shape their environment, a phenomenon known as niche construction, leading to the co-
evolution of organisms and their environment (26-29). Despite the importance of cell-
environment interactions in algal growth, mechanistic understanding of how complex 
environments regulate algal growth is limited. This is due to the lack of tools where 
environmental conditions can be directly controlled while cell growth is simultaneously 
monitored in real time at a quantitative level.   
 
Microfluidics has emerged to provide well controlled environments for algal cell growth. 
Algal growth has been studied extensively under single environmental gradients, including  
nutrients (30-33) and light (34, 35). Due to the complexity of the environment in nature, 
recent work has started to explore roles of multiple environmental parameters in cell 
growth. Dual microfluidic chemical gradients have been reported to rapidly screen cell 
response to multiple stressors or characterize cell responses to stressors under complex 
environments (36-39). Specific to algal cells, a microfluidic dual chemical gradient 
generator device revealed the synergistic effect of nutrients (nitrogen and phosphorous) 
on cell growth (40). Although photosynthesis is an important part of algal cell growth, the 
quantitative understanding of the effect of light exposure on algal growth is limited, 
especially under a controlled nutrient environment (41, 42). Nguyen et al. recently 
presented an important millimeter-scale platform that examined the optimal light intensity 
and nutrient condition for  lipid production of algal cells under controlled light and nutrient 
condition for cells immobilized in hydrogels (42).  
 
Mathematical modeling of algal growth kinetics, especially in complex environmental 
conditions, has lacked precise experimental validation. Current algal growth models have 
been derived from first principles such as mass action kinetics and growth optimality. 
These models were used to describe observations of natural waters and experiments with 
large-scale static and continuous cultures for the dependence of algal growth on multiple 
resources (43-47). However, limitations in the range of substrate concentrations and 
temporal resolution prevented the validation of these models, limiting our ability to identify 
the fundamental principles controlling the dependence of algal growth parameters on the 
concentration of multiple resources. In this spirit, microfluidics could serve as a useful tool 
to provide well-defined microenvironments and quantitative measurements for the 
development of accurate growth models for microalgae. 
 
Here, we propose a microfluidic platform that allows us to establish gradients of both light 
intensity and nutrient concentration directly on the array microhabitats placed on a 
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microscope stage. Key innovations of our platform include that growing C. reinhardtii cells 
can swim freely within microhabitats, closely mimicking its natural habitat, and that the 
growth dynamics can be continuously monitored in real time instead of end point 
measurements. We propose a general mathematical model developed alongside 
experimental data demonstrating that light intensity and nutrient concentration colimit the 
growth of algal cells following a general multiplicative Monod kinetic model.  
 
 

Results and Discussion 
 
A microfluidic platform for growing photosynthetic microbes under a dual light and 
nitrogen gradient  
A hydrogel-based array microhabitat device in conjunction with a light gradient was used 
to study algal growth under well-defined physical and chemical conditions (See Fig. 1A). 
To create a nitrogen gradient, we used a previously developed hydrogel-based chemical 
gradient generator (40). The device consists of an 8 x 8 array of microhabitats (each with 
size of 100μm x 100μm x 100μm) flanked by two side channels (400μm W x 200μm H), 
patterned on a 1 inch x 3 inch size and 1 mm thick agarose gel membrane (Fig. 1A and 
Fig. S1). Nitrogen-starved cells were seeded in the microhabitats. The nitrogen gradient 
was established by flowing medium with known nitrogen concentrations and blank buffer 
through the top and bottom side channels respectively, creating a nutrient gradient at the 
location of the array microhabitats via molecular diffusion. The time to reach a steady state 
nutrient gradient was measured to be about 90min (40). The light intensity gradient was 
generated by modifying the bright field illumination light path of a commercial microscope 
(Fig. 1A and ref. (48)). Briefly, the light intensity gradient at the location of the array 
microhabitat was created by placing a half-moon shaped mask directly below the field iris 
of an Olympus IX81 microscope. 
 
Fig. 1B shows an image of cells growing in microhabitats under light and nitrogen 
gradients, which were characterized in the following ways. The nitrogen concentration 
gradient in the dual gradient experiment is shown in Fig. 1C. To characterize the chemical 
gradient in the array microhabitat, we flowed a solution of a known concentration of a 
fluorescent dye in the source channel and blank buffer in the sink channel as described 
previously (40). The steady linear gradient computed from the fluorescence image is 
shown in Fig. 1C. Here, we assumed the nitrogen concentration in the sink and source 
channels was 5.3 and 35.3µM respectively, and the concentration of the fluorescence 
solution was linearly related to the nitrogen concentration. Nitrogen concentrations at the 
middle line of each row of microhabitats were taken as the concentration of that row. The 
light intensity was characterized using a light meter and readouts from a CCD camera. 
Fig. 1D shows an almost linear light intensity profile across the array microhabitat. The 
maximum PAR value was approximately 45 µmol·m-2·s-1 and the minimum was 0.1 
µmol·m-2·s-1 (Fig. 1D). PAR values were converted from the grayscale values measured 
from bright field images of the light intensity gradient captured with a CCD camera as 
described previously (48). The light intensity of each column was calculated as the 
average across the width of the microhabitats in that column, as cells were observed to 
swim freely within single habitats.  
 
To monitor cell growth dynamics, time lapse fluorescence images were taken every four 
hours during the 7-day experimental period (Fig. 1E). Cell numbers were measured using 
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the fluorescence intensities in each microhabitat, and were used to calculate the growth 
rates. 
 
Our platform advances the current technology to study photosynthetic microorganisms 
under well-controlled nutrient and light gradients. The unique feature is the integration of 
a microfluidic chemical gradient generator together with a microscope-based light gradient 
generator. To our knowledge, this is the first time that cell growth can be monitored in real 
time while the cells are subjected to well defined nutrient and light gradient conditions.  
This platform is particularly suitable for the creation of data driven mathematical growth 
models for photosynthetic cells that are sensitive to complex microenvironments.  
 
Algal growth sensitivity to light was enhanced at high nitrogen concentration 
C. reinhardtii cells grew very differently under the same light intensity gradient with low 
versus high nitrogen concentrations (Fig. 2A-B). Cells were starved in medium with 5.3µM 
nitrogen before loading them into the microhabitats (Materials and Methods). When the 
cells were provided with a low nitrogen concentration of 5.3µM in the device, no clear 
response to light was observed (Fig. 2A). In contrast, when 30.8µM of nitrogen was 
provided uniformly across all the habitats, cells showed a clear increase in growth rate as 
light intensities increased (Fig. 2B). Fig. 2C-D shows the corresponding growth curves, 
normalized by the initial cell number that was usually 1-6 cells per habitat due to the 
random seeding process. Microhabitats without cells were excluded from the analysis. 
The normalization with respect to the initial cell number revealed a slight growth response 
to light intensity at 5.3µM nitrogen (Fig. 2C), which was not apparent from the fluorescence 
images (Fig. 2A). In the presence of 30.8µM nitrogen, the growth curves at different light 
intensities were clearly spread out (Fig. 2D), indicating that cell growth had higher 
sensitivity to light at the higher nitrogen concentration. 
 
Light is an important energy source for photosynthetic microbes like microalgae. Energy 
harnessed from light can be used for the biosynthesis of structural and functional 
components of the cell, contributing to cell proliferation. Upon the removal of nitrogen, 
proteins and pigments related to photosynthesis decrease in abundance, including 
RuBisCO, a key enzyme in the Calvin cycle, and chlorophyll, the pigment for capturing 
photons, which leads to reduced efficiency of light utilization (49-52). Our results in the 
microhabitats indeed showed that cell growth was less sensitive to light at low nitrogen 
concentration, indicating a suppressed photosynthetic capacity. Increased sensitivity to 
light in the presence of nitrogen as compared to no nitrogen has been shown in previous 
studies either by -omics response or by photosynthetic functional measurements (49, 50). 
Here, we showed that growth rate, which results from all cellular processes combined, 
was more sensitive to light under the high nitrogen concentration. 
 
Algal growth sensitivity to nitrogen was enhanced under high light intensity  
Higher light intensity, in turn, increased the growth sensitivity of algal cells to nitrogen (Fig. 
3). Under lower light intensity (0.1PAR), the cell growth did not vary distinctly across 
different nitrogen concentrations (Fig. 3A,C). In contrast, at higher light intensity 
(41.1PAR), cells at lower nitrogen concentrations grew significantly slower than those at 
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higher nitrogen concentrations (Fig. 3B,D). This phenomenon was clearly visible in the 
fluorescence images (Fig. 3A-B) and was reflected in the growth curves (Fig. 3C-D). 
 
Nitrogen is one of the most important nutrients for algae, contributing to the synthesis of 
amino acids and proteins. Various forms of nitrogen can be utilized by algal cells including 
nitrate, nitrite, ammonium, and some organic forms, among which ammonium is the 
preferred form. Ammonium is transported into cells via the ammonium transporter proteins 
(AMT family) and is assimilated through the glutamine synthetase-glutamate synthase 
pathway. Synthesized glutamine and glutamate can be used for the biosynthesis of 
macromolecules for cell function and proliferation. Increase in light intensity was found to 
induce responses in various metabolic processes including photosynthesis, as well as 
amino acid, fatty acid, and nucleotide biosynthesis. Nitrogen metabolism is also known to 
be affected by light (53-55). Specifically in the case of ammonium utilization, the presence 
of light contributes to higher activity of glutamate synthases (56). The experimental 
observation presented here begins to reveal the interactions between nitrogen metabolism 
and photosynthesis machineries.  
 
Light intensity and nitrogen concentration synergistically influence the growth rate 
of algal cells 
Light and nitrogen were found to synergistically promote algal growth when the algal cells 
were grown in the array microhabitats in the presence of light and nitrogen gradients.  
Here, the nitrogen gradient was generated by flowing medium with 35.3µM nitrogen in the 
source channel and medium with 5.3µM nitrogen in the sink channel. The light intensity 
was provided by the bright field light source of the microscope, ranging from 0 to 45 
µmol·m-2·s-1. The synergistic effect can be seen clearly in Fig. 4A, which shows 
fluorescence images of cells in the array microhabitats. Therein, the upper right corner 
represents the habitat with the highest light intensity and highest nitrogen concentration. 
To understand quantitatively how cell growth depends on light intensity and nitrogen 
concentration gradients, we calculated growth rates of each microhabitat and displayed 
them in Fig. 4B. Results from three replicated experiments were shown in Fig. 4B. In all 
three replicates, the data was consistent, and shows that growth rate was highest at high 
nitrogen concentration and light intensity. 
 
We noticed an interesting parallel between the cell growth response to dual light and 
nitrogen gradients (shown in Fig. 4) and our previous work where cell growth response 
was studied under dual nitrogen and phosphorous gradients (40). Under a single nutrient 
or light gradient, we used a microfluidic platform to reveal that algal cell growth followed a 
Monod growth kinetic model (31, 48). Under a dual nitrogen and phosphorous gradient, a 
multiplicative model fitted to the growth data showed the colimitation by two nutrients 
(Supplementary Information). The experimental data presented here inspired us to ask 
whether there is a general growth kinetic model describing algal cell growth under complex 
physical and nutrient environments.  
 
Colimitation of algal growth by light and nitrogen: theoretical modeling 
We propose a general colimitation growth model for algal cells subjected to both physical 
and chemical parameters. We hypothesized that algal growth response to light or nitrogen 



 

 

7 

 

was described by Monod kinetics, and the colimitation of algal growth by nitrogen and light 
was described by a multiplicative model:   

                                     𝜇 = 𝜇𝑚𝑎𝑥 (
𝐿+𝐿0

𝐾𝐿+𝐿+𝐿0
) (

[𝑁]+𝑁0

𝐾𝑁+[𝑁]+𝑁0
).                                                 (1) 

Here, 𝜇𝑚𝑎𝑥 is the maximum growth rate, 𝐾𝐿 is the half-saturation constant of light intensity, 

and 𝐾𝑁  is the half-saturation constant of nitrogen concentration. We note that the 
response term to nitrogen is a Monod kinetic model, where 𝑁0 represents stored nitrogen. 

The response term to light is also a Monod kinetic model, with a storage term 𝐿0. This 
term is required since we observed residual growth in the absence of light, but no residual 
growth in the absence of both light and acetate (Fig. S4). Detailed discussion on the effect 
of acetate on algal growth can be found in the Supplementary Information. 
 
We fitted Eqn. 1 to experimental data under the dual light and nitrogen gradients. The fit 
included growth rate data obtained with and without acetate. During fitting, 𝐾𝐿  and 𝐾𝑁 

were kept as free fitting parameters. 𝜇𝑚𝑎𝑥  was fixed to be 2.4day-1, which was the 
maximum growth rate obtained in the microhabitats previously (31). 𝑁0 was set to 0, as 
the cells were starved in low N concentration media prior to experiments (See 
Supplementary Information). In the case with acetate, 𝐿0 was left as a free parameter. In 

the case without acetate, 𝐿0 was set to 0 because (1) we observed no growth in the 
absence of both light and acetate and (2) fitting Eqn. 1 to growth data obtained in the 
absence of acetate gave a best-fit value of 𝐿0  compatible with 0 (p-value = 0.18, 
Supplementary Information). The fitted surface to Eqn. 1 is plotted together with 
experimental data in Fig. 5A. The best fit parameters were 𝐿0 = 50.8µmol·m-2·s-1, 𝐾𝐿 = 

57.2µmol·m-2·s-1, and 𝐾𝑁 = 2.8µM, with standard deviations of 7.9µmol·m-2·s-1, 8.8µmol·m-

2·s-1, and 0.4µM, respectively. Distributions and correlations of the fitted parameters are 
shown in Fig. S3. 
 
Colimitation of algal growth by light and nitrogen was revealed by the microhabitat dual 
gradient experiments and subsequent fitting to a general multiplicative growth model. 
While growth response to a single resource has often been described via Monod kinetics, 
here, we showed that growth response to a physical and a chemical parameter could be 
described by the multiplication of the two Monod kinetics terms with respect to each single 
resource, known as independent colimitation. Multi-resource colimitation on algal growth 
has been observed in natural waters, and has been categorized into 1) independent 
colimitation, where two resources were both at low levels and potentially limiting, and 2) 
dependent colimitation, where two resources were either biochemical substitutions or 
biochemically dependent (43-46). Different types of multi-resource-controlled algal growth 
kinetic models were discussed in the comprehensive reviews by Lee et al. and 
Bekirogullari et al. (57, 58). As for light and extracellular nitrogen, previous studies that 
used field data and large-scale culture experiments have described them as independent 
growth-limiting resources, whose influence could be expressed in a multiplicative form (46, 
59-64). However, growth data corresponding to the precise light and nitrogen conditions 
in the algal microenvironment was unavailable. Our microhabitat platform provides results 
that fill this gap and demonstrate the independent colimitation of light and nitrogen on the 
growth of C. reinhardtii.  
 
Previous estimates of 𝐾𝐿 and 𝐾𝑁 in macro-scale systems were 81.4-215 5µmol·m-2·s-1 and 
2.2-17mM respectively (57, 58). These values were larger as compared to the half-
saturation constants obtained from our microhabitat platform, and varied in a wide range. 
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The differences could come from the self-shading effect and varying nutrient 
concentrations in large scale experiments. We also note that the half-saturation constants 
here depended on the history of the cell (starved or not), the provided light spectrum, and 
the form of nitrogen. Previous studies using non-starved cells gave 𝐾𝐿 and 𝐾𝑁 based on 
single light and single nitrogen gradients in the microhabitat platform to be 1.9µmol·m-2·s-

1 and 1.2µM, respectively (31, 40), which is smaller than those found in this work. In 
addition, we also compared different forms of models, including a multiplicative form with 
only 𝜇0, 𝐾𝐿, and 𝐾𝑁 as fitted parameters and a law of minimum form of the growth kinetic 
model (see Supplemental Information). It was seen that the proposed model in Eqn. 1 had 
better goodness of fit as compared to the other forms. 
 
Predicting growth rate under various light intensities and N concentrations using 
the colimitation model 
The general co-limiting model can be used to predict and understand how light and 
nutrient synergistically control the growth of algal cells. Using the fitted model, a look up 
map was generated that predicts algal growth rate given the light intensity and the nitrogen 
concentration (Fig. 5B). In general, growth is suppressed when either N is under 20 uM, 
or light intensity is under 20 PAR. This look up map could be used to make predictions on 
algal growth trends under various light and nitrogen conditions. For example, one could 
predict the effect of environmental drivers on algal growth in freshwater bodies, where 
light intensity and nitrogen conditions could vary seasonally, as well as geographically. 
Take two of the Finger Lakes in upstate New York, USA as an example. In the 2020 
sampling season, the light intensity at 6m depth and nitrogen concentration at the lake 
surface in Cayuga Lake (South Shelf Site) were 0.1PAR and 93µM respectively, while the 
values for Hemlock Lake (Mid Site) were 100PAR and 17µM (data was taken from the 
Citizens Statewide Lake Assessment Program reports, conversion from clarity 
measurements to light intensities could be found in SI). Comparing the growth response 
to nitrogen concentration at the two different light intensity levels in Fig. 5D, it was shown 
that nitrogen concentration would be a more important driver for algal growth in Hemlock 
Lake (100PAR) than in Cayuga Lake (0.1PAR). In addition, comparing the growth 
response to light intensity at the two different nitrogen concentration levels in Fig. 5E, it 
was seen that light intensity would be a slightly more important driver in Cayuga Lake 
(93µM) than in Hemlock Lake (17µM). We note that in natural lakes, the spectrum of light 
and its attenuation down the water column, the forms of nitrogen that TN involves, and the 
blooming species are not exactly accounted for in our experiments that led to the model. 
However, this example shows the potential use of the experimental method and the model 
to make relevant predictions to some level of generalization. 
 
 

Conclusions and future perspectives 
 
Modeling algal growth under the influence of various physical and chemical factors in their 
microenvironment is important for understanding the ecology and evolution of 
phytoplankton-related aquatic microbial communities, controlling harmful algal blooms, 
and improving biofuel production. Here, we implemented a microfluidic platform with 
precisely controlled light and chemical gradients to study the light and nitrogen-controlled 
growth of C. reinhardtii, then used the experimentally measured data to propose and 
validate a general growth kinetics model. We found that algal growth response to 
environmental parameters was described by an independent multiplicative Monod kinetic 
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model. Interestingly, we found that the contributing term to the multiplicative model for 
both a physical and a chemical parameter were similar, because they can both be 
described by Monod kinetics. In our experiment, the multiplicative model consists of the 
Monod growth kinetics due to light multiplied by the Monod growth kinetics due to nitrogen. 
We hypothesize that more physical and chemical parameters can be included in this 
general growth model by simply multiplying the Monod kinetics term of each single source 
together, assuming the resources are independently colimiting. Future experiments will be 
needed to develop a true general growth model in a complex environment.   
 
In this work, we demonstrated that a microfluidic platform enabled studies of algal growth 
under a well-defined physical and chemical environment, and that the results were ideal 
for data driven theoretical modeling. In addition, dynamic information can be obtained 
through this platform’s real time imaging capabilities. This platform can be easily adapted 
to studies of photosynthetic microbes under two chemical gradients (e.g., nitrogen and 
phosphorous) alone or with a light gradient. We note that the generated light and 
ammonium gradients were kept at low levels for the investigation of colimitation effects of 
the two factors. The range can be easily extended by varying the lamp power output and 
the concentration of nitrogen in the medium perfused from the side channels. Our platform 
is also amenable to studies of other cellular behavior such as competition of microbiomes 
or cell motility. While this small-scale microfluidic device provided a way to precisely define 
a complex microenvironment for cells, the downside is that there was a small number of 
cells in each habitat. This was reflected in the variability of the measurements. A future 
modeling improvement can include cell number variability into the formulation.  
 
A multiplicative growth model of light and nitrogen was used to describe the independent 
colimitation effect of light and nitrogen on algal growth. The model predictions were used 
to estimate which environmental driver, nutrient or light, would be the limiting growth factor 
in two Finger Lakes with different clarities (thus light condition) and different total nitrogen 
concentrations. The model treated the presence of acetate as contributing to an equivalent 
baseline light intensity. For independent environmental parameters, the multiplicative 
model could be further simplified as follows: 

                                                 𝜇 = 𝜇𝑚𝑎𝑥∏ (
𝐸𝑖+𝐸𝑖𝑜

𝐾𝐸𝑖+𝐸𝑖+𝐸𝑖𝑜
)𝑛

𝑖=1 .                                              (2) 

Here, 𝐸𝑖 stands for the i-th factor of the 𝑛 number of independent colimiting factors such 
as light, nitrogen, phosphorous, and CO2 (46, 65, 66). 𝐾𝐸𝑖 is the half saturation constant 

for the i-th environmental factor, and 𝐸𝑖𝑜 is the storage term. 𝜇𝑚𝑎𝑥 is the maximum growth 

rate at saturation. Beyond freshwater bodies, mathematical models of phytoplankton 
growth are being incorporated in global models of ocean circulation and biogeochemistry 
(67), to better predict the magnitude and spatial intensity of the carbon pump concentration 
and elemental ratios in the ocean. We anticipate that a better understanding of 
phytoplankton growth in nutrients and light gradients will provide the foundation for more 
accurate predictions of the global biogeochemical processes to which phytoplankton 
contributes. 
 
In response to nitrogen stress, along with the reduction in photosynthesis, algae such as 
C. reinhardtii modify their metabolism to accumulate high amounts of storage molecules 
including triacylglycerol (TAG), which makes them a promising candidate for biofuel 
production (7, 9, 49, 68-71). While nitrogen deprivation studies have mainly compared milli 
molar ammonium to the nitrogen-deprived state, here, we found that an increase of 
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nitrogen concentration in the micro molar range could clearly affect cells utilization of light 
for growth. This information could possibly be used to search for a nitrogen condition with 
high TAG accumulation as well as a reasonable growth rate to optimize biofuel production. 
In addition, optimizing biofuel production requires further investigation of the effect of 
acetate, where experiments could be performed to figure out 𝐿0 proposed in Eqn. 1 as a 
function of acetate concentration. 
 
 

Materials and Methods 
 
Cell culture and preparation 
Wild type C. reinhardtii strain CC-125 was obtained from the Stern Laboratory at the Boyce 
Thompson Institute of Plant Research on the Ithaca campus of Cornell University. Cells 
were maintained in 10%TAP (Tris Acetate Phosphate) medium, which has one tenth of 
the acetate concentration as compared to the standard TAP medium. The 10%TAP 
medium was composed of 2mM Tris, 1.7mM Acetate, 0.68 mM K2HPO4, 0.45mM KH2PO4, 
7.5 mM NH4Cl, and other salts including 0.34 mM CaCl2),  and prepared using an 
established protocol (72) with trace metal elements concentrations as described in Hunter 
et al. (73) A 5mL cell culture was maintained in 15mL glass tubes in a temperature-
controlled incubator at 25°C without shaking (New Brunswick Innova 44, Eppendorf) under 
a continuous illumination of 20 μmol·m-2·s-1 using LED light (4000K, Commercial Electric). 
For experiments in Tris-Minimal medium (TM, TAP without acetate), cells were maintained 
in a similar manner with TM instead of 10%TAP.  
 
To make medium with low N concentrations, the NH4Cl in the Beijerinck’s solution in the 
10%TAP or TM recipe was replaced by NaCl. 750mM NH4Cl stock solution was made and 
added to the medium to achieve final N concentrations in the micro molar range. The 
medium with no NH4Cl stock solution added was referred to as 10%TAP-N or TM-N, which 
had the lowest nitrogen concentrations of 5.3uM due to the ammonium salt in the trace 
element solution in the recipe. NH4

+ was the only nitrogen source in the medium, thus its 
concentration was taken as the nitrogen concentration. 
 
To set up experiment in the microfluidic platform, cells were prepared via three steps: (i) 
a 20-day old maintenance culture was diluted 10X into 5mL of fresh 10%TAP medium; (ii) 
the newly transferred culture was kept for 5 days before being centrifuged and washed 
twice, and then diluted 5X into 5mL of 10%TAP-N medium; (iii) two days after limiting cells 
of nitrogen, the culture was concentrated 10X to a final density of about 106 cells per mL 
and used to seed the microhabitats. All the glassware for the nitrogen-limitation 
experiment was washed with 10% HCl to remove possible nutrient residuals. Experiments 
in TM were conducted following the same procedures with TM and TM-N. 
 
Microfluidic device design, fabrication, and assembly 
The microfluidic device design consists of an array of 8 x 8 microhabitats (100μm x 100μm 
x 100μm each) surrounded by two sets of side channels (400μm W x 200μm H) imprinted 
in agarose gel, and was proved in previous work to provide stable and well-controlled 
single and dual chemical gradients via molecular diffusion (40). 
 
A two-layer SU8 negative photoresist photolithography process was used to fabricate the 
silicon master with the desired pattern. The pattern was transferred to a 1mm film of 
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agarose gel by pouring 3% dissolved agarose in 1X PBS (Phosphate-Buffered Saline) 
onto the silicon master and letting it cure under room temperature. The gel was then 
soaked in 10%TAP-N medium overnight. 
 
To assemble the device, 200uL cells (1*106 cells/mL) were seeded into the agarose gel 
with patterned microhabitats. The gel was then sandwiched between a glass slide and a 
Plexi glass manifold, and clamped using a metal frame and screws to seal the 
microhabitats and side channels. After initial seeding, there were usually 1 to 6 cells in 
each microhabitat. Empty microhabitats due to randomness of the seeding were omitted 
in the data analysis, as well as microhabitats in which cells that had been trapped in the 
surrounding gel during seeding started to grow into the microhabitat throughout the 
experiment. 
 
Experimental setup and gradient generations 
The microfluidic device was kept on the microscope stage throughout the experiment (7 
days). One set of the side channels (top and bottom) was used for medium perfusion and 
nitrogen gradient generation, while the other set had ends plugged to prevent evaporation. 
A constant flow rate at 0.7 µL/min through the side channels was maintained by a syringe 
pump (KDS230, KD Scientific, Holliston, MA) and two 10 mL syringes (Exelint International 
Co., Redondo Beach, CA). For the nitrogen gradient experiment, the syringe connected 
to the top channel was filled with 10%TAP with 35.3μM N, while the syringe connected to 
the bottom channel was filled with 10%TAP-N. For the lowest nitrogen (5.3µM) condition, 
the source and sink channels were both perfused with 10%TAP-N, with habitats either 
under a light intensity gradient, or under dark (0 PAR). 
 
The transmitted light path of an inverted microscope (Olympus IX81, Center Valley, CA) 
was modified to generate a light gradient as described previously(48). Briefly, a half-moon 
mask was inserted into the light path, perpendicular to the light beam from the bright field 
halogen lamp (Olympus U-LH100L-3), which resulted in a light gradient with a light-dark 
transition region near the middle of the sample plane. The microscope room temperature 
was controlled at 25°C. 
 
Imaging and data analysis 
Microscopic images were taken by an EMCCD camera (ImagEM X2 EM-CCD camera, 
Hamamatsu Photonics K.K.). For fluorescence imaging of C. reinhardtii cells, a 
fluorescence lamp (X-Cite 120PC Q, Excelitas Technologies Corp.), a 488/10 nm single 
bandpass excitation filter (Semrock, Rochester, NY), and a 440/521/607/700 quad-
bandpass emission filter (Semrock, Rochester, NY) were used. During the 7-day 
experiment period, fluorescence images were taken every 4 hours with 50ms exposure 
using the cellSens imaging software (Olympus Life Science). 
 
Fluorescence intensities of microhabitats were measured using the software ImageJ and 
the background was subtracted for use as a measure proportional to cell number, as 
validated by cell counts in bright field images. The growth rates were obtained by fitting n 

consecutive data points of ln
𝑁

𝑁0
 versus time in the growth curve of each microhabitat to a 

linear function, and finding the maximum after 1.3 days (Fig. S2). For our data analysis, 
n=9 was chosen because (1) it reduces the noise in measurements, as the calculated 
growth rates versus time curves flattened out as n increased from 5 (Fig. S2A), and (2) 
further increasing n until 25 did not overly change the maximum growth rate values 



 

 

12 

 

obtained, indicating only marginal benefit in noise reducing for n values larger than 9 (Fig. 
S2B,C). 
 
Growth kinetics model fitting was done using a bootstrapping method on three replicate 
experimental datasets. For each bootstrapping run, a growth rate matrix at the tested 
combinations of light and nitrogen conditions was constructed by randomly sampling from 
the three datasets with a weight given by the reciprocal of the squared standard error from 
4 points around each maximum growth rate. The constructed growth rate matrix was then 
used to fit the multiplicative model (equation 1) using nonlinear least square fit function in 
MATLAB, and the fitting parameters (𝐿0, 𝐾𝐿, and 𝐾𝑁) were recorded. This process was 
repeated 1000 times, which yield a distribution for each parameter (Fig. S3). The 
estimated parameters were calculated by taking the average of the 1000 values. 
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Figures 
 

 
 
Figure 1. Generation of a dual light and nitrogen gradient for algal cells. (A) Schematics of 
the experimental setup. The transmitted illumination light path of an inverted microscope was 
modified to provide a light gradient. A hydrogel-based array microhabitat platform was used to 
provide a nitrogen concentration gradient for algal cells. Here, media with a constant nitrogen 
concentration and buffer flow through the source and sink channels, respectively, and a nitrogen 
concentration gradient was established in the array microhabitat via diffusion. The blank side 
channels were filled with blank media and plugged. (B) A bright field image of the 8 x 8 microhabitat 
array on day 7. The light intensity gradient was in the x-direction and the nitrogen concentration 
gradient was in the y-direction. Chlamydomonas reinhardtii cells were seeded in the array 
microhabitats on day 0. (C) Characterization of the nitrogen gradient in the microhabitat array. 
Experimental nitrogen concentration ([N]) gradient along the y direction across the microhabitat 
array. The linear gradient was computed using images taken when the fluorescent dye and blank 
buffer flow through the source and sink channels respectively. Mean [N] at the horizontal centerline 
of each row of microhabitats was used as the nitrogen concentration for the row. (D) Light intensity 
gradient in the x-direction as measured by grayscale values of bright field images of the 
microhabitat array.  The PAR (µmol·m-2·s-1) values were converted from grayscale values using a 
linear relationship obtained in a previous work(48). Mean light intensity at the vertical centerline of 
each column of microhabitats was used as the light intensity for the column. (E) Time lapse 
fluorescence images of the microhabitats under dual light and nitrogen gradients. Images at 0, 14, 
28, 42 hours are shown here. 
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Figure 2. Nitrogen enhanced the algal growth response sensitivity to light. (A,B) Time 
sequence of fluorescence images of one row of algal cells under a light intensity gradient with low 
(5.3µM)  (A) and high (30.8µM) (B) nitrogen concentration. Contrast was adjusted to show details: 
Maximum grayscale value was taken as 15000 for day 0-4 images, and 35000 for day 5-7 images. 
The scale bar represents 100µm. (C,D) Growth curves of algal cells in the microhabitats at various 
levels of light intensity for low  (C) and high (D) nitrogen concentrations respectively. Growth was 
calculated by taking the natural log of cell number N divided by the initial cell number N0, as 
measured by the fluorescence intensity. We note that initial cell seeding was a random process 
that could result in variations in cells density. This heterogeneity was addressed by normalizing N 
by the initial cell number, N0. Colors of the dots represent light intensities. Photosynthetically Active 
Radiation (PAR) is expressed in units of µmol·m-2·s-1. Results shown are from one of the three 
replicates. 
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Figure 3. Light enhanced the algal growth response sensitivity to nitrogen. (A,B) Time 
sequence of fluorescence images of algal cells in one column of microhabitats (rotated 90 
degrees into a row) under a nitrogen concentration gradient with low (0.1 PAR, A) and high (41.1 
PAR,B) light intensities. Contrast was adjusted to show details: Maximum grayscale value was 
taken as 15000 for day 0-4 images, and 35000 for day 5-7 images. The scale bar represents 
100µm. (C,D) Growth curves of algal cells at various levels of nitrogen concentration in the 
microhabitats for low (C) and high (D) light intensities.  Growth was calculated by taking the 
natural log of cell number N divided by the initial cell number N0, as measured by fluorescence 
intensity.  Colors of the dots represent nitrogen concentration. Photosynthetically Active Radiation 
(PAR) is expressed in units of µmol·m-2·s-1. Results shown are from one of the three replicates. 
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Figure 4. Light and nitrogen synergistically enhanced algal growth. (A) Fluorescence 
images of algal cells growing under dual light and nitrogen gradients (as described in Figure 1) on 
day 0, 4 and 7. The nitrogen gradient was 1.3µM per 100µm and the light intensity gradient is 2 
µmol·m-2·s-1 per 100µm. Contrast was adjusted for illustration purposes: the intensity (0-255) 
corresponds to (0-10000) of the grayscale of original images for day 0 and 4, and (0-20000) for 
day 7. (B) 3D plots of cell growth rates in single microhabitats. Data were combined using results 
from three replicated experiments. The color of dots represents growth rate as shown in the color 
bar. 
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Figure 5. Light and nitrogen co-limit algal cell growth, revealed by a general multiplicative 
growth model. (A) 3D plot of the growth rate as a function of nitrogen concentration and light 
intensity. The dots are experimental data from three replicates, and the surface is a fit to the 
proposed general multiplicative model.  Experimental dots are connected to the fitted surface by 
vertical lines for visualization purpose. Dots above or on the surface are plotted in light blue, while 
those below are in dark blue. The fitted parameters were L0 = 50.8 µmol·m-2·s-1, KL = 57.2 
µmol·m-2·s-1, and KN = 2.8 µM. (B) A lookup map showing the predicted growth rate under wide 
ranges of light intensities and nitrogen concentrations using the multiplicative model. (C) Scatter 
plots of predicted growth rates from the multiplicative model versus experimental growth rates. 
(D) Predicted algal growth rate as a function of nitrogen concentration under low (10 PAR) and 
high (100 PAR) light intensities. (E) Predicted growth rate as a function of light intensity under low 
(17 µM) and high (93 µM) nitrogen concentrations.  
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Supporting Information Text 
 
A general multiplicative model considering acetate and nutrient storage 
Acetate is an organic carbon source that can provide energy to C. reinhardtii cells, which likely 
affect algal growth response to light. We note that the presence of acetate in the natural 
environment is typically very low. So, in our experiments, we used a lowered acetate concentration 
as compared to the normal TAP medium. It has been shown that microalgae like C. reinhardtii can 
have different trophic modes depending on the type of carbon and energy sources available (1, 2). 
Cells are known to perform mixotrophic growth in presence of both acetate and light, where both 
inorganic and organic carbon could be used as carbon sources, and both organic carbon and light 
as energy sources. In algal cells, acetate is incorporated into acetyl coenzyme A (acetyl-CoA), 
which then goes into the mitochondrial tricarboxylic acid (TCA) cycle for respiration and ATP 
production (energy source) or into the glyoxylate cycle for gluconeogenesis (C source)(3). The 
presence of acetate in the growth medium was found to stimulate growth, promoting respiration 
while reducing chlorophyll content and photosynthesis capacity (1, 4). Therefore, as compared to 
growth in the absence of acetate, cells growing in mixotrophy could have higher growth rate under 
the same light condition and appear less sensitive to changes in light. In addition, the presence of 
acetate alone could fulfill the requirement of nitrogen assimilation on both light and CO2 (3, 5). Thus, 
acetate could be viewed as a substitute for light and carbon, which is likely an independent growth 
limiting factor from nitrogen.  
 
To look at the impact of organic carbon on the algal growth response to light, we performed 
experiments in the microhabitats using Tris-Minimal (TM) medium under a light gradient, where no 
acetate was provided, and compared to cells growing in 10%TAP (Fig. S4, 10%TAP-N and TM-N 
refer to media with no NH4Cl stock solution added, and the nitrogen concentration was 5.3µM in 
both conditions). It was found that removal of the organic carbon resulted in no baseline growth at 
PAR=0 (Fig. S4F), indicating photoautotrophic growth where inorganic carbon (CO2) was the only 
carbon source, and light the only energy source. Interestingly, cells in TM responded more 
sensitively to light as compared to those in 10%TAP, as shown in Fig. S4. Therefore, in the growth 
model, a storage term 𝐿0 was added to address the effect of acetate. In the literature, organic 
carbon has been mostly treated as an independent factor to light either in a multiplicative manner 
(6-9), where the kinetic terms for the organic carbon and light were multiplied, or in an additive 
manner(10, 11), where the contributions from phototrophic and heterotrophic growth were added 
together. Here, based on the comparison between the two conditions in TM and 10%TAP, we 
proposed to describe the effect of acetate as 𝐿0 that addressed the decreased growth sensitivity to 
light, as well as the elevated growth rate as compared to photoautotrophic growth at the same light 
intensities (Eqn. 1). These growth responses agreed with the growth and metabolic behavior 
observed in large scale cultures. For the light gradient experiment in TM-N, Eqn. 1 can be written 
as: 

                                                               𝜇 = 𝜇𝑚𝑎𝑥
′ 𝐿+𝐿0

𝐾𝐿+𝐿+𝐿0
.                                                          (S1) 

Here, 𝜇𝑚𝑎𝑥
′ is the growth rate at saturated light intensity at 5.3µM nitrogen and was fixed to be 

0.55day-1. Fitting Eqn. S1 gave 𝐿0  = 1.6±1.3µmol·m-2·s-1 and 𝐾𝐿  = 15.4±4.3µmol·m-2·s-1. The 

obtained value of 𝐿0 was not significantly different from 0 (p-value = 0.18). Therefore, when fitting 
Eqn.1 to the combined datasets obtained with acetate (in 10%TAP) and without (in TM), 𝐿0 was 
kept as a free positive parameter for the former, while set to 0 for the latter. Note that to figure out 
𝐿0 as a function of acetate concentration, experiments on a range of acetate conditions would be 
required.  
 
In addition to 1) light and nitrogen, a physical factor and a chemical factor independently colimiting 
algal growth, and 2) acetate and light, a chemical resource affecting the effect of physical light, the 
effect of phosphorous and nitrogen, two chemical resources, on algal growth has been explored in 
this array microhabitat platform with dual chemical gradients. It was found that phosphorus and 
nitrogen synergistically promoted cell growth(12). The observed non-zero residual growth at 
[P],[N]=0µM led to the hypothesis that cells had stored phosphorus and nitrogen available despite 
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the starvation on the two nutrients ahead of the experiments. Therefore, the model we proposed to 
describe the nitrogen and phosphorous colimited growth is: 

                                              𝜇 = 𝜇𝑚𝑎𝑥 ⋅
[𝑃]+𝑃0

𝐾𝑃+[𝑃]+𝑃0
∙

[𝑁]+𝑁0

𝐾𝑁+[𝑁]+𝑁0
.                                                      (S2) 

Here, 𝑃0  and 𝑁0 can be understood as equivalent external concentrations representing nutrient 

storage. Fitting equation S2 with fixed 𝜇𝑚𝑎𝑥  gave 𝑃0  = 8.0±2.1µM, 𝑁0  = 0.97±0.89µM, 𝐾𝑃  = 
10.2±2.2µM, and 𝐾𝑁 = 0.37±0.35µM. The fitting results were shown in Fig. S5 (A-B). An alternative 

way to address the observed residual growth is to include a 𝜇0 instead of 𝑃0 and 𝑁0 in the model, 
as shown in the following equation:  

                                              𝜇 = 𝜇𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥 ⋅
[𝑃]

𝐾𝑃+[𝑃]
∙

[𝑁]

𝐾𝑁+[𝑁]
.                                                    (S3) 

However, model as described by Eqn. S2 provided better goodness of fit, shown by the reduced 
Akaike information criterion value, as compared to Eqn. S3 (Fig. S5C-D).  
 
Taken together, the growth contribution from acetate and nutrient storage discussed above, 
assuming that (1) light and nitrogen independently colimit cell growth, (2) acetate only affects cell 
response to light, and (3) cells keep some level of available nitrogen under starvation, a general 
multi-resource algal growth kinetics model can be constructed as Eqn. 1, where [P] did not appear 
because it was provided at concentrations much higher than 𝐾𝑃 in nitrogen and light colimitation 

experiments. The fit of Eqn. S2 gave a value of 𝑁0 compatible with zero (p-value = 0.28), therefore, 
𝑁0 = 0µM was used for fitting Eqn. 1. 
 
Some alternative forms of growth models were also looked at including: 

                                                 𝜇 = 𝜇0 + 𝜇′𝑚𝑎𝑥 ∙
𝐿

𝐾𝐿+𝐿
∙

[𝑁]

𝐾𝑁+[𝑁]
                                                        (S4) 

                                         and 𝜇 = 𝜇0 + 𝜇′𝑚𝑎𝑥 ∙ 𝑚𝑖𝑛 (
𝐿

𝐾𝐿+𝐿
,

[𝑁]

𝐾𝑁+[𝑁]
).                                               (S5) 

Here, a distinct 𝜇0 was included to address baseline growth. Eqn. S4 and S5 were fitted to the data 
in a similar way to Eqn. 1. Akaike information criterion (AIC) was used to compare the goodness of 
fit between models with different number of fitting parameters. The calculated AIC for Eqn. S4 and 
S5 were -293 and -291 respectively, both higher than -436 obtained for Eqn. 1. This showed that 
the model presented in Eqn. 1 performed better in fitting as compared to other possible forms. 
 
Estimation of lake light intensities from clarity measurements 
Light intensities in lakes were estimated from clarity measurements by converting clarity to light 
extinction coefficient and assuming the surface light intensity. According to the reports from the 
Citizens Statewide Lake Assessment Program, in the 2020 sampling season, Cayuga Lake (South 
Shelf Site) and Hemlock Lake (Mid Site) had mean clarity of 2.2meters and 4.4meters respectively. 
Clarity was measured as Secchi disk depth (ZSD), which could be converted to the extinction 
coefficient of solar radiation (k) by: k=1.7/ ZSD (13, 14). Then the light intensity (I) at certain depth 
(z) in water could be calculated as I(z) = I0*exp(-k*z), where I0 is the irradiance just underneath 
water surface. So, at the same depth of 6m under the lake surface (assuming surface light intensity 
to be 1000PAR), due to the clarity difference, the light intensity in Cayuga Lake was calculated as 
roughly 0.1PAR, while that in Hemlock Lake, 100PAR. 
 
 
  



 

 

4 
 

 

 

Fig. S1. Array microhabitat device with chemical gradient generation. (A) Layout of two 
devices in parallel on a chip. The device on the right shows the generation of a single chemical 
gradient by perfusing medium with a target chemical in the source channel and blank medium in 
the sink channel. The other two side channels are filled will blank medium and plugged. Note that 
this device has the potential to generate dual chemical gradients, but only one gradient is 
generated and used in our experiments presented in this manuscript. (B) Equilibrium chemical 
concentration field at time t = 90 min from a COMSOL simulation, where the concentration of the 
diffusive chemical species was fixed as 1*107 mol/m3 and 0 at the right and left channel 
respectively, and everywhere else was 0 to start with (at t=0). The diffusion coefficient of the 
fluorescence dye (fitc) in water was used for direct comparison with experimental results (Fig. 
1C). 
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Fig. S2. Growth rate calculation. (A) Specific growth rates calculated for growth curves in Fig. 
2D, by fitting n consecutive data points around each time point to a straight line and taking the 
slope. Shown here were n=5, 7, 9, and 11. Colors represent the light intensity conditions (as in 
Fig. 2D). The dashed line marked day 1.3, after which maximum growth rates were determined. 
(B) Maximum specific growth rates after day 1.3 versus n values. Colors represented the light 
intensity conditions (as in Fig. 2D). (C) Maximum specific growth rates after day 1.3 versus light 
intensities. Colors represented different n values. n=9 was chosen for final data analysis shown in 
Fig. 4B. 
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Fig. S3. Parameters from colimitation model fitting. Distribution of fitted parameters from the 
general multiplicative model: (A) L0, (B) KL, and (C) KN. Correlation between parameters: (D-F). 
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Fig. S4. Comparing growth of N-starved cells in 10%TAP-N (A-C) and TM-N (D-F). (A) 
Fluorescence image of algal cells growing in 10% TAP-N under a light gradient on day 7. 
Contrast was adjusted for illustration purpose. (B) Growth curves of algal cells under different 
light conditions in the columns in (A). (C) Growth rate in 10%TAP-N versus light intensity. (D) 
Fluorescence image of algal cells growing in TM-N under a light gradient on day 7. Contrast was 
adjusted for illustration purpose. (E) Growth curves of algal cells under different light conditions in 
the columns in (A). (F) Growth rate in TM-N versus light intensity. Error bars in (C) and (F) 
represent standard errors of measurements taken on replicate microhabitats under each light 
intensity condition. 10%TAP-N and TM-N refer to 10%TAP and TM media with no NH4Cl stock 
solution added (Materials and Methods), and the nitrogen concentration was 5.3µM in both 
10%TAP-N and TM-N. 
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Fig. S5. Model fitting of phosphorus and nitrogen colimited algal growth. (A,C) The fitted 
model (surface) and experimental data (dots) from the average of two replicates, resulted from 
fitting a model considering nutrient storage (equation S1) (A) and one with only baseline growth 
(C). (B,D) The predicted growth rates versus experimental growth rates showing the goodness of 
fit for results in (A) and (C) respectively. 
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Movie S1 (separate file). C. reinhardtii cells growth in the array microhabitat for 7 days (0-
164 hours) under dual light and nitrogen gradients. Time laps images were taken using 
fluorescence imaging at 4-hour intervals. Contrast was adjusted for illustration purposes: the 
intensity (0-255) corresponds to (0-20000) of the grayscale of original images.  
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