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Introduction
Cell migration is coordinated by a complex of proteins that 

localizes to sites of cell–matrix interaction, the focal adhesions 

(FAs; Critchley, 2000; Geiger et al., 2001). The adaptor protein 

vinculin is a key regulator of FAs (Jockusch and Rudiger, 1996; 

Zamir and Geiger, 2001; Ziegler et al., 2006), and cells depleted 

of vinculin have reduced adhesion to a variety of ECM proteins, 

increased migration rates, and fewer and smaller adhesions com-

pared with wild-type cells (Coll et al., 1995; Volberg et al., 1995; 

Xu et al., 1998; Saunders et al., 2006). Despite the profound 

role of vinculin in cell adhesion and motility, the molecular 

mechanisms by which vinculin exerts these distinct effects are 

poorly understood.

Structurally, vinculin comprises three major domains: an 

N-terminal head, a fl exible proline-rich hinge (neck) region, and 

a C-terminal tail domain (Eimer et al., 1993; Winkler et al., 1996). 

Vinculin activation results from conformational rearrangements 

of these domains. Intramolecular associations between the head 

and tail domains constrain vinculin in an inactive conformation 

(Bakolitsa et al., 2004), causing it to be located within the 

cytoplasm (Chen et al., 2005). Upon recruitment to FAs, the 

structure of vinculin switches to an open, active conformation. 

This process of activation is crucial to allow the full access 

and direct interaction of talin and α-actinin to the head; ponsin, 

vinexin, vasodilator-stimulated phosphoprotein, and Arp2/3 to 

the neck; and actin, phosphatidylinositol (4,5)-bisphosphate (PIP2), 

and paxillin to the tail (Zamir and Geiger, 2001; Ziegler et al., 

2006). However, because most of the studies characterizing inter-

action sites on vinculin rely on biochemical assays using purifi ed 

proteins, it is not clear what relevance these potential interactions 

have for FA formation.

We have therefore taken a novel approach to the study 

of vinculin, focusing on its localization and function in cells. 

We found that in order for vinculin to drive the formation of 

FAs, it needs to interact with talin. The interaction of the opened, 

and therefore activated, form of vinculin with talin has a direct 

effect on integrins, clustering them in an active conformation 

and leading to FA enlargement. Subsequent to the appearance 

of vinculin in FAs, paxillin becomes recruited, though this is 

independent of the paxillin-binding site present in the vinculin 

tail (vinT) domain. Our data also suggest that vinT represents 

the major link between FAs and the actin network. Overall, we 

propose a new model that places vinculin in a key position regu-

lating FA formation and turnover.
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 F
ocal adhesions (FAs) regulate cell migration. Vincu-

lin, with its many potential binding partners, can inter-

connect signals in FAs. Despite the well-characterized 

structure of vinculin, the molecular mechanisms under-

lying its action have remained unclear. Here, using vinculin 

mutants, we separate the vinculin head and tail regions 

into distinct functional domains. We show that the vinculin 

head regulates integrin dynamics and clustering and the 

tail regulates the link to the mechanotransduction force 

machinery. The expression of vinculin constructs with un-

masked binding sites in the head and tail regions induces 

dramatic FA growth, which is mediated by their direct 

interaction with talin. This interaction leads to clustering of 

activated integrin and an increase in integrin residency 

time in FAs. Surprisingly, paxillin recruitment, induced by 

active vinculin constructs, occurs independently of its po-

tential binding site in the vinculin tail. The vinculin tail, 

however, is responsible for the functional link of FAs to the 

actin cytoskeleton. We propose a new model that explains 

how vinculin orchestrates FAs.
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Results

Active vinculin induces an increase in FA 
size via its head domain
To investigate the role of different regions of vinculin in reg-

ulating FA number and size, a variety of vinculin constructs 

tagged to GFP or YFP were expressed in NIH3T3 cells (Fig. 1 A) 

and their effects on FA formation were compared. Among the 

tested constructs were full-length vinculin (vinFL); vinculin T12 

(vinT12), a constitutively active form of vinculin bearing muta-

tions that inhibit head–tail association (Cohen et al., 2005); 

vinculin LD (vinLD), which contains mutations that inhibit PIP2 

binding (Chandrasekar et al., 2005); constructs that comprise the 

N-terminal 880 or 258 amino acids, thus lacking the tail (vin880 

and vin258, respectively); and a vinT construct (comprising 

amino acids 881–1066; Fig. 1 A). All expressed constructs local-

ized to FAs in a variety of cell types such as murine NIH3T3 

fi broblasts, B16-F1 melanoma, and HeLa cells (Fig. 1 B and 

not depicted). Additionally, besides localizing to FAs, vinT also 

colocalized with actin fi laments (see Fig. 7 A and not depicted). 

Notably, vinT12, vin880, and vin258 induced a dramatic increase 

in the size and number of FAs (Fig. 1, B and C), and the area of 

the cell surface that contained FAs was approximately three- 

to fourfold larger than that observed for vinFL and vinLD 

(Fig. 1 D). Thus, although all vinculin constructs locate to adhe-

sion sites, the size and number of these adhesions dramatically 

increase by preventing head–tail associations. By using vinculin 

fragments, this property was shown to reside within the N-terminal 

258 amino acid.

Talin and paxillin localize identically 
to vinculin-enlarged FAs
To identify associated molecules involved in the induction of 

enlarged FAs by active vinculin (vinT12) and C-terminally trun-

cated constructs such as vin880 and vin258, image correlation 

analysis (ICA), which is a pixel-to-pixel comparison based on 

the Pearson’s correlation coeffi cient (r), was used. In initial ex-

periments on cells, coexpression of CFP- and YFP-paxillin re-

vealed r values of �0.8 (Figs. 2 B and S1, available at http://www

.jcb.org/cgi/content/full/jcb.200703036/DC1). These values 

refl ect the virtually identical localization of two components.

CFP- or YFP-vin880 was then coexpressed pairwise with 

other prominent FA regulators fused to YFP or CFP and correla-

tion coeffi cients were calculated. The Pearson’s correlation co-

effi cient measures colocalization in 2D (Fig. 2 B). To produce a 

more visual illustration of the degree of correlation between pairs 

of components, fl uorescence intensities in 1D line profi les drawn 

over FA areas were also compared (Fig. 2 A, right). Although 

talin and paxillin showed essentially identical colocalization with 

vin880 (r = 0.72 and 0.82, respectively), the correlations of 

α-actinin (r = 0.27), FAK (r = 0.42), and a reporter for tyrosine-

phosphorylated SH2-binding sites (dSH2; r = 0.39; Kirchner 

et al., 2003; Ballestrem et al., 2006) with vin880 in FAs were 

low (Fig. 2, A and B). The paxillin result was particularly sur-

prising because vin880 lacks the reported paxillin binding site in 

vinculin. The high degree of colocalization of vin880 with paxil-

lin and talin was also observed when endogenous paxillin and 

Figure 1. Effect of wild-type and mutant forms of vinculin on FA growth. 
(A) Vinculin constructs that were expressed as fusion constructs to GFP de-
rivatives in NIH3T3 cells: vinFL; vinculin comprising head and neck do-
mains, amino acids 1–880 (vin880); vinculin head domain 1, amino acids 
1–258 (vin 258); vinT, amino acids 880–1066; vinT12 (Cohen et al., 
2005), with point mutations that render the molecule constitutively active; 
and vinLD (Chandrasekar et al., 2005), with point mutations that inhibit 
PIP2 binding. (B) NIH3T3 cells expressing indicated GFP-tagged constructs. 
Note the dramatic increase of FAs expressing vinT12, vin880, and vin258 
compared to cells expressing vinFL or vinLD. vinT localizes to FAs and fi la-
mentous structures. (C) Quantifi cation of FA size and number. FAs were 
masked, and their sizes and numbers where calculated. Asterisks indicate 
statistical signifi cance (P < 0.001, t test). (D) Quantifi cation of FA areas. 
FA area was calculated as a percentage of the total cell area. Asterisks in-
dicate signifi cant differences of values compared with vinFL (P < 0.0001, 
HSD test). There was no statistical difference in FA values between vinFL 
and vinLD. Error bars indicate ± SEM. Bars, 10 μm. 
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talin were detected with antibodies (Fig. S2 A, available at http://

www.jcb.org/cgi/content/full/jcb.200703036/DC1; and not de-

picted). Thus, of the previously reported direct vinculin inter-

action partners, talin but not α-actinin is effi ciently recruited 

to vin880-enlarged FAs. Also, the identical colocalization of 

vin880 with paxillin demonstrates that vinculin can trigger 

downstream events, resulting in the recruitment of paxillin in-

dependent of its interaction site located in the tail domain (also 

observed in vinculin null cells, see Fig. 6 A). Moreover, the absence 

of FAK and dSH2 from most of the vin880-induced FAs close to 

the nuclei (unpublished data) suggests that FAK and tyrosine 

phosphorylation are not likely to play a role in the recruitment of 

paxillin to vin880-induced hypertrophic FAs.

Analysis of intensity profi les of vin880 cotransfected with 

FAK or dSH2 constructs revealed differences compared with the 

relationship between vin880 and α-actinin. Although all high in-

tensity peaks of FAK or dSH2 correlated well with intensity peaks 

of vin880, high α-actinin intensity often showed no clear correla-

tion with the intensity profi le of vin880 (Fig. 2 A). Conversely, 

α-actinin–positive structures showed a strong correlation with actin 

(unpublished data). Together, these data suggest that α-actinin is 

unlikely to have a key role in vinculin-induced FA growth.

To assess whether vin258 and vinT12 signal via different 

mechanisms, their presence in FAs was correlated with the same 

series of proteins. Again, high correlation coeffi cients were only 

obtained between talin and paxillin (Fig. 2 C and not depicted). 

Figure 2. ICA of vin880 with other FA proteins. 
(A) Sections of NIH3T3 cells expressing CFP- and 
YFP-tagged proteins as indicated. Fluorescence in-
tensity profi les depict the area of the line drawn in 
image overlays. Potential direct interacting pro-
teins talin and α-actinin show different correlations 
with vin880. In contrast to talin, which colocalizes 
identically with vin880, α-actinin colocalizes only 
poorly with pixels positive for vin880. vin880 co-
localization with potentially indirectly associating 
proteins paxillin and FAK and correlation with 
phosphotyrosine in FA is shown. Paxillin colocal-
izes identically with vin880 in oversized FAs, 
whereas pixels positive for FAK and a probe that 
recognizes phosphotyrosine in FA (dSH2) corre-
late less well with vin880 localization. Bar, 2 μm. 
(B) Quantifi cation of colocalization by ICA based 
on the Pearson’s correlation coeffi cient (a perfect 
linear correlation is shown at +1; see Fig. S1, 
available at http://www.jcb.org/cgi/content/full/
jcb.200703036/DC1). Note the high correlation 
of vin880 with talin and paxillin but lower correla-
tion with α-actinin, FAK, and dSH2. Red asterisks 
indicate signifi cant differences of correlation val-
ues compared with pax-pax control (P < 0.0001, 
HSD test). Blue asterisks indicate no statistical dif-
ferences. (C) Quantifi cation of colocalization in 
FAs by ICA based on the Pearson’s correlation co-
effi cient of GFP-vinT12/RFP-paxillin, CFP-paxillin/
YFP-vin258, GFP-vinT12/RFP-talin, and YFP-vin258/
RFP-talin. The correlation between indicated pairs 
was as equally high as CFP-paxillin/YFP-paxillin, 
demonstrating identical colocalization. Error bars 
indicate ± SEM. 
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Figure 3. Vinculin regulates integrin clustering and dynamics. (A) HeLa cells overexpressing YFP-vin880 were costained with an antibody recognizing active 
β1 (9EG7; Bazzoni et al., 1995) and the total pool of β1 integrin (TS2/16). FAs positive for YFP-vin880 are also positive for β1 integrins. The intensity profi les 
in red and green outline the high correlation of YFP-vin880 and active β1 integrins. The blue intensity profi le shows the high levels of β1 integrins in the cell 
membrane and FAs. Fluorescence intensity profi les depict the area of the lines drawn in image overlays. (B) FAs induced by YFP-vin880 (left) are readily visible 
by interference refl ection microscopy (middle), indicating that they participate in adhesion to ECM proteins. Overlay fl uorescence and interference are shown 
on the right. (C) Images and line profi les drawn over the area of NIH3T3 cells expressing indicated constructs demonstrate that the cytoplasmic pool of 
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These data suggest that talin and/or paxillin may play key roles 

in the formation of the enlarged FAs induced by active vinculin.

Vinculin regulates the clustering of 
integrins in FA
To determine the relationship between FA formation and recep-

tor distribution, the colocalization of integrins with vin880 was 

examined in cells spread on fi bronectin, the major ligand for 

α5β1 integrin. A YFP–α5 integrin construct colocalized with 

CFP-vin880 in all visible FAs (unpublished data). Integrins adopt 

different conformations, which can be reported by mAbs. A strik-

ing colocalization of active β1 with vin880 in FAs was observed 

(Fig. 3 A), which was distinct from the colocalization of total 

β1 with vin880. This is most obviously seen in the fl uorescence 

intensity profi le from the area of the line drawn in the image over-

lay (Fig. 3 A). Although the total β1 staining labeled integrins in 

FAs and the cell membrane, active β1 was found almost exclu-

sively in FAs correlating highly with vin880 (r = 0.79). To ex-

amine whether these FAs link the cell to the ECM, interference 

refl ection microscopy was used to visualize regions of the cell 

membrane proximal to the substratum. Indeed, FAs induced by 

vin880 were detected by interference refl ection microscopy, 

demonstrating a physical association with the ECM (Fig. 3 B).

Vinculin constructs that induce FA 
enlargement have increased residency 
time in FAs and form tight complexes with 
talin and integrins
During FA size measurements, it was observed that YFP-vin258, 

YFP-vin880, and GFP-vinT12, all of which induced enlarged 

FAs, had a clearer FA pattern with a reduced cytoplasmic pool 

compared with GFP-vinFL (Fig. 3 C and not depicted). The re-

duction of the cytoplasmic pool suggests differences in mo-

bilities and affi nities of the proteins, leading to an enhanced 

recruitment to FAs. To study mobilities of the different vinculin 

mutants in FAs, FRAP experiments were performed (Fig. 3, 

D and E; Lippincott-Schwartz et al., 2001). The observed FRAP 

recoveries presented in Fig. 3 E appear to be slightly biphasic, 

as was previously observed for vinculin (Lele et al., 2006). 

The possibility that this might be caused by the ability of vinculin 

to bind multiple binding partners or the enhanced fast reversible 

photobleaching for YFP-tagged probes used in the majority of 

these experiments needs further investigation. However, to avoid 

overinterpretation of our results, single exponential fi ts were 

used as reported previously by others with similar probes (Cohen 

et al., 2006). Using such fi ts provided estimates of the mobile 

fractions (MFs) and t1/2 of recoveries. A striking twofold de-

crease in the MFs (Fig. 3, E and F) and a twofold increase in t1/2 

(Fig. 3 G) of vinT12, vin880, and vin258 were found compared 

with vinFL, vinLD, and vinT. This indicates that by switching 

to an active conformation or exposing binding sites within 

N-terminal domains, vinculin changes its affi nity for binding 

partners, resulting in an increased stability of vinculin within FAs.

Because talin binds to integrins and provides an early 

mechanical link to ECM proteins (Giannone et al., 2003; Zaidel-

Bar et al., 2003), it was hypothesized that the reduction of 

vinT12, vin880, and vin258 mobility may be caused by the for-

mation of a stable complex with talin and integrins. A recent 

paper demonstrated the delayed turnover of talin in FAs upon 

coexpression with constitutively active vinT12 (Cohen et al., 

2006), thus indicating their tight association in cells. Similar 

results were obtained for talin turnover when coexpressed with 

vin880 (talin t1/2 increased �25% compared with cells co-

expressing vinFL; Fig. 3 H).

If integrins were also part of such a tight complex, we 

predicted that integrin subunits would turn over at similar rates 

to vinT12, vin880, or vin258. Indeed the MF and t1/2 of the 

GFP–α5 integrin chain were almost identical to YFP-vin880 

(Fig. 3, I and J). Interestingly, YFP-paxillin, which colocalizes 

precisely with vin880 (Fig. 2, A and B), was considerably more 

mobile, with a t1/2 of 11 s and a MF of 70%, and did not change 

upon coexpression of vin880 (Fig. 3, L and M). These data 

 suggest that in cells cultured on fi bronectin, talin, α5β1 integ-

rin, and active vinculin form a tight complex at points of cell–

ECM contact, whereas paxillin only transiently associates with 

this complex.

To test whether integrin dynamics change in the presence 

of vinculin in FAs, YFP–α5 integrin was expressed alone or 

in combination with CFP-vinFL or -vin880 in vin−/− mouse 

embryonic fi broblasts (MEFs; Saunders et al., 2006) and integrin 

turnover rates were measured using FRAP. A 40% increase in 

the t1/2 of α5 integrin in cells coexpressing vinFL compared with 

α5 alone was observed. A further 30% increase of t1/2 was ob-

served in cells coexpressing vin880, demonstrating that integrin 

turnover within FAs is regulated by vinculin activity or expo-

sure of N-terminal binding domains within vinculin (Fig. 3 K).

To confi rm the apparent tight association between integrins, 

talin, and vin880, their interactions were tested biochemically. 

FN-coated beads were added to cells expressing YFP-vinFL 

or -vin880 and bead-bound fractions were isolated after cross-

linking and detergent extraction. α5 integrin and talin were 

identifi ed in all bead-bound cell fractions (Fig. 4 A). Despite the 

similar total levels of vin880 and vinFL expression, within the 

bead-bound fraction, vin880 was enriched by  approximately 

GFP-vinFL is higher than that of GFP-vinT12. (D) To assess the turnover of indicated proteins, circular areas of 1.5-μm diameter were bleached, and recovery was 
measured. Note the slower fl uorescence recovery of bleached areas in YFP-vin880–expressing cells compared to areas in YFP-vinFL–expressing cells. (E) Nor-
malized recovery of vinFL, vin880, and vinT12 in FAs, with lines indicating the single exponential fi t of the data. MF (F) and t1/2 of recovery (G) of indicated 
YFP-fusion proteins in FAs of NIH3T3 cells. Red asterisks indicate signifi cant differences compared to vinFL (P < 0.005, HSD test). Blue asterisks indicate no 
statistical differences. (H) Talin t1/2 of recovery is longer when coexpressed with vin880 in comparison with vinFL. Asterisk indicates statistical signifi cance 
(P < 0.05, t test). Comparison of MFs (I) and t1/2 (J) of YFP-vinFL, -vin880, and –α5 integrin in FA. Note the striking similarity of vin880 and α5 integrin dynam-
ics. Red asterisks indicate signifi cant differences compared to vinFL (P < 0.001, HSD test). (K) Coexpression of vinFL or vin880 leads to a longer t 1/2 of recov-
ery of YFP–α5 integrin in FAs of vin−/− MEF. Red asterisks indicate signifi cant differences between the samples (P < 0.01, HSD test). (L and M) Expression 
of vin880 changes neither the MF (L) nor the t1/2 of recovery (M) of paxillin in FAs. Error bars indicate ± SEM. Bars: (A) 2 μm; (B and C) 10 μm; (D) 2 μm.
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fourfold, unlike talin, when normalized to the respective α5 

integrin band intensity (Fig. 4 B). Moreover, coimmunoprecip-

itation experiments from cells expressing YFP-vin880 or -vinFL 

demonstrated the association of talin with vin880 but not vinFL 

(Fig. 4 C). Performing the assay after incubation with a chemical 

cross-linker resulted in the additional coimmunoprecipitation 

of the α5 integrin subunit with vin880 (1.85 ± 0.49–fold in-

crease over control; P = 0.03, Fisher Sign test, n = 5; Fig. 4 D). 

The weak α5 integrin signal observed in the coimmunoprecipi-

tation is partly caused by the low stoichiometry of the inter-

action, i.e., the vast majority of talin and vinculin within the cell 

is not complexed with integrin at any one time, partly because 

of the lability of the complex and the inaccessibility of a trans-

membrane receptor associated with poorly soluble cytoskeletal 

and matrix components. This latter point means that stringent 

detergent conditions are required to solubilize the individual 

components of the complex; these conditions subsequently lead 

to the dissociation of the complex.

Interestingly, talin coimmunoprecipitated with vin880 

regardless of whether cells were in suspension or attached to 

the ECM (Fig. 4 E), and neither vin880 nor vinFL coimmuno-

precipitated α-actinin, paxillin, or FAK (Fig. S3, available at 

http://www.jcb.org/cgi/content/full/jcb.200703036/DC1). Overall, 

these biochemical data support the FRAP and immunofl uores-

cence data (Figs. 1–3) and indicate that the N-terminal do-

mains of vinculin, e.g., vin880 without the C-terminal tail region, 

 constitute a vinculin construct that forms a tight complex with 

talin and α5β1 integrin.

The talin–vinculin interaction is required for 
the vinculin-induced FA enlargement
It was observed previously that talin and paxillin but not FAK, 

α-actinin, or phosphotyrosine correlated highly with localiza-

tion of vin880 in FAs, suggesting that the former might be in-

volved in FA enlargement or formation. To test this possibility, 

paxillin and talin (talin1) were deleted by small hairpin RNA 

knockdown. YFP-vin880 expressed in paxillin-defi cient B16 

cells was still able to induce FAs of a similar size and number 

as those in wild-type cells (Fig. 5, A and B). For the knockdown 

of talin1, the interpretation of data was diffi cult, primarily be-

cause many of the talin knockdown cells rounded up and were 

therefore unsuitable for FA measurements (unpublished data). 

Therefore, to test directly the role of the talin–vinculin inter-

action in the formation of enlarged FAs, an A50I mutation was 

introduced into vin258, vin880, and vinT12. This mutation is 

known to reduce talin binding to vinculin in vitro (Bakolitsa et al., 

2004). Immunoprecipitations demonstrated that the A50I muta-

tion in vin880 and vinT12 abrogated the  coimmunoprecipitation 

of talin (Fig. 5 C). Expression of these constructs in NIH3T3 

cells and subsequent analysis of FAs showed that vin258 (A50I) 

and vinT12 (A50I) no longer induced FA growth, whereas 

vin880 (A50I) exhibited greatly reduced activity (Fig. 5, D and E). 

Figure 4. YFP-vin880 is enriched in FN–
integrin complexes and coimmunoprecipitates 
talin and integrin. (A) FN–bead bound com-
plexes isolated from NIH3T3 cells expressing 
either YFP-vin880 or -vinFL and immunoblotted 
for GFP, α5 integrin, or talin. (B) Quantifi cation 
of A expressed as a ratio of vin880/vinFL after 
immunoblot band signal intensity normaliza-
tion to the respective α5 integrin signal intensity. 
Open bars represent ratios of indicated pro-
teins from pull-down experiments with pFN-
coated beads; shaded bars represent protein 
ratios detected in total cell lysate (TCL) of cells 
expressing YFP-vin880 or -vinFL. (C) Immuno-
precipitations using anti-GFP or control mouse 
IgG (MuIgG) from NIH3T3 cells expressing 
either YFP-vin880 or -vinFL. (D and E) Immuno-
precipitations using anti-GFP or control MuIgG 
from NIH3T3 cells expressing YFP-vin880 after 
treatment with a chemical cross-linker (D) or 
from cells in suspension for 15 min (E) versus 
cells left attached to tissue culture dishes. All 
blots are representative of more than two inde-
pendent transfections. Mrks denotes the posi-
tion of molecular mass standards (250 kD for 
talin blots and 150 kD for GFP and α5 integrin 
blots), which are visible by Western blotting 
using the infrared imaging system.
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Collectively, these experiments indicate not only that “acti-

vated” vinculin, or vinculin with exposed binding sites within 

its N-terminal domains (vin880 and vin258), binds to talin, 

but that this interaction is required for the formation of en-

larged FAs. In contrast, paxillin is not required for the for-

mation of FAs and is likely to be recruited downstream (or 

independently) of vinculin.

Induction of oversized FAs and underlying 
signaling mechanisms are independent of 
endogenous vinculin
The possibility exists that both FA growth and paxillin re-

cruitment to active vinculin could have been the result of an 

interaction of paxillin with endogenous vinculin that had di-

merized, via an intermolecular head–tail interaction, with the 

expressed vinculin constructs. To test this possibility, vincu-

lin constructs were expressed in vin−/− MEFs. Expression of 

tailless vinculin forms and active vinT12 in the absence of 

endogenous wild-type vinculin induced a two- to threefold in-

crease of FAs (Fig. 6, A and B), which was abolished by the 

A50I mutation (Fig. 6 B). Interestingly, the induction of FAs 

in vin−/− MEFs by a vin880 (A50I) mutant was abrogated 

(compare Fig. 6 B with Fig. 5 E), suggesting that vin880 in-

duced the activation of endogenous vinculin to a small extent. 

In further experiments, the colocalization of paxillin and vin258 

was analyzed in enlarged FAs of vin−/− MEFs. As outlined 

in Fig. 6 A, YFP-vin258 colocalized identically with CFP-

paxillin, demonstrating that the highly effi cient paxillin re-

cruitment induced by tailless vinculin forms is independent of 

the putative dimerization of endogenous vinculin with the ex-

pressed constructs.

The similar behavior of the vinculin expression constructs 

in cells with and without endogenous vinculin was examined 

using FRAP to measure t1/2 of recovery of YFP-vinFL and YFP-

vin880 (Fig. 6 C). As in cells with endogenous vinculin, the t1/2 

for vin880 increased �50%. This is in accordance with a previous 

paper using a vinculin head domain and active vinculin (Cohen 

et al., 2006). These experiments suggest that there is little con-

tribution of endogenous vinculin to the data presented here 

using C-terminal truncations or activated vinculin constructs.

Figure 5. FA size is regulated by vinculin interaction with talin. (A) Paxillin was knocked-down using small hairpin RNA in B16 melanoma cells expressing 
vin880. Despite the absence of paxillin, vin880 still induced FA growth. (B) Quantifi cation of FA number, size, and area fraction of indicated constructs in 
B16 cells with or without (sh pax) paxillin. (C) Immunoprecipitations from cell lysates of HeLa cells expressing either YFP-vin880, -vin880 (A50I), -vinT12, 
or -vinT12 (A50I) with anti-GFP antibodies. Note talin coimmunoprecipitates with vin880 and vinT12 but not with A50I mutants. (D) NIH3T3 cells express-
ing YFP-vinFL and -vin258 (A50I) show no signifi cant differences in FA size in contrast to cells expressing YFP-vin258. (E) Quantifi cation of FA size of cells 
expressing indicated constructs. Area of FAs was calculated as a percentage of the total cell area. Red asterisks indicate signifi cant differences compared 
with vinFL (P < 0.0001, HSD test). Blue asterisks indicate no statistical differences. Black asterisk indicates statistical difference with vinFL (P < 0.001, t test). 
Error bars indicate ± SEM. Bars: (A) 10 μm; (D) 10 μm. 



JCB • VOLUME 179 • NUMBER 5 • 2007 1050

vinT colocalizes with a subset of 
fi lamentous actin but not with paxillin
Paxillin and actin have been shown to bind to the vinT region 

(Menkel et al., 1994; Wood et al., 1994; Huttelmaier et al., 1997). 

To elucidate possible associations of these two proteins with 

vinT, YFP-vinT was expressed in NIH3T3 cells and its colocal-

ization with actin and paxillin was analyzed. The localization of 

vinT correlated well with actin stress fi bers (r = 0.7) but was 

diminished or absent in large protruding lamellipodia that were 

positive for α-actinin (Fig. 7 A). This strong reduction of vinT in 

protruding areas was not caused by the potential competition 

with endogenous vinculin because the phenomenon also oc-

curred in vinculin null cells (Fig. 7 B). Furthermore, time-lapse 

experiments showed that it was only when large lamellipodia 

collapsed and started to retract that vinT became strongly associ-

ated with these structures (Video 1, available at http://www.jcb

.org/cgi/content/full/jcb.200703036/DC1), suggesting that vinT 

only binds a subset of actin fi laments. In contrast, CFP-paxillin 

was abundant in FAs of protruding cell areas (Fig. 7 C) and only 

colocalized with vinT in retracting areas, albeit with a low cor-

relation between their intensity profi les. Thus, paxillin localization 

correlates with the head region of vinculin, and there is little, if 

any, interaction of paxillin with its tail. vinT, however, appears 

to be the major domain involved in actin binding.

vinT links adhesion sites to the 
actin cytoskeleton
The major factor implicated in the growth of FAs has, until 

now, been intracellular tension mediated by the actomyosin 

contractile machinery (Burridge and Chrzanowska-Wodnicka, 

1996; Balaban et al., 2001). Our data indicate that the vinculin 

head but not the tail induces FA growth (Fig. 1 A), suggesting 

that a link to actin via the C terminus of vinculin may not be re-

quired for FA growth. To examine whether the vinculin–actin 

interaction has the potential to modulate FAs, the association 

of FA growth–promoting vinculin mutants that either lacked 

(vin880) or retained (vinT12) the tail domain were examined in 

relation to actin. Approximately 75% of the internal nucleo-

proximal FAs (defi ned in this paper as >10 μm from the cell 

edge) induced by overexpression of vinculin mutants without 

tail domains were not linked to actin stress fi bers (Fig. 7 D). In con-

trast, overexpression of vinT12, which retains its tail domain, 

Figure 6. Vinculin-induced FA hypertrophy and paxillin recruitment to FAs is not due to the potential dimerization of tailless vinculin constructs with endoge-
nous vinculin. (A) CFP-paxillin was coexpressed with YFP-vinFL or -vin258 in vin−/− MEF cells. Overlay images are from insert areas outlined in the vinFL 
and vin258 labeled images. The line profi les taken from the lines indicated on the left outline the nearly identical localization of the respective coexpressed 
proteins in FAs. Bar, 8 μm. (B) Quantifi cation of FA sizes in vin−/− MEF cells expressing the indicated YFP fusion proteins. Area of FAs was calculated as 
a percentage of the total cell area. Red asterisks indicate signifi cant differences of correlation values compared with vinFL (P < 0.0001, HSD test). Blue as-
terisks indicate no statistical differences to vinFL. (C) YFP-vin880 t1/2 of recovery is increased compared to YFP-vinFL when expressed in vin−/− MEF cells. 
Asterisk indicates statistical signifi cance (P < 0.001, t test). 
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resulted in >80% of FAs that were streaklike and linked to 

actin fi laments (Fig. 7 E). Furthermore, in �30% of these cells, 

long ropelike structures positive for both vinT12 and actin were 

apparently clustered together. These data suggested that the tail 

of vinculin forms a crucial link between FAs and the actin cyto-

skeleton. Because actin fi laments in cells have been shown to 

undergo retrograde fl ow (Ponti et al., 2004; Vallotton et al., 

2004; Gupton and Waterman-Storer, 2006; Hu et al., 2007), the 

possibility that vinculin dynamics are infl uenced by the link to 

actin was tested using live cell time-lapse analysis of vinT12 and 

the tailless vin880 (Fig. 7 F and Videos 2 and 3, available at http://

www.jcb.org/cgi/content/full/jcb.200703036/DC1). Although 

vin880 was stably localized in FAs, vinT12 was transported 

in a retrograde manner with a mean velocity of 0.366 ± 0.112 

μm/min toward the cell center upon retraction. Furthermore, 

vinT, which lacks a head domain, followed a retrograde fl ow with 

a mean velocity of 0.679 ± 0.295 μm/min from  peripheral FAs 

toward the cell center (Fig. 7 F and Video 4). F-actin retro-

grade fl ow in similar velocity ranges has been observed previ-

ously in newt lung and PtK1 epithelial cells (Ponti et al., 2004). 

Figure 7. vinT colocalization correlates with a 
subset of actin but not paxillin. (A) Cells ex-
pressing vinT were either labeled for actin or 
cotransfected with CFP–α-actinin (bottom). The 
intensity profi les on the right are from the area 
covered by the line in the overlay images. Note 
the high correlation of actin stress fi bres with 
YFP-vinT. However, protrusive areas (white ar-
rowheads) positive for α-actinin remain free of 
YFP-vinT. Bar, 10 μm. (B) In vin−/− MEF cells, 
there is little YFP-vinT in protruding lamelli-
podia when compared to F-actin labeled with 
rhodamine-phalloidine. Note the strong corre-
lation of the intensity profi les (right) on the left 
side and the lack of correlation on the right side 
(lamellipodium). (C) NIH3T3 cell expressing 
CFP-paxillin and YFP-vinT. The protruding area 
of cell shows many FAs in the protruding area 
positive for paxillin but devoid of vinT. To the 
right are line profi les of fl uorescence intensities 
of the line in the overlay image (compare with 
Video 1, available at http://www.jcb.org/cgi/
content/full/jcb.200703036/DC1). (D) NIH3T3 
cell expressing YFP-vin880 and colabeled for 
actin. (a) FAs at the cell periphery with similar 
intensity profi les, indicating that these FAs are 
linked to actin stress fi bers. (b) FAs away from 
the periphery of the cell. Intensity profi les show 
that intensity peaks of vin880 do not correlate 
with the actin intensities. (E) NIH3T3 cell ex-
pressing vinT12 and colabeled for actin. Intensity 
profi les taken from lines in inserts of peripheral 
and inner FA demonstrate a signifi cant overlap 
of vinT12 and actin fl uorescence intensity peaks, 
suggesting a link of these FAs with the actin 
cytoskeleton. (F) Kymograph analysis of NIH3T3 
cells expressing YFP-vin880, GFP-vinT12, and 
YFP-vinT. Kymograph analysis shown in a spec-
tral fl uorescence intensity scale derived from 
a one-pixel line perpendicular to the cell edge 
of time-lapse recordings presented in Videos 
2–4. Note that high intensity areas in vin880 
cells remain stable with time and therefore 
are visualized as straight lines in this type of 
analysis, whereas those of vinT12 and vinT 
follow a retrograde fl ow. Bars (A–C) 10 μm; 
(D and E) 8 μm. 
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Thus, it is the vinT domain that links vinculin to the actin cyto-

skeleton, which may in turn exert forces on vinculin resulting in 

its relocalization outside of FAs.

The vinculin head stabilizes adhesion sites 
despite inhibition of actomyosin-mediated 
tension
Because the vinculin head region is able to form large FAs in the 

absence of the actin-binding tail, we reasoned that the vinculin 

head might be able to initiate or stabilize cell–matrix  adhesions 

independently of the actomyosin machinery. Inhibition of Rho-

kinase (ROCK) leads to the release of actomyosin-mediated ten-

sion and the disruption of actin stress fi bers. As a consequence 

of this perturbation of the actin cytoskeleton, FAs dissolve and 

only focal complexes of a transient nature remain visible. The ef-

fect of the ROCK inhibitor Y-27632 in NIH3T3 cells express-

ing vinFL and vin880 was therefore tested. Although Y-27632 

treatment resulted in the loss of essentially all adhesion sites 

in vinFL-expressing cells (except a few complexes at the cell 

periphery), a large number of adhesion sites were still apparent in 

cells expressing vin880 (Fig. 8, A and B). This was the case even 

when Y-27632 was used at concentrations up to 300 μM, which 

leads to the complete distortion of the cell morphology. Similar 

observations were made when vinFL- and vin880-expressing 

cells were treated with the actin-disrupting agent cytochalasin D 

(Fig. 8, A and B). Although quantifi cation of adhesion sites in 

vin880-expressing cells revealed no change in adhesion area when 

cells were treated with actin-perturbing reagents, the morphology 

of the remaining FA structures did appear to be altered (compare 

Fig. 8 A with Fig. 1 B). They were less streaklike and resembled 

those of β3 integrin clustering induced by switching to an ac-

tive conformation through the addition of manganese, integrin-

activating mutations, or talin head overexpression (Cluzel et al., 

2005). Although the clusters observed by Cluzel et al. (2005) 

contained talin, they were not linked to the actomyo sin machinery. 

This is in keeping with our model of N-terminal vinculin do-

mains controlling the clustering of activated integrin via talin 

independently of linkages with the actin cytoskeleton. These 

results suggest that vinculin without the actin-binding tail domain 

is able to initiate FA formation in the absence of actomyosin-

mediated forces.

Together, these fi ndings separate the vinculin head and 

tail regions into two distinct functional domains: a head region 

that binds to talin and is involved in the growth of cell–matrix 

adhesions associated with clustering of active integrins and a 

tail domain that is involved in binding actin and coupling with 

the mechanotransduction force machinery.

Discussion
FAs are composed of >100 components (Geiger et al., 2001). 

Because vinculin depletion in cells leads to dramatic changes in 

cell adhesion motility and FA sizes (Coll et al., 1995; Volberg 

et al., 1995; Xu et al., 1998; Saunders et al., 2006), it has been 

proposed that vinculin is a key player in the regulation of cell 

adhesion. Although the structure of vinculin and its binding 

sites for 11 binding partners have been well characterized in  vitro, 

the mechanisms underlying its stabilizing function on FAs in 

cells has, until now, been unclear. We sought to investigate 

how vinculin controls FAs within a cellular context and re-

evaluate current models of its action in light of this information. 

Our major fi ndings are that (a) the interaction of the N-terminal 

head of vinculin with talin drives the clustering of integrins in 

cell–matrix adhesions, possibly by maintaining integrins in an 

activated state; (b) the vinculin–talin interaction leads to the highly 

effi cient recruitment of paxillin independently of the paxillin-

binding site located in the tail region of vinculin; and (c) vinculin, 

via the interaction of its tail with actin, is the major link of the FA 

core to the actin cytoskeleton.

Vinculin interaction with talin clusters 
integrins in an active conformation leading 
to FA growth
Previously, the interaction of vinculin with talin was reported to 

be crucial for the process of vinculin activation (Ziegler et al., 

2006). It is now well established that this activation process 

leads to structural rearrangements that allow the access of a large 

number of vinculin binding partners whose role in FA stability 

was not clear. Our data demonstrate that the 258 N-terminal 

amino acids, the D1 domain of vinculin, is suffi cient to induce FA 

enlargement and that its interaction with talin is crucial to main-

tain this function. Notably, tensile forces mediated by actomyo-

sin are not required because (a) enlarged adhesion sites induced 

by tailless vinculin constructs are not necessarily linked to actin 

stress fi bers and (b) a large number of adhesion sites remain 

present in vin880-expressing cells when intracellular tension is 

perturbed by the disruption of the actin cytoskeleton with cyto-

chalasin D or blocking of actomyosin function with the ROCK 

inhibitor Y-27632. Thus, we now propose that vinculin acti-

vation, by an unknown mechanism, leads to enhanced integrin 

clustering and, consequently, the formation of FAs and that this 

occurs independently of, or in cooperation with, tensile forces 

exerted by the actomyosin machinery.

Using FRAP, we demonstrated that integrin turnover is 

infl uenced by vinculin activity. Recently, talin turnover was 

shown to be dependent on vinculin activity (Cohen et al., 2006), 

and β3 integrin clustering was found to require the presence of 

talin (Cluzel et al., 2005). It has been found that mutations lead-

ing to integrin activation increased integrin residency in FAs 

(Cluzel et al., 2005). Together with the observation that vin880 

was enriched to, and isolated with, integrins bound to FN-coated 

beads and that α5 integrin and talin coimmunoprecipitate with 

vin880, our paper reveals that active vinculin, talin, and integrin 

form a tight complex. The colocalization of vin880 with active 

β1 integrins suggests that the integrin–talin–vinculin ternary 

complex alters the dynamics of integrins by clustering integrins 

in an active conformation, which in turn leads to FA growth.

It is now well established that talin is a key molecule reg-

ulating integrin activation (Ginsberg et al., 2005). Reducing the 

expression of talin by RNAi leads to the down-regulation of in-

tegrin activation levels (Tadokoro et al., 2003), and overexpression 

of the F2,3 domain of talin leads to integrin activation (Wegener 

et al., 2007). In our paper, the overexpression of full-length 

talin in all the cells tested was not able to enhance FA growth 
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(Fig. S2 B and not depicted). Indeed, because FA growth was only 

achieved by coexpressing C-terminally truncated vinculin head 

constructs or active vinculin (Fig. 1 and not depicted), we would 

argue that vinculin activity may be the essential driving force 

for FA growth. It has been shown recently that talin has 11 po-

tential binding sites for vinculin, some of which may be of low 

affi nity or even cryptic (Fillingham et al., 2005; Patel et al., 

2006). Moreover, the binding of a vinculin head construct to ta-

lin leads to a conformational change of talin that in turn may lead 

to the activation of the cryptic or low-affi nity vinculin-binding 

sites (Fillingham et al., 2005). Therefore, an intriguing hypothesis 

is that active vinculin locks talin in FAs in an active conforma-

tion, which then induces further recruitment of vinculin and ta-

lin molecules, resulting in the growth of the adhesion site, thus 

providing an ideal platform for the recruitment other FA com-

ponents and a link to the actin cytoskeleton.

Vinculin recruits paxillin to FAs 
independently of its binding site 
in the tail region
In contrast to α-actinin, paxillin colocalized identically with all 

constructs that induced FA enlargement. This was unexpected 

Figure 8. Vin880 stabilizes adhesion sites in cells despite the inhibition of actomyosin function or disruption of actin fi laments. (A, top) NIH3T3 cells ex-
pressing YFP-vinFL or -vin880 treated with 100 μM Y-27632 for 60 min. Although only small dotlike adhesions (focal complexes) can be seen at the cell pe-
riphery in vinFL-expressing cells, a large number of adhesion sites are still apparent in cells expressing vin880, despite the absence of stress fi bers. (bottom) 
Cells treated with 1 μM cytochalasin D for 30 min. Although essentially no adhesions can be seen in YFP-vinFL–expressing cells, many adhesion sites are 
still visible in YFP-vin880–expressing cells. Fluorescence intensity profi les on the right are from the area of the line drawn in image overlays. Note that there 
is little if any correlation of high vinFL or vin880 intensity peaks with those of actin. Bar, 12 μm. (B) Quantifi cation of FA area. FA area was calculated as 
a percentage of the total cell area. Note the signifi cant loss in FA area in vinFL-expressing cells when treated with cytochalasin D (cyto D) or Y-27632. 
No loss of adhesion area was found in vin880 cells treated with actin-perturbing reagents. Asterisks indicate signifi cant differences of values compared with 
nontreated vinFL (P < 0.001, HSD test). The apparent slight increase of vin880 FA area in vin880-expressing cells treated with cytochalasin D or Y-27632 
compared to nontreated cells was caused by a decrease in total cell area (in the case of cytochalasin D) or increased de novo formation of adhesions at 
the cell periphery (in the case of Y-27632). 
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because the binding site of paxillin on vinT (Turner et al., 1990; 

Wood et al., 1994) is absent in the vin258 and 880 constructs. 

In fact, the observation that the vinT domain does not colocalize 

with paxillin in cell protrusions suggest there is little, if any, di-

rect association between vinculin and paxillin in cells. Thus ac-

tive vinculin induces paxillin recruitment either via a so far 

unidentifi ed paxillin-binding site in the fi rst 258 amino acids of 

vinculin or in an indirect manner through another protein. Inter-

estingly, this protein cannot be FAK, which interacts with paxil-

lin, as neither FAK nor dSH2 correlated with vinculin or paxillin. 

Other possible candidates involved in the direct recruitment 

of paxillin to FAs might be β1 integrin cytoplasmic domains 

(Schaller et al., 1995; Tanaka et al., 1996) or talin (Salgia et al., 

1995), both of which colocalize in vin880-enlarged adhesion sites. 

Despite the colocalization, depleting paxillin via siRNA knock-

down demonstrated that paxillin is not required for the induction 

of FA growth. However, whether indirect paxillin recruitment 

via vinculin activation has further important roles, such as 

balancing Rac activity (Brown and Turner, 2004) or controlling 

survival and motility by the regulation of paxillin–FAK inter-

actions (Subauste et al., 2004), remains to be determined.

Vinculin provides the major connection of 
adhesion sites to the actin cytoskeleton
A recent study compared the motion of actin with FA compo-

nents (Hu et al., 2007). It demonstrated that integrins as well as 

“core” proteins without direct interaction sites for actin (e.g., 

paxillin, zyxin, and FAK) have a low correlation with actin 

fl ow. In contrast, α-actinin mimicked actin kinematics, whereas 

vinculin and talin showed partial coupling to the actin fl ow. 

This differential coupling of FA components suggests a model 

of molecular hierarchies differentially linked to the actomyosin 

force machinery (Hu et al., 2007). It was speculated that the 

partial coupling of talin and vinculin to actin motions refl ects 

different roles, whereby they spend part of the time bound to 

moving actin or to the less mobile FA component.

Our data shed more light onto such observations. First, we 

show by immunofl uorescence, FRAP, and biochemistry that 

active and tailless forms of vinculin are linked to integrins via 

talin, which explains their slow mobility in FAs. Second, because 

only vinculin constructs that comprise the actin-binding vinT 

follow a retrograde fl ow, we suggest that vinculin is exposed to 

forces exerted by the actomyosin machinery. Third, our obser-

vation that talin, which bears at least two actin-binding sites 

(Hemmings et al., 1996; Lee et al., 2004) and colocalizes pre-

cisely with vin880 in FAs, does not provide an effi cient link for 

many vin880-induced FAs to F-actin suggests that vinculin acts 

as the major link of the FA core to actin fi laments. Thus, vincu-

lin may represent the major transmitter of forces mediated by 

the actomyosin machinery in FAs. The apparent selective bind-

ing of the vinT to actin in contractile areas but not in protruding 

lamellipodia possibly contributes to specifi cally localized trans-

mission of forces in different regions of the cell.

Model of vinculin action
Taking our fi ndings together, we propose a new model for vin-

culin as a major regulator of FAs (Fig. 9). Vinculin is recruited 

via low-affi nity binding to talin or neck-binding proteins to fo-

cal complexes at the cell front (Chen et al., 2005). Low-affi nity 

interactions of vinculin with talin in initial adhesion complexes 

at the leading edge keeps vinculin in place for possible associa-

tions with PIP2 or actin, which subsequently leads to its activa-

tion (Huttelmaier et al., 1998; Bakolitsa et al., 1999; Bakolitsa 

et al., 2004; Chen et al., 2006; Janssen et al., 2006). If vinculin 

does not become activated at this stage, adhesion complexes 

turn over rapidly. However, once vinculin becomes activated, 

the conformational changes leading to a switch from low- to 

high-affi nity binding of vinculin to talin stabilizes an active 

conformation of integrins in FAs, resulting in reduced FA turn-

over and growth. Similar changes of vinculin affi nities to the 

invasin IpaA were reported during Shigella entry to cells, whereby 

IpaA mimics vinculin-binding sites on talin (Izard et al., 2006). 

Moreover, this initial phase of the model is in line with the 

observed conformational switch of vinculin during the transi-

tion of initial adhesions to later actin-bound stages (Cohen et al., 

2005). In addition, vinculin activity regulates paxillin recruit-

ment, which, depending on cosignals, may lead to additional 

modifi cations of FAs and cell migration (Turner, 2000; Zaidel-

Bar et al., 2007). The activation process subsequently links vin-

culin, via its tail domain, to the contractile actomyosin machinery 

Figure 9 . Model of vinculin action in cells. 
See text in Discussion.
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(Chen et al., 2006), which in turn allows the effective trans-

mission of forces and thus bidirectional information between 

the inside and the outside of the cell. Ultimately, all this infor-

mation is used to modulate a variety of cellular functions, 

including cell motility or active remodeling processes. To com-

plete the cycle, FAs may be destabilized via further retrograde 

fl ow, leading to the removal of vinculin from FAs, or, alter-

natively, if actomyosin-mediated forces play a role in main-

taining vinculin activity, via the transition of FA to areas of 

low actomyosin activity, with vinculin adopting a low affi n-

ity for talin upon refolding to an inactive state.

Materials and methods
Plasmids and cloning
vinFL, YFP-vin880, and YFP-vinT constructs, as well as CFP- and YFP-paxillin 
were provided by B. Geiger (Weizmann Institute of Science, Rehovot, 
 Israel); vinT12 (Cohen et al., 2005) was provided by S. Craig (John Hopkins 
School of Medicine, Baltimore, MD); the plasmid for vinLD was a gift of 
W. Ziegler (University of Leizpig, Leipzig, Germany); YFP-vin258 was 
recloned from a bacterial expression vector from S. Craig into pcDNA3; 
YFP/CFP–α-actinin was recloned into pEYFP/pECFP vectors (Invitrogen) 
from GFP–α-actinin obtained by C. Otey (University of North Carolina at 
Chapel Hill, Chapel Hill, NC); α5 integrin and YFP-FAK were obtained 
from A.R. Horwitz (University of Virginia, Charlottesville, VA). The CFP/
YFP-talin constructs were provided by K. Yamada and K. Matsumoto (National 
Institute of Dental and Craniofacial Research, Bethesda, MD). Cloning of 
the talin constructs was performed by introducing full-length talin (available 
from GenBank/EMBL/DDBJ under accession no. X56123; obtained from 
R. Hynes, Massachusetts Institute of Technology, Cambridge, MA) into 
pEYFPC1 and pECFPC1 vectors (Invitrogen) that contained a modifi ed mul-
tiple cloning sequence with Not1 and EcoR1 restriction sites. Cloning of 
full-length talin into these sites resulted in a linker sequence with the base 
pairs T C C G G A C T C A G A T C T C G A G C T G C G G C C G C C .

The QuickChange site-directed mutagenesis kit (Stratagene) was 
used to generate the vinculin A50I mutants. Plasmids for the knockdown of 
paxillin and talin1 were constructed in pSuper (Oligoengine). The hairpin 
target sequences were paxillin (A G A G A A G C C A A A G C G A A A T ) and talin 
(G A A G C A C A G A G C C G A T T G A ). Their effi ciency for protein knockdown 
was assessed by FACS selection of GFP cotransfected cells after 72-h 
expression followed by immunoblotting.

Cells and transfections
NIH3T3 mouse fi broblasts, B16F1 mouse melanoma cells, and HeLa cells 
were cultured in DME (Sigma-Aldrich), supplemented with penicillin/strep-
tomycin, 10% FCS, and L-glutamine (Invitrogen). MEFs defi cient of vinculin 
were provided by D. Critchley (University of Leicester, Leicester, UK; Saunders 
et al., 2006). For the culture of MEFs, nonessential vitamins and β-mercapto-
ethanol (Sigma-Aldrich) were added.

For transient transfections, Lipofectamine Plus (Invitrogen) was used 
according to the manufacturer’s instructions. Cells were replated at 3 h af-
ter transfection in glass-bottom dishes (MatTek Corporation) coated with 
10 μg/ml bovine plasma fi bronectin (pFN; Sigma-Aldrich).

For perturbation of the actin cytoskeleton, cells expressing indicated 
vinculin constructs were treated for 60 min with 100 μM Y-27632 or for 
30 min with 1 μM cytochalasin D (both obtained from Sigma-Aldrich) be-
fore fi xation with 4% PFA.

Antibodies
Primary antibodies used for immunolabeling were anti-paxillin (clone 349; 
BD Biosciences), anti-talin 8d4 (binds only talin1; Sigma-Aldrich), talin 
C20 (recognizes talin1 and 2; Santa Cruz Biotechnology, Inc.), and anti–
human vinculin (Sigma-Aldrich). 9EG7 and TS2/16 recognizing the active 
conformation and total pool of human β1 integrin (Bazzoni et al., 1995), 
respectively, were provided by D. Vestweber (University of Münster, Münster, 
Germany) and A. Sonnenberg (Netherlands Cancer Institute, Amsterdam, 
Netherlands), respectively.

Immunofl uorescence and video microscopy
For ICA, cells expressing fl uorophor-tagged constructs were plated on 
glass-bottom dishes and fi xed with 3% PFA at 24–36 h after transfection. 

Cells were then imaged using an inverted microscope (IX70; Olympus) 
controlled by a Deltavision system (Applied Precision). For immunolabel-
ing, cells plated on glass coverslips were fi xed with 3% PFA for 15 min, 
permeabilized for 5 min with 0.5% Triton X-100 (Sigma-Aldrich), and sub-
sequently incubated for 45 min with primary antibodies directed against 
indicated proteins. After three washes with PBS, cells were incubated in the 
presence of secondary antibodies conjugated to Cy2, 3, or 5 (Jackson 
ImmunoResearch Laboratories). In the case of colabeling for actin, TRITC-
phalloidin (Invitrogen) was added to cells together with the secondary 
antibody. After three more washes, coverslips were mounted on slides us-
ing elvanol (Monwiol 4-88; Sigma-Aldrich). Mounted cells were imaged 
using the Deltavision microscope system.

Ham’s F12 medium was used for time-lapse imaging of cells using 
an inverted microscope (Axiovert 200M; Carl Zeiss, Inc.) driven by soft-
ware (IP Lab; BD Biosciences) and equipped with an incubation chamber 
(37°C). Images were taken with a 100× α Plan-Fluar objective (Carl Zeiss, 
Inc.) at the indicated time intervals.

For velocity measurements of YFP-vinT and GFP-vinT12, time-lapse 
sequences of cells expressing these constructs were 2D high-pass fi ltered to 
better visualize moving spots. Spots were then tracked using the ImageJ 
manual particle tracker. The dynamics of each construct were assessed by 
measuring 20–30 tracks in three different cells.

Image processing and Pearson’s correlation coeffi cient
Images, unless stated otherwise, were processed using ImageJ version 
1.32j. For calculation of the Pearson’s correlation coeffi cient, captured 
CFP and YFP images were background subtracted (Zamir et al., 1999), an 
overlay image was created, a threshold was set to restrict analysis to FAs, 
and Pearson’s correlation was calculated using the Image Correlator Plus 
plug-in for ImageJ. The Pearson’s correlation coeffi cient refl ects the degree 
of linear relationship between two variables; in this case, the fl uorescence 
intensities of two fl uorescently tagged proteins. ImageJ was also used to 
create fl uorescence intensity line profi les over FAs of CFP and YFP merged 
images. Time-lapse images captured by IP Lab were exported to ImageJ 
and transformed into AVI time-lapse movies (ImageJ).

Photoshop 7 and Illustrator 9 (both from Adobe) were used for the 
assembly of fi gures for publication.

FRAP
A confocal microscope (TCS SP2; Leica) and an inverted microscope (IX70) 
equipped with a 488-nm laser lines (Olympus) under the control of soft-
ware (DeltaVisionRT) were used for FRAP experiments. Cells plated on 
glass-bottom dishes and expressing indicated YFP- or GFP-tagged constructs 
were imaged at 37°C in Ham’s F12 medium.

FRAP with the confocal microscope was performed similarly to the 
procedure described previously (Ballestrem et al., 2001). Initial fl uores-
cence intensity was measured at low laser powers (5%) followed by photo-
bleaching of a 1.5-μm-diam area in FAs at 100% laser power for 10 
iterations. The fl uorescence recovery was then followed with low laser 
powers at 5-s intervals until the fl uorescence intensities recovered to a pla-
teau. Images were transferred into ImageJ, background subtracted, and 
corrected for fl uorescence loss caused by photobleaching. Corrected re-
covery fl uorescence intensities were normalized to prebleach intensity. The MF 
was calculated according to MF = 100 × (Finfl  – F(0))/(Fpre − F(0)), 
where Fpre is the prebleach intensity of bleached area, Finf is the postbleach 
intensity at the plateau, and F(0) is the postbleach intensity at time 0 in the 
bleached area. For determination of t1/2 of recovery, the normalized recov-
ery data were fi tted to the single exponential equation F(t) = MF × (1 – eτt) 
and the t1/2 of recovery was calculated by t1/2 = ln 0.5/–τ.

For FRAP using the Deltavision system, 1.5-μm-diam regions of in-
terest were selected. MF and t1/2 were calculated using softWoRx FRAP 
analysis software (see application notes at http://www.api.com/lifescience/
dv-pubsandapps.html#appnotes).

Immunoprecipitation
Where indicated, cells were detached with 0.05% (wt/vol) trypsin and 0.02% 
EDTA or lysed in situ. Lysis was performed at 4°C for 30 min in 150 mM 
NaCl, 20 mM Tris, 0.5 mM 4-(2-aminoethyl)benzenesulfonyl fl uoride hydro-
chloride, 5 μg/ml leupeptin, 5 μg/ml aprotinin, 10 mM EDTA, pH 7.4, and 
1% Triton X-100. Where indicated, cells were treated for 10 min at room 
temperature with the cross-linking agent dimethyl 3,3′-dithiobispropionimi-
date (Thermo Fisher Scientifi c) before lysis. Lysates were passed 10 times 
through a narrow bore tip before centrifugation (800 g for 10 min at 4°C) 
and protein G–Sepharose (GE Healthcare) was subsequently added to the 
supernatant for 30–60 min at 4°C. After centrifugation, immunoprecipitat-
ing mAbs were added to the lysate (1 μg/ml fi nal concentration)  together 



JCB • VOLUME 179 • NUMBER 5 • 2007 1056

with protein G–Sepharose for 16 h at 4°C. Protein G–Sepharose was then 
collected and washed four times in lysis buffer by centrifugation. Immuno-
precipitated complexes were eluted at 70°C for 5 min in sample buffer (80 mM 
Tris, 2.8% [wt/vol] SDS, 12% [vol/vol] glycerol, and 0.01% [wt/vol] 
bromophenol blue containing 2% [vol/vol] β-mercaptoethanol). Samples 
were then subjected to SDS-PAGE and Western blotting using an infrared 
imaging system (Odyssey; LI-COR Biosciences).

Biochemical isolation of plasma membrane fractions enriched for 
integrin-cytoskeletal/signaling complexes
Isolation of plasma membrane fractions enriched for integrin membrane 
complexes was performed according to a modifi ed protocol of Plopper and 
Ingber (1993). In brief, NIH3T3 cells (2 × 107) were incubated for 60 min 
at 37°C with rotation in the presence of 107 pFN-coated beads (4.5-μm-
diam tosyl-activated paramagnetic beads; Invitrogen) and dimethyl 3,3′-
dithiobispropionimidate. Bead–cell complexes were isolated using a magnetic 
particle concentrator (Invitrogen) and lysed with sonication (VibraCell; 
Jencons) in ice-cold cytoskeletal stabilization buffer (50 mM NaCl, 150 mM 
sucrose, 3 mM MgCl2, 0.5 mM 4-(2-aminoethyl)benzenesulfonyl fl uoride 
hydrochloride, 1 mM NaVO4, 5 μg/ml aprotinin, 5 μg/ml leupeptin, and 
10 mM Pipes, pH 6.0, containing 0.5% [wt/vol] Triton X-100). Beads were 
washed with lysis buffer by repeated magnetic pelleting and bead-bound 
material was eluted in sample buffer and processed for Western blotting as 
described in Immunoprecipitation section. For quantifi cation, band inten-
sities were background subtracted and normalized to the α5 signal inten-
sity before being expressed as a ratio of vin880 signal to vinFL signal.

Statistical analysis
t test or the Fisher Sign test (where indicated) were used to test statisti-
cal signifi cances between two groups of data and analysis of variance 
(ANOVA) for comparison of multiple groups. Data found to be signifi cant 
for ANOVA were tested post hoc by Tukey’s honest signifi cant difference 
(HSD) test. KaleidaGraph software (Synergy Software) was used for all sta-
tistical analysis.

Online supplemental material
Fig. S1 adds information of how we quantifi ed the localization of two 
 molecules using the Pearson’s correlation coeffi cient. Fig. S2 shows that 
endogenous talin colocalizes with vin880 in enlarged FAs and that over-
expression of YFP-talin does not lead to FA increase. Fig. S3 shows that 
paxillin, FAK, and α-actinin do not coimmunoprecipitate with vin880, sup-
porting our view that they only transiently associate with the tight integrin–
talin–vinculin complex.

Video 1 complements data presented in Fig. 7 (A–C) showing that 
large protrusions have reduced levels of vinT. Videos 2–4 correspond to 
data presented in Fig. 7 F outlining the differences in dynamics between 
vin880, vinT12, and vinT. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200703036/DC1.
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