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Abstract

Fluorescence resonance energy transfer (FRET) between fluorescent proteins is a powerful tool for visualization of signal
transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported.
However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap,
resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells,
a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single
excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with
Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We
confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement.
Finally, we demonstrated to monitor both intracellular Ca2+ and cAMP in highly motile cardiac myocytes. To cancel out
artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET
sensors for cell samples with high motility.
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Introduction

Many genetically encoded sensors have been developed based

on fluorescence resonance energy transfer (FRET), the radiation-

less transfer of excited state energy from an excited donor to an

acceptor, between fluorescent proteins [1–3]. These biosensors

provide a means to image the spatiotemporal dynamics of various

intracellular signals including second messengers, protein-protein

interactions and enzyme activities. Moreover, combined use of the

sensors would be useful to correlate multiple signaling events for

understanding complex signal transduction networks. However, to

date, most FRET applications have used only a single sensor in a

cell. The sensor has a broad spectral profile for two fluorescent

proteins, hence, when the several sensors are present at the same

location, imaging without the significant spectral overlap is

difficult.

Recently, strategies to overcome this problem, using FRET

pairs of ECFP/EYFP and mOrange/mCherry [4], mTFP1/

mCitrine and mAmetrine/tdTomato [5] and ECFP/Venus and

TagRFP/mPlum [6], have been reported. These dual FRET pairs

are spectrally compatible, when the donors are excited alternately

at two different wavelengths and the emissions are collected

sequentially. But when used simultaneous excitation not sequential

excitation for two donors, sensitized emission from the first

acceptor YFP should still be detected in the second donor

fluorescence channel, resulting in possible artifacts. Since alter-

ation of excitation light between two different wavelengths

necessitates a lag time, sequential acquisition in the previous

strategies is not adequate to follow fast signal dynamics or signal

changes in highly motile cells.

Here we report a method for imaging of two FRET pairs

excited simultaneously with a single excitation light. We

constructed FRET sensors using Sapphire/RFP for combined

use with CFP/YFP, and both donors were excited with a

violet light. We detected the emissions from the two FRET

pairs using a quad channel imager without a lag time, and

then distinguished between four fluorescent proteins using a

computational method, linear unmixing, that has been recently

used to extract the individual contributions of fluorophores

which are linearly summated on the spectral detection

channels [7–9].

First, we tried to image intracellular cAMP and cGMP in

single cells, since various FRET sensors for these cyclic

nucleotides have been developed [10–16] but there is no report

on simultaneous measurement of them. The result ensured that

our dual FRET approach provides efficient detection which is

comparable to conventional single FRET experiments. Next, we

demonstrated to monitor both intracellular cAMP and Ca2+ in

single cardiac myocytes showing periodic contraction. Our

method enabled ratiometric measurements for two sensors to

cancel out artifacts caused by contracting movement of the cell.

Thus, we proposed an alternative approach for imaging of dual

FRET sensors in a single cell, more suitable for highly motile

cell samples.
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Results

Setup for dual FRET measurement with a single
excitation light

For simultaneous imaging of two FRET sensors based on CFP/

YFP and Sapphire/RFP, we excited both donors using a violet

light (405 nm) with little direct excitation of YFP and RFP

acceptors, and acquired four-color images by placing a quad

channel imager (Quad-View, Optical Insights) in front of a CCD

camera (Figure 1A), because the number of detection channels

that equals the number of fluorophores is required to apply linear

unmixing approach [8]. The quad channel imager contains three

dichroic mirrors and four emission filters, and the split

fluorescence images are projected on the camera with adjustable

mirrors. We built up it to collect emissions at 487, 515, 550, and

590 nm for cyan (C.), green (G.), yellow (Y.), and red detection

channels (R. ch.s), respectively (Figure 1B).

To determine the relative contribution of each fluorescent

protein to each detection channel as reference, we acquired the

four-color images of HeLa cells expressing individual fluorescent

proteins, ECFP, T-Sapphire [17], Venus [18], and dimer2 RFP

variant [19]. Using this reference, then indeed we confirmed that

our method based on simultaneous four-color imaging and

subsequent linear unmixing is sufficient to distinguish these

fluorescent proteins expressed in the cell (Figure 1C).

A caveat to using a quad channel imager for a single CCD

camera is that the acquired images on this setup contained

geometrical distortion (Figure S1A) and uneven intensity distribu-

tion (Figure S1B), that were not eliminated by even a thorough

alignment of the adjusting mirrors in the imager. This spatial

mismatch might cause significant artifact in the spectral unmixing,

therefore, to minimize it, we preprocessed a geometrical correction

of the distorted images using projective transformation [20]

(Figure S1C-E) and a correction of uneven intensity distribution

using reference images of a dye mixture (Figure S1F) for all dual

FRET experiments.

Simultaneous imaging of cAMP and cGMP
cAMP and cGMP are important second messengers, and

signaling crosstalk between them is involved in several cell

functions [21–23]. These cyclic nucleotides have been recently

visualized by FRET sensors [10–16], but the simultaneous

imaging in single cells has never been reported. To test the

applicability of our strategy for dual FRET measurement, we first

constructed a novel cGMP sensor using Sapphire/RFP and

attempted the combind use with a cAMP sensor using CFP/YFP,

Figure 1. Microscope for simultaneous imaging of dual FRET pairs. (A) Schematic representation of an optical setup with single excitation
and four-color channel detection. LP, long pass dicroic mirror. BP, band pass excitation or emission filter. Numbers after LP and BP, wavelength and
wavelength/half-bandwidth (nm), respectively. (B) Emission spectra of fluorescent proteins and transmittances of dichroic mirrors and emission filters.
Broken lines from left to right indicate the transmission curves of LP455, 500, 530, and 570, and cyan, green, yellow, and red shaded areas represent of
BP487/25, 515/30, 550/40, and 590/40 in (A). (C) Acquired images in each detection channel (left) and the images after linear unmixing (right) of HeLa
cells expressing each fluorescent protein. Scale bar, 10 mm.
doi:10.1371/journal.pone.0006036.g001

Single-Excitation Dual-FRET
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Epac1-camps [11]. Similarly to a previously described cGMP

sensor cGES-DE5 [16], we sandwiched a cGMP binding domain

from a phosphodiesterase (PDE5) between T-Sapphire and

dimer2, and named the sensor red cGES-DE5 (Figure 2A). We

investigated cGMP affinity and selectivity of the sensor using

isolated proteins from transiently transfected HEK293T cells

(Figure 2B and C). Upon addition of cGMP, in contrast to cGES-

DE5, red cGES-DE5 exhibited a decrease in FRET (Figure 2B).

Although the FRET change in magnitude is modest relative to of

the previous reported sensors [14–16], this sensor had both of high

cGMP affinity (40 nM) and high selectivity for cGMP over cAMP

(.1000-fold) (Figure 2C).

To examine the ability as a cGMP selective sensor within living

mammalian cells, we transfected rat pheochromocytoma PC12

cells, which express endogenous adenosine A2A receptors and the

cAMP response to adenosine is known [24]. We stimulated the

cells transiently expressing red cGES-DE5 first with adenosine and

isobutylmethylxanthine (IBMX) to induce intracellular cAMP

increase and then with a NO donor S-nitroso-N-acetylpenicilla-

mine (SNAP) for cGMP production (Figure 2D). While adenosine/

Figure 2. cGMP sensor using FRET with Sapphire/RFP red cGES-DE5. (A) Domain structure of red cGES-DE5. (B) In vitro emission spectra of
red cGES-DE5 expressed and isolated from HEK293T cells. Black and red lines represent the spectra at zero and saturated cGMP (200 mM), respectively.
(C) Concentration response curves of red cGES-DE5 for cGMP and cAMP. Curves were determined in vitro from the change in emission ratio at 510 nm
(Sapphire) to 580 nm (RFP) (n = 4). Half-maximal effective concentration (EC50) value for cGMP was 4068 nM (means6s.e.m.). (D) cGMP imaging by
using red cGES-DE5 in PC12 cells. Representative fluorescence image in G. ch. (left) and traces (right) are shown. Typical response to stimulation with
5 mM adenosine and 100 mM IBMX for cAMP and subsequent stimulation with 2 mM SNAP for cGMP (n = 9). (E) SNAP washout experiments in PC12
cells expressing red cGES-DE5. Representative fluorescence image in G. ch. (left) and time trace of the FRET signal when stimulated with 5 mM SNAP
(right) are shown (n = 8). Applied SNAP was washed out by continuous superfusion within 1 min. Scale bar, 10 mm.
doi:10.1371/journal.pone.0006036.g002

Single-Excitation Dual-FRET
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IBMX-induced cAMP increase was detectable by using the cAMP

sensor Epac1-camps (Figure S2), red cGES-DE5 did not react to

the adenosine/IBMX stimulation and responded with a decrease

in FRET for SNAP (Figure 2D), confirming that the sensor shows

the cGMP selective response with sufficient amplitude (,19%,

Figure 3B) to detect in living cells. Additionally, to investigate the

reversibility of red cGES-DE5, we observed the response when the

applied SNAP was washed out by continuous superfusion

(Figure 2E). Red cGES-DE5 showed a transient FRET response

for a short pulse stimulation of SNAP, confirming that the

reversibility of the sensor is preserved despite its high cGMP

affinity.

Then, we tried dual FRET experiments in the cells coexpressing

Epac1-camps and red cGES-DE5 (Figure 3A). With linear

unmixing, adenosine/IBMX stimulation increased only the

emission ratio of CFP/YFP for cAMP, whereas the ratio of

Sapphire/RFP for cGMP did not change. By subsequent

application of SNAP, the Sapphire/RFP ratio underwent an

increase but the CFP/YFP ratio was unchanged. These results

were consistent with the observations in the cells expressing each

FRET sensor (Figure 2D and S2), indicating that our method

sufficiently deconvolves the contributions of fluorescence signals

made by each sensor. Meanwhile, in the case without linear

unmixing (Figure S3), adenosine/IBMX-induced cAMP produc-

tion increased even the ratio for cGMP (G. ch./R. ch.) together

with the ratio for cAMP (C. ch./Y. ch.). This artifact clarifies the

need of linear unmixing to discriminate between two FRET

signals in our method.

Comparing between dual and single FRET experiments, we

found that response amplitude in dual FRET measurement is

larger than in single FRET measurement using each sensor

without any bleedthrough correction (Figure 3B). This improve-

ment of response amplitude is corresponding to a recent report

using multiple channel detection and spectral unmixing for a single

FRET sensor [25]. We also confirmed that linear unmixing

expands the amplitude in single FRET experiments to a

comparable level with dual FRET results (Figure 3B). This means

that linear unmixing permits us to compare and analyze the

response amplitude of this dual FRET measurement with of

conventional single FRET measurement.

Simultaneous imaging of cAMP and Ca2+ in highly motile
cardiac myocytes

A primary advantage of a single-excitation dual-emission

ratiometric sensor is that its readout is not affected by sample

movement in addition to uneven distribution of the sensor and

variations in cell thickness. For example of cAMP imaging in

neonatal rat cardiac myocytes expressing Epac1-camps (Figure

S4), spontaneous contraction of the cell resulted in periodic spikes

of CFP and YFP fluorescence intensities, but the emission ratio of

CFP/YFP canceled out this artifact caused by the cell movement

and correctly reported cAMP production induced by isoprotere-

nol. Finally, we demonstrated to apply our single-excitation dual-

FRET method to simultaneous imaging of cAMP and Ca2+ in

these highly motile cells.

To use with Epac1-camps, we constructed a Ca2+ indicator by

fusion of T-Sapphire, calmodulin (CaM), M13 fragment from

myosin light chain kinase, and dimer2, and named it SapRC2.12

(Figure 4A), as a successor to a previous reported red cameleon

using Sapphire and wild-type DsRed, SapRC2 [26]. In vitro

characterization (Figure 4B and C), SapRC2.12 exhibited high

affinity for Ca2+ (apparent Kd, 270 nM) comparable to of

SapRC2 [26]. To compare the ability of these two red cameleons

expressed in living cells, we transfected HeLa cells with the same

Figure 3. Simultaneous imaging of cAMP and cGMP using dual FRET sensors. (A) Representative traces (left) and pseudocolored ratio
images at the indicated time points (right) of Epac1-camps and red cGES-DE5 coexpressed in PC12 cells. The cells were first stimulated with 5 mM
adenosine and 100 mM IBMX and subsequently with 2 mM SNAP (n = 10). Scale bar, 10 mm. (B) Quantitative analysis of FRET responses of Epac1-camps
(CFP/YFP) and red cGES-DE5 (Sapphire/RFP) for adenosine/IBMX and SNAP, respectively. Responses in dual FRET measurement (left), single FRET
measurement without any bleedthrough correction (center, C. ch./Y. ch. and G. ch./R. ch.) and that with linear unmixing (right) are compared. Values
are means6s.e.m. from at least nine cells.
doi:10.1371/journal.pone.0006036.g003

Single-Excitation Dual-FRET
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amount of cDNAs encoding either SapRC2.12 or SapRC2. One

day after transfection, the both sensors expressed in the cells

produced bright green fluorescence, but red fluorescence of

dimer2 in SapRC2.12 was clearly brighter than of wild-type

DsRed in SapRC2 (Figure 4D). And, upon application of ATP,

SapRC2.12 gave ,1.8-fold larger responses than SapRC2

(Figure 4E), confirming improvement of the sensor by the

fluorescent proteins with fast maturation [17,19].

We then cotransfected the cardiac myocytes with Epac1-camps

and SapRC2.12 and tried dual FRET measurement of cAMP and

Ca2+ in spontaneous contraction of the cell (Figure 5). After linear

unmixing, the ratio of RFP/Sapphire showed periodic spikes

(0.3860.06 Hz, n = 9), indicating contraction-coupled increase of

cytosolic Ca2+, and the ratio of CFP/YFP for cAMP did not

fluctuate. Application of isoproterenol led to increases of both

FRET signals, and of the Ca2+ oscillation frequency

(1.4360.14 Hz). This frequency increase of the Ca2+ oscillation

(increase rate, 4.5360.97) consists with the previous study which

reported Epac activation triggers it [27]. Again, before linear

unmixing the ratio for cAMP (C. ch./Y. ch.) was fluctuated by the

cell contraction (Figure S5), showing that combination of spectral

imaging and subsequent linear unmixing is necessary to eliminate

this artifact and monitor the cAMP change correctly as well as in

the cell expressing a single sensor (Figure S4).

Discussion

In previous reported strategies for imaging of two FRET pairs

[4–6], to avoid the fluorescence leakage from the first FRET

acceptor into the second donor channel, the donors are excited at

two different wavelengths, and the resultant fluorescence intensi-

ties should be measured sequentially. This procedure causes a lag

time for image acquisition, and therefore is inadequate for

following fast signal dynamics or signal changes in highly motile

cells. To overcome this limitation, we combined an optical setup

for simultaneous four-color imaging and a post-process of linear

unmixing, and eventually achieved dual FRET measurement of

cAMP and Ca2+ in contracting movement of the cardiac myocytes

(Figure 5). For example of ratiometric imaging of cAMP and Ca2+

in single cells, an approach using combination of Epac1-camps

and dual-excitation ratiometric Ca2+ indicator Fura-2 [28] has

been reported. But this also requires filter changing or laser

switching and thus would be unsuitable for high-speed simulta-

neous imaging as described above.

For combining with sensors based on FRET between CFP and

YFP, we reported novel sensors using a pair of Sapphire and RFP.

In a previous investigation of cGMP sensors with CFP/YFP [16],

CGY sensor [14] had very high cGMP affinity (,20 nM) but low

cGMP selectivity (,tenfold), and cygnet [15] and cGES-DE5

Figure 4. Ca2+ sensor using FRET with Sapphire/RFP SapRC2.12. (A) Domain structure of SapRC2.12. (B) In vitro emission spectra of SapRC2.12
at zero (black) and saturated Ca2+ (2 mM, red). (C) Ca2+ titration curve of SapRC2.12. (D) Comparison of fluorescence in HeLa cells expressing
SapRC2.12 and SapRC2. Sapphires and RFPs were excited at 405 nm and 550 nm and detected at 535 nm and 605 nm, respectively. Scale bar,
100 mm. (E) Comparative FRET measurements of Ca2+ in HeLa cells expressing SapRC2.12 and SapRC2. ATP (100 mM) responses reported by each
sensor (upper, means6s.e.m., n = 30) and representative traces of fluorescence intensities in a cell were shown (lower).
doi:10.1371/journal.pone.0006036.g004

Single-Excitation Dual-FRET
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Figure 5. Simultaneous imaging of cAMP and Ca2+ in spontaneously contracting cardiac myocytes. Representative traces (upper) and
pseudocolored ratio images (lower) of Epac1-camps and SapRC2.12 coexpressed in the cells stimulated with 10 mM isoproterenol are shown (n = 9).
Scale bar, 10 mm.
doi:10.1371/journal.pone.0006036.g005

Single-Excitation Dual-FRET
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sensors [16] had high cGMP selectivity (,400–600-fold) but

affinities in the low-micromoler range (,1.5–1.7 mM). In that

respect, red cGES-DE5 is a unique sensor, which had both of high

cGMP affinity (40 nM) and selectivity (.1000-fold) (Figure 2C).

We also showed the advantage of the Ca2+ sensor SapRC2.12 over

the precursor SapRC2 [26] (Figure 4D and E). Thus, these T-

Sapphire/dimer2 sensors have some preferable properties and

sufficient ability to monitor in living cells (Figure 2D and 4E),

however, in vitro characterization showed that the FRET response

is slightly small (Figure 2B and 4B). During the course of this study,

bright red fluorescent proteins, such as tdTomato [29] and

TagRFP [30], have been reported. These superior acceptors and

circular permutation of fluorescent proteins [31–33] might expand

the magnitude of FRET response and improve the signal-to-noise

ratio.

At the time of writing, a study reported that a combination of

four channel detection and spectral unmixing improves FRET

signal amplitude of a single Ca2+ sensor [25]. In the experiments

for cAMP and cGMP imaging, we also showed that linear

unmixing improved response amplitude in single and dual FRET

measurements (Figure 3B). In our results, this improvement in

Epac1-camps (,1.65-fold) was larger than in red cGES-DE5

(,1.3-fold) (Figure 3B). A reason for this would be that emissions

of CFP and YFP have a broader spectral overlap than of Sapphire

and RFP (Figure 1B), resulting in the different effect of linear

unmixing.

In conclusion, we established a method for ratiometric imaging

of dual FRET pairs simultaneously excited with a single

wavelength light, and thereby broadened the employability of

the multiparameter fluorescence imaging to a large variety of cell

samples including highly motile cells. Aided by this method and a

number of combinations of FRET sensors, monitoring multiple

biological parameters in individual cells would accelerate to

analyze complex signal transduction networks.

Methods

Molecular cloning
To construct red cGES-DE5, a fragment of human PDE5A1

(amino acids 154–308) was N-terminally fused to T-Sapphire [17]

whose C-terminus was truncated by eleven amino acids (T-

SapphireDC11) using a tripeptide (Arg-Met-His) containing a SphI

restriction site, and was C-terminally fused to dimer2 [19] using a

dipeptide (Glu-Leu) encoded by a SacI site. To make SapRC2.12,

a fragment of CaM-M13 with 59 SphI and 39 SacI sites from

YC2.60 [31] was sandwiched between T-SapphireDC11 and

dimer2. For mammalian expression, these were subcloned into the

HindIII/EcoRI sites of pcDNA3.1(+) vector (Invitrogen) with a

Kozak consensus sequence at the 59 end. For in vitro character-

ization, SapRC2.12 was subcloned into the bacterial expression

vector pRSETB (Invitrogen) at the BamHI/EcoRI sites.

pECFP-C1 (Clontech), Venus/pCS2 [18], T-SapphireDC11

[17], and dimer2 [19] subcloned into the pcDNA3.1(+) vector,

Epac1-camps/pcDNA3 [11] and SapRC2/pcDNA3 [26] were

used for expression of single fluorescent proteins and FRET

sensors.

Protein expression and in vitro spectroscopy
Red cGES-DE5 was transiently transfected into HEK293T cells

using Fugene6 (Roche), according to the manufacturer’s instruc-

tions. After 24 h transfection, cells were washed three times with

chilled PBS, scraped from the plate, and resuspended in 5 mM

Tris-HCl, 2 mM EDTA (pH = 7.3). Following lysis by sonication

(1 pulse) for 5 s on ice, cytosol was obtained by centrifugation at

100,000 g for 30 min at 4uC, and analyzed with cGMP and cAMP

(Sigma).

SapRC2.12 with an N-terminal polyhistidine tag was expressed

in E. coli BL21 (DE3) strain (Invitrogen). Cultures were grown at

37uC to an optical density of 0.4–0.5 at 600 nm, and then protein

production was induced with 1 mM isopropyl-b-D-thiogalactoside

(IPTG) overnight at room temperature. Pellets were lysed by

freezing (for 30 min at 220uC) and thawing (for 30 min at room

temperature) three times in a solution of 25 mM Tris-HCl

(pH 8.0), 1 mM b-mercaptoethanol and a protease inhibitor

cocktail for use with bacterial cells (Sigma). Protein purification

was carried out using His GraviTrap (GE Healthcare). Purified

proteins were dialyzed into 100 mM KCl and 30 mM MOPS,

pH 7.2 using a PD-10 column (GE Healthcare). Ca2+ titration was

done with premixed Ca2+ buffers (Calcium Calibration Buffer Kit

#2 and #3, Invitrogen).

We measured concentration response curves of the sensors with

a fluorescence spectrometer SpectraMax Gemini XS (Molecular

Devices).

Cell imaging
HeLa cells, PC12 cells and rat neonatal cardiac myocytes were

grown on a 35-mm glass bottom dish (Iwaki) and transiently

transfected with cDNAs by Lipofectamine LTX (Invitrogen); for

PC12 cells and cardiac myocytes, the glasses were coated with

poly-D-lysine and plus reagent (Invitrogen) was added for the

transfection. Primary cultures of the cardiac myocytes were

isolated from 1-day-old Crlj: CD (SD) rats (Charles River).

Before imaging, culture medium was replaced by Hanks’

balanced salt solution (HBSS) for HeLa cells and cardiac

myocytes or Krebs-Ringer-HEPES (KRH) buffer [24] for PC12

cells. Cells were imaged on an inverted microscope (TE300,

Nikon) with a xenon lamp (C6979, Hamamatsu), a 1006 oil

immersion objective lens (S Fluor, Nikon), a quad channel

imager (Quad-View, Optical Insights), and a cooled CCD

camera (CoolSNAP HQ, Roper scientific), and were maintained

at 37uC during all imaging experiments. The quad channel

imager mounted three dichroic mirrors: Q500LP; Q530LP;

Q570LP, and four emission filters: HQ487/25m; HQ515/30m;

HQ550/40m; HQ590/40m. Excitation filters HQ405/206 or

D380/106 were used for dual FRET experiments. For

comparison of red cameleons, images of directly excited

Sapphire and RFP were acquired with a 106 objective lens

(Plan Fluor, Nikon) and excitation filters HQ405/206 and

S550/206 and emission filters S535/30m and S605/40m

without the quad channel imager, respectively. For all

excitations, we commonly used a dichroic mirror 455DCLP in

the microscope modified as previously described [34]. All filters

were obtained from Chroma Technology. Whole system was

controlled by using MetaMorph software (Universal Imaging).

Timelapse intervals were 50–100 ms and 2.5 s for cardiac

myocytes and PC12 cells, respectively, and exposure time was

50–100 ms (464 or 868 binning). Excitation light is attenuated

by a 25% transmittance neutral density (ND) filter to reduce

photobleaching, as necessary.

Image analysis
For geometrical distortion and uneven intensity distribution of

the acquired images by using a quad channel imager (see Fig.

S1D), we applied two corrections to the images as preprocessing of

linear unmixing. First, we minimized the geometrical distortion

using projective transformation [20]. In planer projective trans-

formation, a transform has the following form:

Single-Excitation Dual-FRET
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x0~
axzbyzc

gxzhyz1
, y0~

dxzeyzf

gxzhyz1

where x and y are the coordinates of a point before the

transformation, and x9 and y9 are the coordinates of the

corresponding point after, and a–h are the transformation

coefficients. To obtain eight equations for the a–h, we assigned

the coordinates of each vertex of the detection channels (see Fig.

S1A) to x and y, and the average of x and y for all channels to x9

and y9. Then we solved their simultaneous equations, and

calculated the (x9, y9) of any points in the acquired images using

the found a–h. Intensity at (x9, y9) in the corrected images was

calculated approximately from the acquired images by bilinear

interpolation [35].

After this correction, uneven distribution of fluorescence

intensity in each channel still remained (see Fig. S1E); depending

on the pixel in each channel, fluorescence leakages were different.

Thus, we second normalized the distribution using images of a dye

mixture (see Fig. S1B). Solution containing 0.5 mM fura-2 AM,

0.5 mM Calcium Orange AM (Invitrogen) and 2.5 mM CaCl2
was dropped on the glass-bottom dish, and the fluorescence

images for four-color channels were acquired. Cell images were

normalized by this reference image of each channel to correct

uneven intensity distribution (see Fig. S1F).

Upon the corrections as described above, we acquired the

fluorescence leakages of four fluorescent proteins expressed in

HeLa cells into each channel. And then we applied linear

unmixing as previously described [8]. In each pixel, the relation

between the unknown contribution of each fluorescent protein x

and the mixed (acquired) fluorescence signals in each detection

channel y could be represented as:

SX~Y

SCFP=C:ch: SSapphire=C:ch: SYFP=C:ch: SRFP=C:ch:

SCFP=G:ch: SSapphire=G:ch: SYFP=G:ch: SRFP=G:ch:

SCFP=Y :ch: SSapphire=Y :ch: SYFP=Y :ch: SRFP=Y :ch:

SCFP=R:ch: SSapphire=R:ch: SYFP=R:ch: SRFP=R:ch:

2
666664

3
777775

xCFP

xSapphire

xYFP

xRFP

2
666664

3
777775
~

yC:ch:

yG:ch:

yY :ch:

yR:ch:

2
666664

3
777775

where S is a spectral matrix composed with the reference of

individual fluorescent proteins. X was obtained by multiplying

the inverse of S on the left of Y.

Images were smoothed with a 363 median filter to reduce noise

and subtracted background before the image processing. Programs

for two corrections and linear unmixing were written in ANSI C

and built with gcc in Cygwin (Red Hat). The other image

processing and representing pseudocolor ratio images in intensity-

modulated display mode were done by MetaMorph software.

To measure Ca2+ oscillation frequency of cardiac myocytes, a

series of eleven spikes was picked up from a trace of SapRC2.12,

and an average of ten intervals between the neighboring peaks was

calculated. An increase rate of frequency was calculated as the

ratio of after to before isoproterenol application in the same cell.

Supporting Information

Figure S1 Correction of geometrical distortion and uneven

intensity distribution caused by a quad channel imager. (A) Edges

of C. (cyan), G. (green), Y. (yellow), and R. ch. (red) of an acquired

image. Enlarged view of boxed area in upper is shown (lower). A

sobel filter was used for edge detection. Scale bar, 5 mm. (B)

Pseudocolor images of fluorescence intensity of a dye mixture in

C., G., Y., and R. ch., indicating the uneven intensity distribution.

Scale bar, 10 mm. (C–F) Representative images of a HeLa cell

expressing T-Sapphire. The acquired image in G. ch. (C), its ratio

image of Y. ch. to G. ch. intensities with no correction (D), with

only correction for the geometrical distortion (E), and with

subsequent correction of the uneven intensity distribution using

reference of the dye mixture (F). Scale bar, 10 mm.

Found at: doi:10.1371/journal.pone.0006036.s001 (0.65 MB TIF)

Figure S2 cAMP imaging by using Epac1-camps in PC12 cells.

Typical response to stimulation with 5 ÎJM adenosine and 100

ÎJM IBMX for cAMP and subsequent stimulation with 2 ÎJM

SNAP for cGMP is shown (n = 11). Scale bar, 10 ÎJm.

Found at: doi:10.1371/journal.pone.0006036.s002 (0.08 MB TIF)

Figure S3 Artifact without linear unmixing in simultaneous

imaging of cAMP and cGMP within the PC12 cell. Traces in the

cell shown in Figure 3 are represented.

Found at: doi:10.1371/journal.pone.0006036.s003 (0.15 MB TIF)

Figure S4 cAMP imaging by using Epac1-camps in spontane-

ously contracting cardiac myocytes. Typical response to stimula-

tion with 10 mM isoproterenol is shown (n = 5). Scale bar, 10 mm.

Found at: doi:10.1371/journal.pone.0006036.s004 (0.14 MB TIF)

Figure S5 Artifact without linear unmixing in simultaneous

imaging of cAMP and Ca2+ within the cardiac myocyte. Traces in

the cell shown in Figure 5 are represented. Arrowhead indicates

the artifact caused by contraction of the cell.

Found at: doi:10.1371/journal.pone.0006036.s005 (0.24 MB TIF)
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