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Abstract

Objectives

The objective of this study was to develop and validate a state-of-the-art, deep learning

(DL)-based model for detecting breast cancers on mammography.

Methods

Mammograms in a hospital development dataset, a hospital test dataset, and a clinic test

dataset were retrospectively collected from January 2006 through December 2017 in Osaka

City University Hospital and Medcity21 Clinic. The hospital development dataset and a pub-

licly available digital database for screening mammography (DDSM) dataset were used to

train and to validate the RetinaNet, one type of DL-based model, with five-fold cross-valida-

tion. The model’s sensitivity and mean false positive indications per image (mFPI) and par-

tial area under the curve (AUC) with 1.0 mFPI for both test datasets were externally

assessed with the test datasets.

Results

The hospital development dataset, hospital test dataset, clinic test dataset, and DDSM

development dataset included a total of 3179 images (1448 malignant images), 491 images

(225 malignant images), 2821 images (37 malignant images), and 1457 malignant images,

respectively. The proposed model detected all cancers with a 0.45–0.47 mFPI and had par-

tial AUCs of 0.93 in both test datasets.
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Conclusions

The DL-based model developed for this study was able to detect all breast cancers with a

very low mFPI. Our DL-based model achieved the highest performance to date, which might

lead to improved diagnosis for breast cancer.

Introduction

Among all types of cancer, breast cancer has both the highest incidence (24%) and highest

mortality (15%) in women around the world [1]. Mammography uses low-energy X-rays to

identify abnormalities in the breast. For women who are at average risk for breast cancer, most

of the benefit of mammography results from biennial screening during ages 50 to 74 years [2].

Of all age groups, women aged 60 to 69 years are most likely to avoid death from breast cancer

through mammography screening [2]. The sensitivity and specificity of mammography

screening for breast cancer are reported to be 77–78% and 89–97%, respectively [3,4].

Although breast cancer screening with mammography is considered effective in reducing

breast cancer-related mortality, interpreting mammograms is a delicate task and prone to

errors, with at least 25% of detectable cancers being missed [5–9]. Detecting subtle regions

such as microcalcifications and focal asymmetric density (FAD) in particular pose difficult

hurdles for physicians. Several computer-aided detection (CAD) systems have been developed

to overcome this problem and provide physician support. Initially, studies showed that a sin-

gle-reading with CAD systems could be an alternative to double-reading [10–13]. However,

studies have since concluded that the cost-effectiveness of screenings had not improved,

mainly because of the low specificity of traditional CAD systems [4,14,15].

Recently, the application of convolutional neural networks, one field of deep learning (DL),

has led to dramatic improvements in visual object recognition, detection, and segmentation

[16,17]. In this study, we adopted to create a detection-based DL model that could detect all

the findings that breast cancer can present, including not only masses, but also architectural

distortion and microcalcifications. While masses can be segmented, other findings are difficult

to segment because it is difficult to accurately delineate the boundary between normal and

abnormal areas. Therefore, we thought that a bounding box detection AI model was the most

suitable for our study. Models using DL have routinely surpassed the performance of tradi-

tional methods due to their automated feature extraction [18]. These dramatic improvements

have caught the eye of researchers in several fields, including mammography [19–37]. In addi-

tion to those that detect breast cancer [19–32], there are studies to predict the risk of breast

cancer from mammography [33–35]. For patients with breast cancer, there are models which

estimate the expression of receptors involved in chemotherapy selection [36], and those that

predict pathological types [37]. Sensitivity for studies detecting breast cancer was found to be

in the range of 0.76–0.97, with a mean number of false positive indications per image (mFPI)

of 0.48–3.56. Sensitivity and mFPI are often used to evaluate the detection model, where the

mFPI is the average number of false positive lesions displayed by the model for a single image.

There is a trade-off between sensitivity and mFPI, since the greater the number of false positive

lesions presented by the model, the higher the sensitivity. For this reason, a higher sensitivity

with a lower mFPI is desirable in a model intended to help physicians interpret mammograms

for the benefit of their patients. The purpose of the present study was to train and validate a

state-of-the-art DL-based model to detect breast cancer with higher performance than existing

models.
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Methods

Study design

First, a DL-based model for detecting breast cancer on mammograms was trained and vali-

dated using retrospectively collected mammograms annotated by the radiologists with the

locations of malignant lesions. Second, the model was tested with independent datasets for the

detection of breast cancers. The Ethical Committee of Osaka City University Graduate School

of Medicine comprehensively reviewed and approved the protocol of this study. Since the

mammograms had been acquired during daily clinical practice, the need for informed consent

was waived by the ethics board. We have created this article in compliance with the Transpar-

ent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRI-

POD) statement [38].

There are two possible ways to label mammograms when developing an AI model for breast

cancer screening. The mammograms can be labelled using BI-RADS grading or pathology

[39]. The advantage of the former is that a large dataset of mammograms can be prepared

since pathology results are not required, but on the other hand, BI-RADS grading is known to

be more subjective than the pathology result [40]. In other words, if we created an AI model

with BI-RADS as a label, the AI model may output false positives for mammograms that have

a high grading in BI-RADS but are not pathologically breast cancer.

Datasets

To train, validate, and test the DL-based model, four datasets were used: a hospital develop-

ment dataset, a hospital test dataset, a clinic test dataset, and the Digital Database for Screening

Mammography (DDSM) dataset [41–43]. Mammograms for the hospital development dataset

and the hospital test dataset were retrospectively collected from patients who were surgically

diagnosed with breast cancer at Osaka City University Hospital, which provides secondary

care. Mammograms in the clinic test dataset were collected from patients who underwent

mammography screening at Medcity21 Clinic, a provider of preventive medicine. The hospital

development dataset and hospital test dataset were collected consecutively from January 2006

through December 2016 and from January 2017 through December 2017, respectively. The

clinic test dataset was collected consecutively from April 2014 through March 2017.

Malignant mammograms were collected from both sides of patients with bilateral breast

cancer and the affected side of patients with unilateral breast cancer for the hospital test, hospi-

tal development, and clinic test datasets. Nonmalignant mammograms for the hospital devel-

opment and hospital test datasets were collected from the healthy side of patients with

unilateral breast cancer. The mammograms were diagnosed as nonmalignant in preoperative

screening by five surgeons who specialized in breast surgery. Nonmalignant mammograms in

the clinic test dataset were collected from both sides of healthy patients, and the healthy side of

patients who had pathologically diagnosed unilateral breast cancer. Nonmalignancy was then

confirmed with 2 years of follow-up mammograms by two radiologists who had 18 years and

10 years of experience interpreting mammography.

Since the study included breast cancer patients who visited each institution for the first

time, none of the datasets had overlaps. Both left and right mediolateral oblique (MLO) and

craniocaudal (CC) images were collected, if available.

Ground truth labelling

Malignant lesions on the affected side of mammograms in the hospital development dataset

were annotated by two radiologists who had 6 years and 5 years of experience interpreting
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mammography. Mammograms were annotated with bounding boxes and labelled as mass, cal-

cification, distortion, and FAD with reference to ultrasound, radiological, biopsy, and surgical

reports. When there was disagreement between the radiologists, consensus was achieved by

discussion. In addition, they could consult with a third expert if needed. Mammograms with

no findings in the affected side were excluded. The density of the mammary glands on all

mammograms was assessed by the same radiologists according to the BI-RADS [39] in consen-

sus. This assessment was performed on a mammogram basis, rather than a patient basis. All

malignant findings (mass, calcifications, FAD, and architectural distortion) of each cancer

were merged into one bounding box. Mammograms with multiple breast cancers would have

multiple bounding boxes.

Malignant lesions on the affected side of mammograms in the hospital test dataset and the

clinic test dataset were annotated in the same manner as the hospital development dataset by

two radiologists who had 6 years and 12 years of experience interpreting mammography.

Ground truth labelling for the publicly available DDSM development dataset was as follows.

The Curated Breast Imaging Subset of the DDSM (CBIS-DDSM) [41–43] is an updated and

standardized version of the DDSM. In this dataset, all mammograms include pathologically

verified breast cancer; a segmentation of malignant findings is included. Malignant mammo-

grams were collected from both sides of patients with bilateral breast cancer and the affected

side of patients with unilateral breast cancer from the CBIS-DDSM. Bounding boxes were cre-

ated from the longest diameter in the vertical and horizontal directions of the malignant seg-

mentation. All malignant findings (mass, calcifications, FAD, and architectural distortion) of

each cancer on the same mammogram were merged into one bounding box. Mammograms

with multiple breast cancers would have multiple bounding boxes.

Training and validation of the model

A DL-based model was developed using RetinaNet [44] to detect lesions and evaluate the prob-

ability of breast cancer in mammograms. RetinaNet is a regression-based, unified framework

with a backbone and two subnetworks which detect and classify objects. The backbone net-

work used in our study was ResNet152 [45] with a feature pyramid network [46]. The ResNet

has four downsampling levels and the FPN has five upsampling levels, each with 256 channels.

The backbone network computes convolutional feature maps of an entire input mammogram.

The first subnetwork, called “class subnet,” classifies the output of the backbone network as

either malignant or not malignant. The second subnetwork, called “box subnet,” performs

convolutional bounding box regression. This network adopted focal loss for class subnet and

L1 loss for box subnet. Focal loss focuses training on a sparse set of hard examples and prevents

the vast number of easy negatives from overwhelming the detector during training. RetinaNet

is tuned to classify sites outside the adenoma bounding box as background. For example,

mammary glands in a different location from the breast cancer on mammograms will be

treated as a true negative. Through these processes, the model extracts features that are unique

to breast cancer. For structural details, see Fig 1; the source code is available online [47]. This

model was built in the TensorFlow framework [48].

The RetinaNet-based model was trained and validated with both malignant and nonmalig-

nant mammograms from the hospital and DDSM development datasets. The images and

bounding boxes for the training and validation of the RetinaNet were prepared as follows: (i)

Mammograms were downscaled to 800 pixels on the longest side while maintaining the aspect

ratio. This pixel size was the minimum value of the longest side of the mammograms in the

development datasets, so we downsized larger images in order to be able to include as many
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images as possible. (ii) The shorter side of the mammograms was padded black to 800 pixels.

(iii) Bounding boxes were also resized to match each downscaled malignant mammogram.

The mammograms and bounding boxes in the two development datasets were divided into

training and validation with five-fold cross-validation. The RetinaNet was trained for 100

epochs, and the learning parameters when the value of the validation-loss function was the

lowest was adopted. The learning progress of the DL-based model was monitored by both the

value of the validation-loss function and the sensitivity of detection for breast cancers when

the intersection over union (IoU) was set to 0.5. As optimizers, SGD and Adam were evaluated

with their default parameters. All images were augmented using random rotation from –0.1

radians to 0.1 radians, with a random shift of 10% (80 pixels), a random shear of 10% (80 pix-

els), and random scaling from –10% (–80 pixels) to 10% (80 pixels), then flipped vertically and

horizontally.

The model was programmed to display bounding boxes on the area of suspected cancer in

a mammogram, along with a malignancy likelihood ratio from 0 to 1. The model can adjust

the number of boxes that are presented as well as the cut-off of the malignancy likelihood ratio

of the proposed boxes. (S1 Fig in S6 File) We have trained other AI models as well. Descrip-

tions of these models are available in the supplementary materials in S6 File.

Model performance test

A lesion-based performance test was performed on the hospital and clinic test datasets. The

test was performed as follows: (1) All mammograms were prepared as described for the train-

ing and validation of the model, steps (i) to (iii). (2) The trained DL-based model with the

Fig 1. Structure of the RetinaNet in our study. This is the overview of the model in this research [44]. The backbone

network was composed of (a) ResNet152 [45] and (b) the Feature Pyramid Network (FPN) [46]. The ResNet and FPN

have a bottom-up (downsampling) pathway and a top-down (upsampling) pathway, respectively. The sizes of the

processing image in ResNet have 4 levels (C2, C3, C4, C5) and FPN is 5 levels (P3, P4, P5, P6, P7) with 256 channels.

Both ResNet and FPN were connected with lateral connections. C3 connects to the P4-P3 pathway and C4 connects to

the P5-P4 pathway. Nine translation-invariant anchors, each of a different size, are used at each level of FPN. Each

anchor is assigned a 2-class length of one-hot vector and a 4-dimensional vector of box regression targets. The class

subnet is used for classifying anchor boxes. It estimates the probability of object presence at each spatial position for

the 9 anchors and 2 object classes (malignant or nonmalignant). The class subnet is a small fully convolutional network

attached to each level of the FPN. The subnet applies four 3 × 3 convolution layers with 256 channels each, and an

additional 3 × 3 convolution layer with 2 × 9 filters to feature maps from each level of FPN. Finally, sigmoid activations

are attached to output the 2 × 9 predictions. The box subnet is also attached to each level of FPN. The box subnet is

identical to the classification subnet except that it terminates in 4 × 9 linear outputs per spatial location. The

box subnet is used for regressing the existing offset between a nearby ground-truth box and the anchor box.

https://doi.org/10.1371/journal.pone.0265751.g001
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lowest validation-loss value was applied to these processed mammograms. (3) The overlap of

the bounding box presented by the model and the radiologist annotated ground truth was cal-

culated; this is known as the IoU. When the IoU was 0.3 or higher, the model had correctly

identified the known malignancy. This IoU was chosen based on the results of a previous

study [28]. Until every ground truth was detected, the model continued to present the boxes

from highest model-estimated malignancy to lowest, lowering the threshold of malignancy for

presented boxes. These boxes and the malignancy likelihood ratios presented by the model

were used to evaluate the detection performance.

Additionally, an image-based performance test was performed on the hospital and clinic test

datasets to assess the model’s ability to discriminate between malignancy and nonmalignancy.

The DL-based model’s threshold of malignancy was determined by the Youden Index for this

evaluation. The test was performed as follows: (1) All mammograms were prepared as described

for the training and validation of the model, steps (i) to (iii). (2) The model was applied to these

processed mammograms in the test datasets. (3) A malignant mammogram with annotations

with an IoU greater than or equal to 0.3 for a ground-truth lesion was defined as a true positive

image, a malignant mammogram with annotations with an IoU less than 0.3 for a ground-truth

lesion was defined as a false negative image, a nonmalignant mammogram with no annotations

on a mammogram was defined as a true negative image, and a nonmalignant mammogram with

one or more annotations was defined as a false positive image.

Statistical analysis

In the lesion-based performance test, we evaluated whether the bounding boxes proposed by

the model accurately identified malignant lesions in mammograms using the free-response

receiver operating characteristic (FROC) [49] curves. In the FROC, the vertical axis shows sen-

sitivity; the horizontal axis shows mFPI. Thus, the FROC curve shows sensitivity as a function

of the number of false positive lesions. Sensitivity was defined as the number of true positive

lesions that the model presented divided by the number of all true positive lesions. The mFPI

was defined as the number of false positive lesions that the model presented divided by the

number of all mammograms in the dataset. Additionally, in the image-based performance test,

we evaluated the model using the partial area under the curve (AUC), accuracy, sensitivity,

specificity, positive predictive value (PPV), and negative predictive value (NPV).

Two of the authors (D.U. and D.K.) performed all analyses using R, version 3.6.0. The

FROC curves were plotted by R. All statistical inferences were performed with a two-sided 5%

significance level.

Patient and public involvement. There was no direct patient or public involvement in

this study.

Results

Datasets

The hospital development dataset included 3179 images (897 patients; age range, 25–97 years;

mean age ± standard deviation, 58 ± 12 years) after excluding 367 images (170 MLO and 197

CC images) with no malignant findings. There were 1448 malignant and 1731 nonmalignant

images. There were 1412 digital and 1767 scanned film images. Regarding breast density, 472

images were almost entirely in fat, 993 in scattered fibroglandular tissue, 999 in heteroge-

neously dense tissue, and 715 in extremely dense tissue. The malignant findings were as fol-

lows: 812 masses, 703 calcifications, 389 FAD, and 520 architectural distortions.

The publicly available DDSM development dataset included a total of 1457 malignant

images each with one bounding box. All images were collected from the CBIS-DDSM.
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In total, 4636 mammograms (2905 malignant and 1731 nonmalignant images) from the

hospital and DDSM development datasets were used to develop the model.

The hospital test dataset included a total of 491 images (139 patients; age range, 33–92

years; mean age ± standard deviation, 59 ± 13 years) after excluding 49 images (22 MLO and

27 CC images) without malignant findings on the affected mammograms. In total, there were

225 malignant and 266 nonmalignant images. Among these 491 images, there were 327 digital

and 164 scanned film images. Regarding breast density, 74 images were almost entirely in fat,

180 in scattered fibroglandular tissue, 161 in heterogeneously dense tissue, and 76 in extremely

dense tissue. In total, 230 breast cancers were detected in 225 malignant images (two malig-

nant cancers were detected in five patients). The malignant findings were as follows: 103 mas-

ses, 83 calcifications, 74 FAD, and 93 architectural distortions.

The clinic test dataset included a total of 2821 images (865 patients; age range, 32–84 years;

mean age, 52 ± 8 years) after excluding 1358 images with no follow-up and one CC image with

no malignant findings. There were 37 malignant and 2784 nonmalignant images. All images

were digital. Regarding breast density, 435 images were almost entirely in fat, 962 in scattered

fibroglandular tissue, 983 in heterogeneously dense tissue, and 441 in extremely dense tissue.

No mammograms showed multiple cancers. The malignant findings were as follows: six mas-

ses, 19 calcifications, 11 FAD, and six architectural distortions.

A flowchart of the eligibility criteria of the hospital and clinic datasets is shown in Fig 2.

Detailed demographic information of the development and test datasets is provided in Tables

1 and 2, respectively.

Model development

The DL-based model was trained and validated on the two development datasets with five-fold

cross-validation. The highest performance was observed when the optimizer used was Adam.

The validation-loss function minima was obtained at 52 epochs.

Model performance test

The lesion-based performance of the DL-based model had a sensitivity of 1.00 with 0.47 mFPI

in the hospital test dataset, and 1.00 with 0.45 mFPI in the clinic test dataset (Fig 3). The partial

AUC with an mFPI of 1.0 was 0.93 (0.90–0.95) in the hospital dataset and 0.93 (0.90–0.96) in

Fig 2. Flowcharts of the eligibility criteria. DDSM: Digital database for screening mammography; MLO:

Mediolateral oblique; CC: Craniocaudal.

https://doi.org/10.1371/journal.pone.0265751.g002
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the clinic test dataset. Every malignancy detected was the lesion with the highest likelihood

ratio in the mammogram. In cases in which there were two malignant findings in one mam-

mogram, both lesions detected were the ones with the highest and second highest probability

of malignancy. The most difficult cancers for the model to detect in the hospital and clinic test

datasets are shown in Fig 4. Although these lesions had the highest probability of malignancy

in the mammograms, the malignancy likelihood ratios were the lowest of all true positive

lesions (0.24 in the hospital test dataset and 0.33 in the clinic test dataset). Results applying

other AI models are available in the supplementary materials in S6 File.

The image-based performance showed that the accuracy, sensitivity, specificity, PPV, and

NPV were 0.86 (0.83–0.89), 0.84 (0.79–0.89), 0.88 (0.83–0.91), 0.85 (0.80–0.90), and 0.87

(0.82–0.90), respectively, in the hospital test dataset, and 0.85 (0.84–0.87), 0.84 (0.68–0.94),

0.85 (0.84–0.87), 0.07 (0.05–0.10), and 1.00 (0.99–1.00), respectively, in the clinic test dataset

(Table 3).

Discussion

The results of the present study indicated that the proposed DL-based model could accurately

detect all breast cancers on mammograms with 0.47 mFPI in the hospital test dataset and 0.45

mFPI in the clinic test dataset. To our knowledge, the model developed in this research repre-

sents state-of-the-art performance for detecting breast cancer.

In examining relevant prior research, we found fourteen studies [19–32] proposing DL-

based models designed for detecting breast cancers on mammograms (not only for classifying

Table 1. Characteristics of the development datasets.

Characteristics Hospital development dataset DDSM development dataset

Patient information

No. of patients 897 752

No. of female 897 752

Mean age ± standard deviation (y) 58 ± 12 NA

No. of mammograms 3179 1457

No. of malignant mammograms 1448 1457

No. of nonmalignant mammograms 1731 0

No. of MLO images 1706 681

No. of CC images 1473 776

No. of digital images 1412 0

No. of scanned film images 1767 1457

No. of malignant findings

Mass 812 784

Calcification 703 673

Focal asymmetry density 389 0

Architectural distortion 520 320

Background mammary glands density

Almost entirely fat 472 204

Scattered fibroglandular tissue 993 569

Heterogeneously dense tissue 999 461

Extremely dense tissue 715 223

MLO: Mediolateral oblique.

CC: Craniocaudal.

https://doi.org/10.1371/journal.pone.0265751.t001
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lesions as malignant or nonmalignant). Specifically, McKinney et al. [29] achieved a multi-

localization receiver operating characteristic of the partial AUC of 0.048 with a false positive

rate of 10%. Even though they also used both normal and malignant images to train their

model, our model has a lower mFPI and detects and classifies lesions at the same time rather

than separately. Two studies [27,30] had performance comparable to our model. The reported

lesion-based sensitivity in these studies was 0.76–0.97, with an mFPI of 0.48–3.56. Ribli et al.

Table 2. Characteristics of the test datasets.

Characteristics Hospital test dataset Clinic test dataset

Patient information

No. of patients 139 865

No. of female 139 865

Mean age ± standard deviation (y) 59 ± 13 52 ± 8

No. of mammograms 491 2821

No. of malignant mammograms 225 37

No. of nonmalignant mammograms 266 2784

No. of digital images 327 2821

No. of scanned film images 164 0

No. of MLO images 256 1475

No. of CC images 235 1346

Background mammary glands density

Almost entirely fat 74 435

Scattered fibroglandular tissue 180 962

Heterogeneously dense tissue 161 983

Extremely dense tissue 76 441

Cancer information

No. of cancers in all mammograms 230 37

Size

Carcinoma in situ 17 3

1–10 mm 37 6

11–20 mm 82 20

21–50 mm 86 8

>50 mm 8 0

No. of malignant findings

Mass 103 6

Calcification 83 19

Focal asymmetry density 74 11

Architectural distortion 93 6

Pathology

Invasive ductal carcinoma 179 30

Ductal carcinoma in situ 17 3

Invasive lobular carcinoma 19 4

Mucinous carcinoma 4 0

Apocrine carcinoma 2 0

Encapsulated papillary carcinoma 2 0

Squamous cell carcinoma 2 0

MLO: Mediolateral oblique.

CC: Craniocaudal.

https://doi.org/10.1371/journal.pone.0265751.t002
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[30] achieved a sensitivity of 0.9 with a 0.3 mFPI for detecting breast cancer, while Jung et al.
[27] achieved a sensitivity of 0.86–1.00 with a 0.5–3.0 mFPI for detecting only mass lesions of

breast cancer. Our model achieved a higher sensitivity and a lower mFPI than have been

reported previously. Although it is difficult to compare the model performance because of the

differences in the test datasets, possible explanations for the performance of our model are the

Fig 3. Free-response receiver operating characteristic curves for the hospital test dataset and clinic test dataset.

These free-response receiver operating characteristic curves show a lesion-based analysis. The vertical axis shows the

sensitivity of correctly detected breast cancer lesions by the model. The horizontal axis shows the mean number of

false-positive lesions per mammogram. The partial area under the curve with 1.0 mean false positive indications per

image was 0.93 (0.90–0.95) in the hospital dataset and 0.93 (0.90–0.96) in the clinic test dataset.

https://doi.org/10.1371/journal.pone.0265751.g003

Fig 4. The most difficult cancers for the model to detect. (a) A 22-mm (long-axis diameter) cancer (box) presented

architectural distortion with heterogeneously dense tissue in the mammary glands of a 41-year-old woman. The

malignancy likelihood ratio was 0.24. (b) A 11-mm (long-axis diameter) cancer (box) presented a mass with scattered

fibroglandular tissue in the mammary glands of a 58-year-old woman. The malignancy likelihood ratio was 0.33.

https://doi.org/10.1371/journal.pone.0265751.g004
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size and composition of the development dataset and the DL architecture. Our model was

developed with 4636 mammograms (2905 malignant and 1731 nonmalignant images), while

Ribli et al. [30] (2843 mammograms) and Jung et al. [27] (116–632 mammograms) developed

their models using only malignant mammograms. It is possible that development with a larger

number, as well as both malignant and nonmalignant images, resulted in a lower mFPI due to

our model learning more about normal features [22]. With respect to the DL architecture, our

model was developed using RetinaNet based on ResNet-152. RetinaNet is particularly useful

when images for each of the classes (here malignant and nonmalignant) are likely to present in

uneven numbers. Additionally, the variety of mammograms used to develop the model likely

prevented overfitting. Overfitting is a result of learning that corresponds too closely to a partic-

ular development dataset and may therefore fail to fit additional data. In the present study, two

datasets from different institutions were used, as were both converted-film and digital images.

With regard to the image-based performance of our DL-based model, it was relatively diffi-

cult for our DL-based model to detect malignant findings in denser breast tissues and calcifica-

tions. Similar results have been reported in other studies [21,31]. This is reasonable because

the development datasets were annotated by radiologists, then the DL-based model extracted

and learned features from these datasets. In other words, the performance of the model

depends on the quality and quantity of the developing datasets. Another hypothesis for these

difficulties is that malignant findings in denser mammary glands and calcifications are so sub-

tle that they might have been lost when the mammograms were resized during the develop-

ment process. Decreasing the compression ratio when developing model is worth investigating

in the future.

Since our trained model is open source [47], it is possible to efficiently re-train a part of the

trained model with new mammograms which are closer to the cohort of intended use [48].

Different countries and institutions have different cohorts of mammograms which may differ

from those used to train the model for this study. Others may achieve better use of our trained

model by fine-tuning it to fit their own purposes.

Table 3. Results of the image-based performance of the model.

Characteristics Hospital test dataset Clinic test dataset

Accuracy 0.86 (0.83–0.89) 0.85 (0.84–0.87)

Sensitivity for diagnosis 0.84 (0.79–0.89) 0.84 (0.68–0.94)

Specificity for diagnosis 0.88 (0.83–0.91) 0.85 (0.84–0.87)

Positive predictive value 0.85 (0.80–0.90) 0.07 (0.05–0.10)

Negative predictive value 0.87 (0.82–0.90) 1.00 (0.99–1.00)

Sensitivities by mammary gland density

Almost entirely fat 0.97 (0.85–1.00) 0.67 (0.09–0.99)

Scattered fibroglandular tissue 0.90 (0.81–0.95) 0.83 (0.59–0.96)

Heterogeneously dense tissue 0.77 (0.66–0.86) 0.91 (0.59–1.00)

Extremely dense tissue 0.70 (0.50–0.85) 0.80 (0.28–0.99)

Specificities by mammary gland density

Almost entirely fat 0.87 (0.73–0.96) 0.84 (0.80–0.88)

Scattered fibroglandular tissue 0.81 (0.71–0.88) 0.79 (0.77–0.82)

Heterogeneously dense tissue 0.90 (0.81–0.95) 0.87 (0.85–0.89)

Extremely dense tissue 0.98 (0.88–1.00) 0.95 (0.93–0.97)

Note—Numbers in parentheses are 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0265751.t003
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The study described here is not without limitations. We found that the clinic test dataset

was largely dominated by normal cases, but still not as many as the real screening cohort. The

number of false positives may be higher in the real screening cohort and its impact should be

considered.

We developed and tested a model for the automated detection of breast cancer from mam-

mograms using DL with RetinaNet. Our model was able to detect all breast cancers in the test

datasets, regardless of type or tissue density, with a comparatively small mFPI. The trained

model is open source and can be used worldwide. Our model is available free of charge with

Apache License 2.0 [47].
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