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Abstract: With the expansion of the area under Cruciferae vegetable cultivation, and an increase
in the incidence of natural threats such as pests and diseases globally, Cruciferae vegetable losses
caused by pathogens, insects, and pests are on the rise. As one of the key metabolites produced by
Cruciferae vegetables, glucosinolate (GLS) is not only an indicator of their quality but also controls
infestation by numerous fungi, bacteria, aphids, and worms. Today, the safe and pollution-free
production of vegetables is advocated globally, and environmentally friendly pest and disease control
strategies, such as biological control, to minimize the adverse impacts of pathogen and insect pest
stress on Cruciferae vegetables, have attracted the attention of researchers. This review explores the
mechanisms via which GLS acts as a defensive substance, participates in responses to biotic stress,
and enhances plant tolerance to the various stress factors. According to the current research status,
future research directions are also proposed.

Keywords: Brassicaceae; glucosinolates; hydrolytic products; pathogen; insect resistance;
secondary metabolites

1. Introduction

Plants are exposed to complex and highly variable environmental conditions in the
course of their growth and development, and are often at risk of death or even extinction
under the influence of diverse biotic and abiotic stress factors [1–3]. To survive such
challenges in their habitats and environments, plants have evolved numerous adaptive
mechanisms, including the production of diverse metabolites, which exhibit obvious
species specificity [4]. Depending on their structure and type, plant secondary metabolites
are mainly divided into terpenoids, phenols, and nitrogen-containing compounds [5–7].
Numerous studies have shown that there are about 90,000–200,000 types of metabolites in
plants, and they play essential roles in signal transduction, adaptive regulation, growth
and development, and plant defense [8–10]. Since many of the secondary metabolites act
as defenses, it is presumed that biological invasion played a primary role in the evolution
of the compounds [11,12].

Among the secondary metabolites, glucosinolates (GLS) are a type of anion hy-
drophilic secondary metabolite containing nitrogen and sulfur; GLS are water-soluble
and can easily be dissolved in ethanol, methanol, and acetone [13,14]. GLS are found in
16 species of dicotyledonous angiosperms, and their contents are relatively high in the
Cruciferae, Cleomaceae, and Caricaceae, and especially in the genus Brassica, such as in
B. rapa ssp. pekinensis, B. oleracea, B. napus, B. juncea, and B. rapa, as well as in Arabidopsis
thaliana [13,15–18]. In addition, the GLS biosynthetic pathway has been extensively stud-
ied in the model plant Arabidopsis, and the regulatory genes have been comprehensively
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described. Such studies have sparked interest in the unconventional metabolites derived
from amino acids, with a lot of research focusing on GLS in Brassica plants [19–21].

Since the first type of GLS was isolated from mustard seeds, the associated plant
species and GLS degradation products have been gradually recognized. Currently, the
structures of more than 200 types of GLS have been identified [13,17,18,22], with more
than 15 detected in Cruciferae [23]. Naturally occurring GLS have a common chemical
structure: the structures are generally composed of β-D-glucosinyl, a sulfide oxime group,
and side-chain R groups (including alkyl, hydroxyalkyl, hydroxyalkenyl, alkenyl, methyl-
sulfinylalkyl, methylsulfonylalkyl, methylthioalkyl, arylalkyl, and indolyl) derived from
amino acids; furthermore, GLS are generally in the form of potassium or sodium salts [15].
Based on the amino-acid side chain R groups, GLS can be divided into three categories,
including aliphatic GLS (side chains are mainly derived from methionine, alanine, valine,
leucine, or isopropyl leucine), indole GLS (side chains mainly derived from tryptophan),
and aromatic GLS (side chains mainly derived from phenylalanine or tyrosine) [19,24].

GLS are mainly found in plant seeds, roots, stems, and leaf vacuole cells, and are
relatively stable in nature with no associated biological activity; conversely, glucosinase
(also known as myrosinase), which is responsible for hydrolyzing glucose residues in
the GLS core skeleton, is located in specific protein bodies [25–28]. In intact plants, the
hydrolytic systems containing GLS and myrosinase are spatially isolated; however, when
tissue is damaged, for example following infestation or mechanical injury, the two rapidly
combine, which leads to the rapid formation of GLS hydrolytic products [29–33]. In
addition, food processing techniques, such as chopping, juicing, chewing, cooking, high
temperature treatment, and thawing, can also break down GLS [34]. The hydrolytic
products of GLS breakdown include glucose and unstable sugar glycoside ligands, and
the glycoside ligands are rearranged to form isothiocyanates, nitriles, oxazolidinethiones,
thiocyanate, epithionitriles, and other products, which all exhibit a wide range of biological
activity [35–38].

GLS and their degradation products influence the taste and flavor of cruciferous veg-
etables [39,40], and there were significant difference in GSL content among Brassica plants;
the total GSL content in the freeze-dried samples ranged from 621.15–42,434.21 µmol kg−1,
with an average value of 14,050.97 µmol kg−1 [41]. The spicy taste in radish is caused
primarily by volatile allyl, 3-butane, and 4-methyl thiocyanate (ITC). Furthermore, over
the past few decades, it was established that some of the metabolite classes containing
nitrogen and sulfur exhibit immunosuppressant and anticancer properties [16,35,42–45].
Sulforaphane, the degradation product of glucoraphanin, exhibits anticancer activity, can
relieve neuropathic pain caused by chemotherapy, and has significant inhibitory effects
against prostate, rectal, breast, pancreatic, and bladder cancers [46–52]. In contrast, a
progoitrin degradation product, goitrin (5-vinyloxazolidine-2-thione), can cause goiter and
abnormalities in the internal organs of animals [53].

In the field, the mustard oil bomb is a major defense mechanism deployed against
insect herbivory [54–56], pathogen infection [57–61], and various abiotic stress factors
(such as drought, low or high temperature, light, and salt stress) [62–70]. The findings
of such studies have prompted research on the potential application of GLS extracts and
metabolites in crop pest and disease control in recent years [8,71,72].

Cruciferous vegetables are the largest leafy vegetables in the world, and are widely
cultivated globally, and the cultivated area is expanding year by year according to the
statistics of Food and Agriculture Organization of the United Nations (FAO) (Figure 1).
Cruciferous plants in cultivation are often affected by various fungi (Plasuwdiophora brassicae,
Fusarium oxysporum, Peronospora parasitica (Pers), Sclerotinia sclerotiorum) [73–76], bacteria
(Xanthomonas campestris pv. campestris, Erwinia carotovora pv. carotovora Dye, Maculicola
pseudomonas syringae) [77–79], and viruses (Turnip mosaic virus) [80], which cause club root,
Fusarium wilt, downy mildew, sclerotinose, black rot, soft rot, black spot, mosaic, etc.
Furthermore, Plutella xylostella, aphids, and Pieris rapae seriously affect the growth and
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development of cruciferous plants, and greatly reduce the productivity of cruciferous
vegetable farms [81–83].
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Figure 1. Changes in the cultivated area of cruciferous vegetables in recent years.

Currently, chemical control using pesticides is the primary method used to prevent
and manage the diseases and insect pests that impair cruciferous vegetable cultivation and
productivity. Despite the agricultural production industry currently advocating reducing
pesticide application, the use of pesticides is still high according to the data from the FAO
(Figure 2). Mass application of chemical pesticides not only increase production costs and
deposit excessive pesticide residues on vegetables, but also pose threats to the environment
and human health. Consequently, studies and comprehensive data on the potential of
GLS derived from Cruciferae to control diseases are required. This review explores and
summarizes the latest research on the disease and insect resistance function of GLS, in
addition to the underlying resistance mechanisms, in cruciferous plants and in Arabidopsis.
The present review could provide a theoretical basis for the application of GLS in disease
and pest resistance, and the breeding of resistant cruciferous vegetables.
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2. Defense Response of GLS to Fungal Diseases

The main diseases affecting agricultural production are fungal diseases, which have
caused serious losses to the production of cruciferous vegetables. Consequently, investi-
gating the potential effects of GLS extracts and enzymolysis products in resistance against
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fungal diseases, in addition to their underlying mechanisms of action, could facilitate efforts
to improve agricultural productivity in cruciferous crops. Aqueous extracts containing ITC
can inhibit the growth of Alternaria brassicicola in vitro by 50% [84]. Following exposure
to allyl-ITC (Al-ITC), A. brassicicola exhibits a response similar to that observed during
oxidative stress, based on the results of a study examining the transcriptomic responses
of Arabidopsis challenged with A. brassicicola. In addition, ITCs play major roles in Ara-
bidopsis resistance against Plectosphaerella cucumerina, Botrytis cinerea, Fusarium oxysporum,
and Peronospora parasitica inoculation, demonstrated in a study using a GLS biosynthesis
mutant gsm1-1 and wild-type Arabidopsis [85]. Humphry et al. (2010) investigated the
accumulation of indole GLS in several insertion lines, and the results suggested that MYB51
participates in the regulation of genes critical for GLS metabolism, which also influences
antifungal defense [86]. Meanwhile, S-deficiency in oilseed rape can reduce GLS biosyn-
thesis, which negatively affects resistance against Leptosphaeria maculans, B. cinerea, and
Phytophthora brassicae [57].

According to Giamoustaris and Mithen (2010), the levels of Alternaria infection are
positively correlated with napus GLS contents, and there is no significant relationship
between the GLS content and Leptosphaeria maculans resistance [87]. In addition, Robin
et al. (2020) found that GLS biosynthetic genes were induced following a study carried
out on two resistant and two susceptible cabbage in-bred lines after inoculation with two
Leptosphaeria maculans isolates, and GLS (aliphatic and indolic GLS) accumulation was
enhanced [88]. In a study investigating the indolyl-3-acetonitrile, 4-methoxyglucobrassicin,
and indole GLS concentrations in B. rapa inoculated with Albugo candida, Pedras et al. (2008)
observed increased levels of indole GLS in inoculated leaves when compared to the control
leaves [89]. B. rapa indole GLS has also been reported to limit Colletotrichum gloeosporioides
and Colletotrichum orbiculare infection [90], and tryptophan pathway genes involved in
indole-GLS biosynthesis are upregulated in F. oxysporum-infected plants [91,92].

Based on dynamic transcriptomic analyses of B. rapus defense response to S. sclerotio-
rum post-inoculation, Zhao et al. (2004), Borge et al. (2015), and Wu et al. (2016) observed
that not only the GLS content but also indolic GLS biosynthesis are associated with S. scle-
rotiorum resistance, and that S. sclerotiorum infection can induce GLS biosynthesis [8,93,94].
Unlike in the case of S. sclerotiorum, B. cinerea does not induce GLS biosynthesis [95]. A
comparison of the disease symptoms of wild-type and transgenic Arabidopsis lines follow-
ing inoculating with arbuscular mycorrhizal fungi (AMF), based on the production or
enhancement of GLS levels, revealed a previously undocumented role of GLS biosynthesis
in reducing AMF colonization [96].

After Plasmodiophora brassicae infection, the aliphatic, indolic, and aromatic GLS con-
tents of susceptible B. napus exhibit increased accumulation; however, only aromatic GLS
contents are significantly increased in resistant Matthiola incana L. [97]. The major aliphatic
GLS, gluconapin, is significantly increased during secondary infection in B. napus, and
exogenous jasmonic acid (JA) treatment induces aliphatic GLS in B. napus and aromatic
GLS in M. incana. The expression of BnMYB28.1, which regulates the contents of aliphatic
GLS in B. napus, is significantly increased following both treatment with exogenous JA and
P. brassicae inoculation. Similarly, after B. cinerea infection, the genes involved in indole GLS
biosynthesis are upregulated in the Arabidopsis UGT80A2 and UGT80B1 double mutant,
and the upregulation was correlated with increased levels of JA and the upregulation of
two marker genes (PDF1.2 and PR4) of the ERF branch of the JA signaling pathway [98].

3. Defense Responses of GLS to Bacterial Diseases

The bacteria that infect cruciferous plants are all rod-shaped bacteria, which can invade
the host through stomata, hydathodes, and wounds, and then be retransmitted by running
water, rain, insects, etc. Bacterial diseases in cruciferous have widespread occurrence, are
highly destructive, and are challenging to control. Meanwhile, because the pathogens are
different from the fungal diseases, the corresponding disease resistance mechanism of host
and the GLS involved in resistance may be different. Several studies have demonstrated
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that GLS are involved in plant defense against a variety of bacterial diseases. Similar
to the case in fungal disease infection, infection by Burkholderia cepacia, Pseudomonas sy-
ringae, and Xanthomonas campestris pv. campestris (Xcc) led to the upregulation of the GLS
biosynthesis [99]. In addition, the introduction of CYP79 influenced Arabidopsis disease
resistance by increasing the GLS synthesis, and overexpressing the CYP79D2 from cassava
increased the accumulation of the aliphatic isopropyl and methylpropyl GLS, which also
enhanced resistance against the soft-rot pathogen, Erwinia carotovora; however, overexpress-
ing the sorghum CYP79A1 or CYP79A2 increased the accumulation of p-hydroxybenzyl
and benzyl GLS, respectively [100].

Mishina et al. (2007) observed that the knockout of PAL1 increased leaf survival
after P. syringae infection in an analysis conducted on Arabidopsis mutants and wild type
plants, while Truman et al. (2007) and Aires et al. (2011) observed that indole GLS
biosynthesis decreased after P. syringae infection [101–103]. Following the transcriptional
and metabolic profiling of A. thaliana mutants, Clay et al. (2009) reported that the PEN2
and PEN3 genes are necessary for resistance to PtoDC3000 pathogens [104]. Furthermore,
Geng et al. (2012) demonstrated that coronatine, a toxin produced by P. syringae, suppresses
the salicylic acid (SA)-independent pathway, facilitating callose deposition by reducing the
accumulation of an indole GLS upstream of the PEN2 myrosinase activity [105]. In addition,
a positive correlation has been reported between total GLS content and Xcc disease severity,
and Xcc infection enhanced GLS biosynthesis during the early infection period [106,107].
Pectobacterium carotovorum ssp. carotovorum infection in B. rapa can trigger the upregulation
of the JA and ethylene (ET) biosynthesis genes in sr gene mutants and increase resistance
capacity via GLS accumulation [108].

4. Defense Response of GLS to Pests

With global warming, the loss caused by pests is increasing. Meanwhile, because pests
have migration ability, once the control is not effective, it will cause serious damage [109].
Hence, pest control has been a hot spot in agriculture. At present, pest control is mainly
focused on chemical agents, but how Brassicaceae plants perceive and defend themselves
from such threats remain poorly understood. Investigating the mechanisms via which Bras-
sicaceae resist insect pests could facilitate efforts to improve crop productivity. Brown and
Morra (1997) were the first to report that GLS-containing plants could control soil-borne
plant pests [110]. Since then, numerous studies have demonstrated that GLS contents
in tissues are positively correlated with damage caused by Pieris rapae and Spodoptera
littoralis [111,112], but negatively correlated with the damage caused by slugs [86]. Fur-
thermore, GLS accumulation induced by Spodoptera exigua required functional NPR1 and
ETR genes [113].

In another study, the weights of Trichoplusiani and Manduca sexta on the TGG1 and
TGG2 double myrosinase mutants were significantly higher than in wild-type Arabidop-
sis [27]. Similarly, Mamestra brassicae larvae gained less weight and exhibited stunted
growth when fed on MINELESS (lacking myrosin cells) plants compared to when fed
on wild-type plants, with the myrosinase activity in the wild-type seedlings reducing;
however, the levels of indol-3-yl-methyl, 1-methoxy-indol-3-yl-methyl, and total GLS in
both the wild-type and MINELESS seedlings increased [114]. Conversely, M. brassicae and
P. rapae weighed more on the high-sinigrin concentration plants than in low-sinigrin con-
centration plants; however, their weights decreased in the high-sinigrin, high-glucoiberin,
and high-glucobrassicin genotypes; furthermore, development time increased under high
glucobrassicin concentrations [115].

By testing the GLS and phenolic concentrations trends in Brassica nigra (L.) Koch
before and after herbivory by Pratylenchus penetrans Cobb and the larvae Delia radicum L.,
Van et al. (2005) observed that the total GLS levels were affected by herbivory by the two
root feeders [116]. Besides, Spodoptera litura Fabricius was more affected by induced GLS
responses than Plutella xylostella L. [117]. In addition, following a comparison of GLS levels
and the expression profiles of GLS biosynthesis genes before and after Plutella xylostella
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infestation, Liu et al. (2016) observed a difference in the proportions of stereoisomers of
hydroxylated aromatic GLS between G-type (pest-resistant) and P-type (pest-susceptible)
Barbara vulgaris [56]. Using m/z 60 as a marker of Al-ITC formation from the sinigrin GLS,
Van et al. (2012) analyzed the GLS profiles and volatile organic compound emissions in
five Brassicaceae species before and after artificial injury or infestation by cabbage root
fly larvae (D. radicum). According to the results, m/z 60 in B. nigra, B. juncea, and B.
napus was primarily emitted directly after artificial injury or root fly infestation, sulfide
and methanethiol emissions from B. nigra and B. juncea increased after infestation, and B.
oleracea and Brassica carinata exhibited increases in fig m/z 60 emissions following larval
damage [118].

Long-term feeding on GLS-free Brassicaceae diets hardly affects P. xylostella ovipo-
sition preference and larvae survival; thus, high GLS content varieties are likely to be
more susceptible to damage by P. xylostella than lower GLS content varieties [119]. Simi-
larly, Chen et al. (2020) generated single or double mutant gss1 and gss2 lines using the
CRISPR/Cas9 system and analyzed their resistance to P. xylostella [120]. According to
the results of the bioassays, when fed on their usual artificial diet, there were significant
reductions in egg hatching rates and final larval survival rate of the single mutant gss2 lines
when compared with the original strain or mutant gss1 lines, and the absence of GSS1 or
GSS2 reduced the survival rate of P. xylostella and prolonged the duration of the larval stage.
In addition, feeding by Spodoptera littoralis, Pieris brassicae, and P. rapae led to upregulation
of the aliphatic GLS pathway [121–123], and the GLS contents were negatively correlated
with P. brassicae damage. Furthermore, methyl jasmonate (MeJA) can enhance resistance to
P. brassicae by inducing GLS accumulation [124,125].

5. Defense Response of GLS to Insects and Aphids

Insects and aphid not only have a wide range of species and rapid reproduction, but
also can cause wounds to the plant when feeding, leading to the invasion of pathogenic
bacteria, and then cause secondary damage. Moreover, the GLS synthesis and response
mechanisms following insect and aphid herbivory are qualitatively and quantitatively dif-
ferent [126]. Agerbirk et al. (2001) observed no correlation between B. vulgaris ssp. arcuata
GLS content and resistance against Phyllotreta nemorum [127], while Kroymann et al. (2003)
observed a positive correlation between GLS content and damage caused by Psylliodes
chrysocephala [128]. According to Ulmer et al (2006), total GLS levels did not influence
Ceutorhynchus obstrictus larval growth or development; however, high levels of specific GLS,
such as p-hydroxybenzyl and 3-butenyl GLS, were associated with increased development
time or reduced weight [129]. After Brevicoryne brassicae herbivory, Myrosinase binding
protein (MBP), myrosinase associated protein (MyAP), and myrosinase transcripts, and
the synthesis of indolyl and aliphatic GLS, particularly 3-hydroxypropyl and ITC, are
induced [103,130,131].

By comparing the larval instar weights and mortality of cabbage stem flea beetle (P.
chrysocephala) larvae, after feeding on different species, Döring et al. (2020) observed that
aliphatic GLS contents increased in the infested turnip rape, and aliphatic and benzenic
GLS decreased in infested Indian rape [132]. Although larval weight was not correlated
with total GLS, it was positively correlated with progoitrin and 4-hydroxyglucobrassicin
contents. Furthermore, decreasing the side chain length of aliphatic GLS and the degree of
hydroxylation of butenyl GLS could increase the extent of feeding by adult flea beetles [87].

Numerous intermediate synthetic genes participate in GLS resistance to insects and
aphids. For instance, Mewis et al. (2006) observed that GLS accumulation caused by
B. brassicae and Myzus persicae required functional NPR1 and ETR1 genes [113]. After
Myzus persicae feeding and aphid saliva treatment, a set of O-methyltransferases involved
in the synthesis of aphid-repellent GLS were significantly up-regulated based on qRT-
PCR analyses of 78 genes. However, ITC production was not correlated with these gene
expression level, suggesting that aphid salivary components trigger a defense response in
Arabidopsis that is independent of the aphid-deterrent GLS [133]. In addition, aphid attack
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could increase indolyl GLS concentrations three-fold [134]. Using a combination of QTL
fine-mapping and microarray-based transcript profiling methods, CYP81F2 was revealed
to facilitate defense against B. brassicae but not resistance against herbivory by larvae from
four lepidopteran species [135]. By comparing the survival of the Bemisia tabaci MEAM1
and B. tabaci MED following exposure to sinigrin and myrosinase, Hu et al. (2020) reported
that exposure to the toxic hydrolysates of GLS hydrolysates and myrosinase is greater for
MED than for MEAM1 [136].

6. Conclusions and Future Research Outlook

Cruciferous vegetables are the most important leafy vegetables; however, the cultiva-
tion of cruciferous plants is affected by various fungi, bacteria, aphids, and other pest in-
sects. At present, the prevention and control of these diseases and insect pests mainly focus
on chemical agents, and the dosage of the chemical pesticides is also increasing, which not
only leads to excessive pesticide residues on cruciferous plants, causing great damage to the
environment, but also threatens people's health. Understanding how host-plant characteris-
tics influence the physiological and behavioral responses is essential for the development of
resistant cruciferous germplasms. A large number of studies have shown that GLS, esters,
and flavonoids are closely related to Cruciferae disease resistance [137,138]. As an impor-
tant secondary metabolite in cruciferous vegetables, GLS are closely related to biotic and
abiotic stresses. Numerous studies have demonstrated a positive relationship between GLS
content and disease and insect resistance [57,88,99,106,107,111,112,116,128,134] (Table 1).
Consequently, in future cruciferous vegetable breeding activities, varieties with high GLS
contents can be selected appropriately to improve plant disease resistance and reduce
pesticide use. The degradation products (isothiocyanate and thiocyanate) of GLS are in-
volved in the resistance to a variety of fungi, bacteria, insects, and soil-borne pests [8,71,72];
the aqueous extracts of cruciferous leaves also contain ITC, which can restrict the growth
of a variety of fungi, bacteria, and pests [84,85,110]. Moreover, the resistance of these
degradation products to pests and diseases is a broad-spectrum resistance, and thus can be
used to develop botanical pesticides.

Pest invasion and disease infestation can increase GLS, especially indole GLS, in
cruciferous plants [8,9,89–95,105,117,121–123,133,134]. In the case of rapeseed and other
species that have low GLS, molecular biology techniques can be used to increase indole
GLS production, which could improve resistance to diseases and insect, without increasing
total GLS synthesis. Similar to other secondary metabolites, GLS synthesis is regulated
by plant hormones. By controlling the amount of sulfur fertilizer applied and exogenous
plant hormone treatments, such as JA, ET, MeJA, and SA, GLS synthesis can be modulated,
and, in turn, disease resistance [57,105,125,126,139–142]. In addition, pathogen infection
and insect herbivory can trigger the upregulation of the JA and ET biosynthesis genes,
and increase defensive capacity via GLS accumulation [108]. Therefore, in subsequent
cruciferous vegetable production activities, appropriate plant hormones could be sprayed
as a novel pest management strategy to improve their stress resistance and minimize
pesticide use (Figure 3).

Table 1. Correlation of the GLS components and their metabolites in corresponding pathogen, pest, and insect resistance.

Component Species Names Correlation References

ITC;
Allyl-ITC Fungal

Alternaria brassicicola positive [84–86]

Plectosphaerella cucumerina positive [86]

Botrytis cinerea positive [86]

Fusarium oxysporum positive [86]

Peronospora parasitica positive [86]
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Table 1. Cont.

Component Species Names Correlation References

Total GLS

Fungal

Alternaria brassicicola positive [92]

Leptosphaeria maculans No;
positive [92,93]

Sclerotinia sclerotiorum positive [7,98,99]

Arbuscular mycorrhizal fungi positive [101]

Bacteria

Burkholderia cepacia positive [104]

Pseudomonas syringae positive [104]

Xanthomonas campestris positive [104,111,112]

Pectobacterium carotovorum positive [113]

Pest

Pieris rapae positive [114]

Spodoptera littoralis positive [115]

Slug negative [93]

Spodoptera exigua positive [116]

Trichoplusia ni positive [117]

Manduca sexta positive [117]

Mamestra brassicae positive [118]

Pratylenchus penetrans positive [118]

Delia radicum L. positive [118]

Spodoptera litura Fabricius positive [121]

Plutella xylostella L. positive [121,123,124]

Pieris brassicae positive [128,129]

Insect

Phyllotreta nemorum No [131]

Psylliodes chrysocephala positive [132]

Ceutorhynchus obstrictus No [133]

Indole GLS
Fungal

Albugo candida positive [94]

Colletotrichum gloeosporioides Positive [95]

Colletotrichum orbiculare Positive [95]

Fusarium oxysporum positive [96,97]

Plasmodiophora brassicae positive [102]

Bacteria Pseudomonas syringae positive [106–108]

Aliphatic GLS

Fungal Plasmodiophora brassicae positive [102]

Pest

Spodoptera littoralis positive [125]

Pieris brassicae positive [125]

Pieris rapae positive [126]

Insect Psylliodes chrysocephala positive [137]

Aromatic GLS
Fungal Plasmodiophora brassicae positive [102]

Pest Plutella xylostella L. positive [60]

Benzenic GLS Insect Psylliodes chrysocephala positive [136]

Indolyl-3-acetonitrile,
4-methoxyglucobrassicin, Fungal Albugo candida positive [94]

Aliphatic isopropyl; methylpropyl GLS Bacteria Erwinia carotovora positive [105]
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Table 1. Cont.

Component Species Names Correlation References

Indol-3-yl-methyl;
1-methoxy-indol-3-yl-methyl Pest Mamestra brassicae positive [118]

P-hydroxybenzyl; 3-butenyl Insect Ceutorhynchus obstrictus positive [133]

Sinigrin Pest Pieris rapae negative [119]

Glucobrassicin Pest Pieris rapae positive [119]
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Some studies have demonstrated that the different stereoisomer structures of hydroxy-
lated aromatic GLS is one of the important factors influencing the varying disease resistance
levels between non-cultivars and resistant cultivars [56]. Consequently, by determining
and analyzing the GLS responsible for resistance in tolerant materials, chemical synthesis
or biotechnology tools can be used to mass-produce the corresponding GLS for widespread
application. The present review on the GLS responsible for disease and pest resistance in
cruciferous vegetables and their underlying mechanisms could not only offers insights on
how cruciferous plants could respond to increased biotic stress in the future but could also
facilitate the development of novel disease and pest-resistant plants and the development
of safe and high-yield cruciferous vegetable germplasms globally.

Despite there being many research studies on cruciferous plant resistance, which
indicated the invasion of the diseases, insects and pests will lead to the synthetic form of
the hormones and GLS, and total GLS, especially the indole GLS content, has a positive
correlation with cruciferous resistance, but only a few studies have identified the specific
resistance due to GLS and other metabolites. This may be related to the determination
methods of GLS composition. At present, the conventional determination methods of GLS
are HPLC (high performance liquid chromatography) and HPLC-MS; these two methods
are not only expensive and difficult, but also often lack some standard samples. So, efficient
and accurate GLS determination methods need to be improved or developed in subsequent
research. Moreover, the synthesis mechanism and corresponding intermediate pathway of
GLS are mainly focused on the model plant A. thaliana; studies on other species are thus few.
The genomes and cultivation of most cruciferous vegetable patterns are different from A.
thaliana. Compared with Arabidopsis, the genomes and cultivation patterns of Cruciferous
plants are more complex. Although the genomes of many cruciferous plants have been
sequenced, the genomes of the majority of species are still unknown, which has limited the
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study on the anabolism of GLS and other disease-resistance-related substances. With the
reduction of the cost of genome sequencing, transcriptome sequencing, and omics analysis,
it is believed that people will have a new understanding of the mechanism of GLS against
diseases and insects.
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