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It is well known that different racial groups have significantly different inci-

dence and mortality rates for certain cancers. It has been suggested that bio-

logical factors play a major role in these cancer racial disparities. Previous

studies on the biological factors contributing to cancer racial disparity have

generated a very large number of candidate factors, although there is modest

agreement among the results of the different studies. Here, we performed an

integrative analysis using genomic data of 21 cancer types from TCGA,

GTEx, and the 1000 Genomes Project to identify biological factors con-

tributing to racial disparity in cancer. We also built a companion website

with additional results for cancer researchers to freely mine. Our study identi-

fied genes, gene families, and pathways displaying similar differential expres-

sion patterns between different racial groups across multiple cancer types.

Among them, XKR9 gene expression was found to be significantly associated

with overall survival for all cancers combined as well as for several individual

cancers. Our results point to the interesting hypothesis that XKR9 could be a

novel drug target for cancer immunotherapy. Bayesian network modeling

showed that XKR9 is linked to important cancer-related genes, including

FOXM1, cyclin B1, and RB1CC1 (RB1 regulator). In addition, metabolic

pathways, neural signaling pathways, and several cancer-related gene families

were found to be significantly associated with cancer racial disparities for

multiple cancer types. Single nucleotide polymorphisms (SNPs) discovered

through integrating data from the TCGA, GTEx, and 1000 Genomes data-

bases provide biologists the opportunity to test highly promising, targeted

hypotheses to gain a deeper understanding of the genetic drivers of cancer

racial disparity and cancer biology in general.
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1. Introduction

Cancer is the second most common cause of death in

the United States after heart disease [1]. It has a

greater economic impact from premature death and

disability than all causes of death combined world-

wide [2]. It is well known that different racial groups

have significantly different incidence and mortality

rates for certain cancers [3–9]. For all cancer types

combined, the incidence rates in the United States

are 465.3, 463.9, and 291.7 per 100 000 people, for

non-Hispanic white (NHW), non-Hispanic black

(NHB), and Asian/Pacific Islander (API) populations,

respectively [1]. The mortality rates for all cancers

combined are 165.4, 190.6, and 100.4 per 100 000

people for NHW, NHB, and API populations,

respectively [1]. NHWs and NHBs have the highest

incidence rates; NHBs have the highest mortality

rates, followed by NHWs, and APIs have much

lower incidence and mortality rates than both NHWs

and NHBs.

The causes of cancer racial disparities have been

studied extensively [10–19], and socioeconomic status

has been found to be an independent predictor of

mortality [12–14]. However, even when socioeconomic

status has been accounted for, there are still substan-

tial disparities that remain among different races

[20,21]. It has been suggested that biological factors

play a major role in these cancer racial disparities

[22–26]. There is a large volume of literature studying

the biological factors contributing to racial disparities

among different races for various cancers [11,16–
19,23,24,26–39]. In Table S1, we list a subset of the

genetic factors previously described as associated with

racial disparity in breast cancer and prostate cancer,

as they have been the most frequently studied cancers.

In addition to genetic factors, epigenetic factors have

also been investigated in a number of previous studies

[27]. For prostate cancer, several studies have found

consistent regions containing SNPs highly associated

with prostate cancer risk [37–40], potentially explain-

ing some of the racial disparity observed between

African and Caucasian men. However, few of the

identified prostate cancer risk variants align to known

genes or appear to alter the coding sequence of an

encoded protein [39].

Previous studies on the biological factors contribut-

ing to cancer racial disparity have generated a very

large number (usually at the level of hundreds) of can-

didate factors, both genetic and epigenetic, with mod-

est agreement among the results of these studies. This

is likely due to the limited sample size in some of the

previous studies as well as the differences in the

populations from which the samples were selected.

Each of the previous studies has addressed individual

cancer types, and studies on different cancers have

identified quite varied genetic and epigenetic factors.

Furthermore, few studies have been conducted to

investigate less common cancers.

Although the gene expression differences between

tumors of different racial groups have been well

established by previous studies in multiple cancer

types, the drivers behind the gene expression differ-

ences have been poorly understood. To identify the

potential genetic drivers of cancer racial disparity, we

applied an integrative analysis approach using multi-

ple datasets as illustrated in Fig. 1. We started from

gene expression data (RNA-seq) in TCGA by con-

ducting differential gene expression analysis (DGEA)

comparing gene expressions of tumor samples from

patients of different races. This generated differen-

tially expressed (DE) genes between two specific

groups which are defined by the races of the groups

and the cancer type (or all cancer combined). Since

some of the DE genes may be associated with race

only, but not cancer, survival analysis using the DE

genes was conducted to find DE genes that are signifi-

cantly associated with overall survival of the cancer

patients (XKR9 and CST1 were found in this study).

To identify the driver genetic factors, we then used

GTEx data to find SNPs correlated significantly with

the expression of XKR9 or CST1. To ensure the

SNPs are able to explain the KXR9 or CST1 differ-

ential expression, the consistency between differential

gene expression with the proportions of the alterna-

tive allele in different race groups (using 1000 Gen-

omes Project data) and the effect of the alternative

allele to gene expression (using GTEx data) are

checked, which further narrowed the list of SNPs

down to a much smaller set of SNPs. Database

(UCSC genome browser, GeneCards, etc.) searches

were performed to collect more information of the

genes and SNPs. The final step is literature search

using BioKDE platform (https://biokde.com) to vali-

date the discoveries and generate specific hypotheses

which can be tested experimentally.

Differential gene expression analysis using all can-

cer types allowed us to substantially increase the

sample size to effectively eliminate the number of

false positives in identified differentially expressed

genes (DEGs). Pathway analyses identified cancer-re-

lated pathways, which allow us to focus on genes

and pathways that are truly associated with cancer

racial disparities, instead of being associated with

race only. We performed analyses using data with all

cancers combined and data from individual cancer
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types. The majority of our analyses are focused on

results taken from all cancers combined, and the

companion website (https://rep.insilicom.com/cancer_

racial_disparity/index.html) contains details of all the

results.

Our study is the first such large-scale study on the

genetic factors of cancer racial disparity. It provides a

comprehensive picture of the genetic factors associated

with cancer racial disparity across multiple cancers.

Furthermore, SNPs identified from the integrative

analysis point to potential genetic drivers, which can

be tested in future validation studies.

2. Materials and Methods

The data used in this study are described in Support-

ing Information.

2.1. Statistical analysis

2.2. Differential gene expression analysis

For the overall comparison with all cancers combined,

Limma package [41] was used to perform three pair-

wise comparisons: Asian Americans (AS) vs. Cau-

casian Americans (CA), AS vs. African Americans

(AA), and AA vs. CA. For the DGEA of individual

cancer types, DESeq2 package [42] was used.

2.3. Pathway analysis

The pathway analysis was performed using QIAGEN’s

Ingenuity Pathway Analysis (IPA) software (https://

www.qiagen.com/).

2.4. Survival analysis

Survival analysis was performed using survival (Ther-

neau T (2020). A Package for Survival Analysis in R.

R package version 3.1-12, https://CRAN.R-project.

org/package=survival) and survminer (Alboukadel

Kassambara (2020). survminer: Survival Analysis and

Visualization. R package version 0.4.7, https://CRAN.

R-project.org/package=survminer) packages in R.

2.5. Heatmap and clustering analysis

We used Ward’s method [43] for hierarchical clustering

and Euclidean distance for clustering rows and columns.

R package pheatmap (Perry M (2020). heatmaps: Flexi-

ble Heatmaps for Functional Genomics and Sequence

Features. R package version 1.12.0) was used for plot-

ting the heatmap.

2.6. Association of SNPs with gene expressions

Combining data obtained from GTEx eQTL studies,

the 1000 Genomes Project, and TCGA, we infer speci-

fic SNPs that may be associated with the differential

expression patterns observed from the differential gene

expression analysis of TCGA gene expression data fol-

lowing a previously developed protocol [11,29]. Specifi-

cally, we searched for SNPs that may be associated

with the initially identified DEGs. The conditions used

for selecting SNPs required that the following should

Fig. 1. The overview of our data analysis pipeline. The following

data sources are used: TCGA RNA-seq data with race information,

GTEx SNP and gene expression correlations, 1000 Genomes

Project SNP genotype percentages in different races, GeneCards

database for gene-related information, and BioKDE (https://biokde.c

om) for literature search.
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all be consistent with one another: (1) the allele fre-

quencies of the SNPs in different races (1000 Genomes

Project), (2) the association between the genotype of

the SNPs with differential expression patterns (GTEx),

and (3) the differential expression patterns in different

races (TCGA). For example, from the TCGA data we

found that XKR9 is down-regulated in AS patient

samples compared to AA and CA samples, and its

expression is lower in AA samples compared to CA

samples (Table 1). From the GTEx, we identified a

SNP, rs17689585, which is associated with XKR9

expression, and the effect of this common allele is

increased expression of the XKR9 gene. The frequen-

cies of the most common allele are 0.0744, 0.2247, and

0.5149 for AS, AA, and CA racial groups, respectively.

This SNP can potentially explain the differential

expression of XKR9 across the three races. Manhattan

plot showing the SNPs was generated using R package

qqman (Turner, S.D. qqman: an R package for visual-

izing GWAS results using Q-Q and manhattan plots.

biorXiv https://doi.org/10.1101/005165).

2.7. Bayesian network modeling

We used a biological network inference method,

GRASP, which we recently developed [44] to build a

Bayesian network (BN) model for selected genomic

features using several types of genomic data available

from TCGA, including mRNA-seq, microRNA-seq,

protein expression, and DNA methylation data. We

first used RNA-seq data to identify transcripts highly

correlated with a feature of interest (XKR9 gene

expression in this study). There are hundreds of

genes with significant correlation coefficients with

XKR9 as measured by adjusted p-values (padj ≤
0.05). We chose relatively large correlation coefficient

cutoffs to give us a small number of variables to

control the size of the resulting network. Six tran-

scripts (mRNA-seq) were selected whose absolute val-

ues of correlation coefficients with that of XKR9 are

greater than 0.38. We then included other genomic

features, including microRNAs, DNA methylations,

and protein expressions that are highly correlated

with these transcripts, which produced 10 micro-

RNAs (absolute correlation coefficient > 0.45), 10

DNA methylation regions aggregated around genes

(absolute correlation coefficient > 0.4), and 3 protein

expressions (absolute correlation coefficient > 0.3).

The details of the BN structure learning method are

given in Ref. [44].

The companion website, https://rep.insilicom.com/ca

ncer_racial_disparity/index.html, provides more details

on the data and methods we used in this study.

3. Results

In this study, we performed integrative genomics anal-

ysis across three races: Asian American (AS), Cau-

casian American (CA), and African American (AA)

for all 21 cancer types combined as well as each indi-

vidual cancer type. The patients are races matched

with AS:AA:CA of 1:1:4. There are totally 289 AS,

289 AA, and 1156 CA patients. From TCGA data,

racial disparity in overall survival is evident when

pooling patients from all the cancer types: AS has

much higher survival probability than CA and AA,

while CA and AA have comparable survival probabil-

ity to each other (Fig. 2A). For most of the analyses,

Table 1. Selected differentially expressed genes and transcripts across three races for all cancer types. The genes are among the top

differentially expressed genes, and literature search showed some interesting findings about them. The numbers in columns 2, 3, and 4 are

the log2 fold change and p-values (in parentheses). AS vs. CA: Asian American cancer samples compared to Caucasian American cancer

samples, with CA samples used as the reference set. AS vs. AA: Asian American samples compared to African American samples, with AA

samples used as the reference. AA vs. CA: African American samples compared to Caucasian American samples, with CA used as the

reference. NDE: nondifferentially expressed

Gene AS vs. CA AS vs. AA AA vs. CA Functions

XKR9 �1.6 (3.3e-43) �1.1 (8.1e-11) �0.63 (4.1e-16) Exposing phosphatidylserine during apoptosis

CST1 0.69 (4.27e-04) 1.67 (1.20e-07) �0.76 (3.17e-07) Regulation of cell proliferation, clone formation, and metastasis

SIGLEC14 �1.5 (2.2e-44) �0.97 (3.9e-8) NDE Regulation of immune cell functions. It activates immune cells

by recruiting Syk.

SIGLEC12 1.2 (9.7e-24) 1.2 (1.2e-11) NDE Regulation of immune cell functions. It may protect against the

development of SLE in Asian populations.

UGT2B17 �1.4 (1.2e-14) �1.6 (1.3e-7) NDE Conjugation and subsequent elimination of potentially toxic

xenobiotics and endogenous compounds

CHIT1 �1.2 (2.0e-13) �1.15 (3.0e-6) NDE Known SNPs associated with colorectal cancer

MTRNR2L1 �1 (7.9e-10) NDE �1.3 (1.5e-24) Cell life and antiapoptosis
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we present the results from the comparison of AS vs

CA in the main text and provide results of the other

two pairwise comparisons in the Supporting Informa-

tion or on the companion website.

3.1. Differential gene expression analysis across

three races for all cancer types

We first looked at differentially expressed genes using

combined RNA-seq data from all cancer types. Three

pairwise comparisons were performed for AS vs. CA,

AS vs. AA, and AA vs. CA. As shown in Fig. 2B, for

the AS vs. CA comparison, using a fold change of 1.5

(|log2 fold change|≥0.585) and an adjusted p-value <=
0.05, we identified a total of 67 differentially expressed

genes (DEGs), including 42 down-regulated and 25

up-regulated genes, with CA used as the reference

group. For the AA vs. CA comparison, using the same

criteria, we obtained a total of 88 DEGs, including 42

down-regulated and 46 up-regulated genes, again with

CA used as the reference group. For the AS vs. AA

comparison, we identified 153 DEGs, including 108

down-regulated DEGs and 45 up-regulated DEGs, this

time using AA as the reference group. Two genes

(XKR9 and CST1) are found to be DEGs among all

the three comparisons (Fig. 2B). A survival analysis

was performed on the DEGs, and XKR9 was found

to have a significant effect on survival when consider-

ing all of the cancer types combined (Fig. 2C) as well

as in three specific cancer types (kidney renal papillary

Fig. 2. Results for all cancer types combined. (A) Survival curve for the three races; (B) Venn diagram of DEGs among three comparisons;

(C) survival plots of XKR9. The median value of XKR9 expression was used to separate the population into high and low groups; (D,E)

heatmaps of the selected top 30 differentially expressed genes between AS and CA tumors, where the color schemes show log2 fold

change in D and log2 of normalizing the expression of genes at target library of 40 million in E, respectively.
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cell carcinoma (KIRP), kidney chromophobe (KICH),

and liver hepatocellular carcinoma (LIHC)) (Figs S1A,

S1B, and S1C). Reduced expression of XKR9 is

always associated with higher survival probabilities.

XKR9 was found to be down-regulated in AS cancer

patients in both the AS vs. CA comparison (log2 fold

change = �1.58; adjusted p-value = 1.50e-39) and the

AS vs. AA comparison (log2 fold change = �1.08;

adjusted p-value = 6.01e-08). CST1 was found to have

different effect on survival in three individual cancer

types with elevated express of CST1 associated with

higher survival probability in BLCA and BRCA (the

higher the expression of CST1, the higher the overall

survival time of the patients), while reduced expression

of CST1 associated with higher survival probability in

LGG (the lower the expression of CST1, the higher

the overall survival of the patients) (Figs S1D, S1E,

and S1F). Several other genes known to be involved in

cancer were also found to be differentially expressed

(Table 1).

We then looked at the differentially expressed genes

in individual cancer type and identified top 30 DEGs

between AS and CA tumors in individual cancer types

as shown in Fig. 2D,E based on a total of 63 compar-

isons (21 cancer types and three comparisons in each,

see below for more details). We can see that most of

the DEGs are down-regulated in AS tumors, which is

consistent with what we have observed in previous

studies [11,29]. The correlation matrix of the genes in

Fig. 2D was calculated and plotted to provide an over-

view on the correlation of these DEGs (Fig. S3 in

Supplementary Materials). Results of the other two

pairwise comparisons are given in Supplementary

Materials (Fig. S2).

3.2. Pathway and upstream regulator analysis

A pathway analysis using the Ingenuity Pathway Anal-

ysis (IPA) suite using differentially expressed genes

from overall comparison showed that a number of

pathways are dysregulated in multiple cancers in the

AS vs. CA comparison (Fig. 3A) as well as in the

other two comparisons. The majority of the pathways

are down-regulated in AS tumors except for the

SPINK1 pancreatic cancer pathway and the SPINK1

general cancer pathway. Among the dysregulated path-

ways are several metabolism-related pathways such as

nicotine degradation II, LXR/RXR activation,

serotonin degradation, melatonin degradation I, the

superpathway of melatonin degradation, nicotine

degradation III, thyroid hormone metabolism, and

acetone degradation I. Several neural pathways were

also found to be significantly dysregulated, including

those known as the neuroprotective role of THOP1 in

Alzheimer’s disease, synaptogenesis signaling pathway,

neuroinflammation signaling pathway, endocannabi-

noid neuronal synapse pathway, synaptic long-term

depression, and neuropathic pain signaling in Dorsal

horn neurons.

3.3. Differential gene expression analysis for

individual cancer types

To identify DEGs that may be only specific to certain

individual cancers, we performed a DGEA for individ-

ual cancers. Surprisingly, unlike the overall compar-

ison with all cancer types, the comparisons of

individual cancers generally produced a much larger

number of DEGs with larger-fold changes and smaller

p-values, despite utilizing much smaller sample sizes.

To further focus the results of our analysis, we manu-

ally checked the DEGs and selected a small number of

gene families whose members have similar differential

expression patterns in more than one type of cancer.

These gene families are more likely to be truly differ-

entially expressed given these two conditions: (1) more

than one member of these gene families have similar

differential expression patterns in a particular compar-

ison in one cancer type; and (2) members of these fam-

ilies have similar differential expression patterns in

more than one cancer type. The gene families selected

are kallikreins (KLKs), metallothioneins (MTs),

mucins (MUCs), melanoma antigen gene (MAGEs),

and C-X-C motif chemokine ligands (CXCLs). Fig-

ure 3B shows the heatmap of the KLK gene family for

cancers that include at least one KLK gene detected as

a DEG.

More discussions of this study are provided in Sup-

porting Information.

3.4. Genetic factors associated with breast

cancer racial disparity—a case study

In addition to the analysis of the combined data from

all 21 cancer types, we performed similar analyses on

individual cancers and made all of the results available

on the companion website. Each cancer type has a sep-

arate webpage documenting all of the results related to

that cancer type. Researchers are encouraged to

explore the website to mine new discoveries on cancer

racial disparities specific to individual cancers. Here,

we use breast cancer as an example illustrating how

the individual cancer results can be explored. For

breast cancer, there are a total of 781 CA, 184 AA,

and 61 AS patients. The differential gene expression

analysis returned 1319, 1309, and 1458 DEGs, for the
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AS vs. CA, AA vs. CA, and AS vs. AA comparisons,

respectively, using a fold change of 2.0 (|log2 fold

change|>= 1.0) and an adjusted p-value <= 0.05.

Clicking on gene names in the table will display the

box plot and histogram for the expression of the genes

across the three racial groups. This can be quite infor-

mative as some DEGs are false positives driven by

some outlier genes, which could not be effectively

detected by the DESeq2 program. Visual inspection

will identify such genes. The ‘NCBI’ and ‘GeneCards’

Fig. 3. (A) Heatmap of z-score of dysregulated pathways for three pairwise cancer-type-specific comparisons; (B) heatmap of KLK genes for

three pairwise cancer-type-specific comparisons; (C) upstream regulators and the genes they regulate in breast cancer racial disparity study;

(D) Manhattan plot showing the SNPs identified for the AS vs CA comparison using data for all cancer types combined. The different colors

are used to help distinguish SNPs in different regions/chromosomes; (E) the network learned by employing a Bayesian network model that

uses RNA-seq, protein expression, DNA methylation, and microRNA-seq data to understand the potential function of XKR9. Orange circles:

nodes representing mRNA expression of genes; Red circles: nodes representing microRNA; Blue circles: nodes representing protein

expressions; Green circles: DNA methylations.
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links can also take users to the corresponding webpage

of the genes at NCBI or the GeneCards database. The

Venn diagram shows the overlap among the three

comparisons, the heatmap shows the expression of

DEGs, and the survival analysis plot shows the sur-

vival curves for patients across the three racial groups.

In addition, we also performed a pathway analysis

using the IPA suite, which includes dysregulated path-

ways, upstream regulators, and diseases/functions

related to the DEGs. A graph containing upstream

regulators and the genes they regulate is shown in

Fig. 3C.

3.5. SNPs associated with differentially

expressed genes

A fundamental question of disease studies is to under-

stand how genotypes affect the phenotypes of the dis-

ease of interest. It has been well established that

common genetic variants account for differences in

gene expression among ethnic groups [45]. In this

study, we focused on two phenotypes of interest: the

outcome disparity among CA, AA, and AS cancer

patients and the genome-wide expression profiles of all

the transcripts from tissue samples of twenty-one can-

cers. To identify genotypes associated with these phe-

notypes, we combined gene expression data with eQTL

data from the GTEx project and SNP allele frequency

information from the 1,000 Genomes Project [11,29]

(see Materials and Methods for details). Figure 3D

displays the SNPs identified from the AS vs. CA com-

parison using a Manhattan plot. We can see that many

SNPs are clustered around certain regions, indicating

they are likely to be truly associated with cancer racial

disparity. The determination of whether or not they

are driver SNPs would require further experimental

studies.

3.6. Understanding the mechanism of the

association between XKR9 and cancer health

disparity using Bayesian network models

XKR9 was found to be differentially expressed in all

three pairwise comparisons of combined data for all

cancers. XKR9 expression was also found to be associ-

ated with overall survival. Several SNPs associated

with the differential expression of XKR9 were discov-

ered using an integrative analysis combining data from

the TCGA, GTEx, and 1000 Genomes Project data-

bases. The allele frequencies in different races are also

consistent with their differential expression patterns,

indicating the SNPs are potential genetic drivers for

cancer racial disparities across multiple cancer types.

A literature search for XKR9 returned little informa-

tion on its function and its relationship with cancer.

Using mRNA-seq, microRNA-seq, protein expression,

and DNA methylation data obtained from TCGA, we

inferred a Bayesian network (BN) structure (Fig. 3E)

for the selected genomic features using our BN struc-

ture learning method, GRASP, described in Method.

The learned network suggests that XKR9 is regulated

by a regulatory protein, cyclin B1, which was regulated

by forkhead box M1 (FOXM1). Regulation of cyclin

B1 by FOXM1 is well established in literature [46,47].

FOXM1 (forkhead box protein M1) is an important

proliferation-associated transcription factor widely

spatiotemporally expressed during cell cycle. It is

involved in the processes of cell proliferation, self-re-

newal, and tumorigenesis [48]. Due to its potential role

as molecular target in cancer therapy, FOXM1 was

named the Molecule of the Year in 2010 [49,50]. In the

BN, XKR9 directly regulates LACTB2, which regu-

lates other genes and microRNAs including a tumor

suppressor gene, RB1CC1. RB1CC1 is a potential reg-

ulator of the tumor suppressor, RB1. From both

upstream and downstream proteins/genes identified by

the BN, XKR9 likely plays some intriguing functions

in cancer. The BN model links XKR9 expression with

tumor growth and apoptosis, which may explain its

effect on overall survival of cancer patients. The model

also provides guidance for formulating well-defined

hypotheses for future validation studies.

4. Discussion

Despite extensive previous studies on the topic, a sub-

stantial proportion of cancer racial disparities still can-

not be explained by known factors. Many previous

studies have identified biological factors associated

with the disparities. However, the agreement among

these studies is rather poor. Limited sample sizes, sam-

pling population differences, and/or randomness in

multiple comparisons may have all contributed to the

discrepancy. Most previous studies have focused on

individual cancers and identified quite different genetic

factors for different cancer types. A natural question

one may ask is as follows: Are these racial disparities

in different cancer types isolated events? It is well

known that cancers from different organs can share

very similar characteristics if they have similar driver

mutations. The genetic factors affecting cancer racial

disparities likely act across multiple cancers as well.

Another question is as follows: With so many candi-

date genetic factors discovered in the past, which ones

are the drivers? Identification of driver genetic factors

that cause cancer racial disparity would help
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researchers design effective approaches to reduce or

eliminate the disparities.

In this study, we used TCGA genomic data from a

total of 7,789 patient samples representing twenty-one

cancer types. Our study discovered a number of genes

which are differentially expressed in multiple cancers

between different racial groups. These genes are more

likely to be truly associated with cancer racial disparity

compared to the genes identified using smaller sample

sizes from studies examining individual cancer types.

One of the DEGs, XKR9, was found to be associated

with overall survival for all of the cancers combined as

well as for three individual cancer types. We further

identified pathways differentially regulated across multi-

ple cancer types. An additional differential expression

analysis using individual cancers identified more DEGs,

gene families, and pathways in individual cancer types.

Combining data from three major public databases—
TCGA, GTEx, and 1000 Genomes—allowed us to find

promising candidate SNPs, which could be the genetic

drivers of cancer racial disparity. We have put all of the

results on a companion website available at https://rep.

insilicom.com/cancer_racial_disparity/index.html.

There is still much to be discovered from our analysis

results, and we welcome cancer researchers to utilize

these resources to make new discoveries. Below, we dis-

cuss some of our discoveries in more detail.

We used UCSC genome browser to find the location

of the SNP, rs17689585, which was found to be associ-

ated with XKR9 gene expression and may be a poten-

tial driver SNP for cancer racial disparity (Fig. S4).

The SNP overlaps with gene, AC015687.1, which is a

novel transcript. Searching AC015687.1 at GeneCards

database (https://www.genecards.org/cgi-bin/carddisp.

pl?gene=ENSG00000285579) showed that this gene is

an enhancer for XKR9. A few other important tran-

scription factors bind this region of the genome,

including FOXA2, RXRA, HNF4A, YY1, ZNF644,

FOXA1, SP1, SOX13, and HNF4G. Among them,

HNF4A, HNF4G, and FOXA2 correlate relatively

strongly to XKR9, indicating they may play regulatory

roles on XKR9 (Fig. S5). These discoveries point to

some actionable hypotheses, which can be tested

experimentally. For example, site-directed mutagenesis

could be done to see whether the SNPs in this region

indeed affect XKR9 expression and how they affect

the physiology of cells. One can also check whether

the mutations regulate XKR9 expression through

modifying the binding of any of the transcription fac-

tors.

Given that XKR9 (XK related 9) could be the gene

directly regulated by one or more of the transcription

factors (FOXA2, RXRA, HNF4A, YY1, ZNF644,

FOXA1, SP1, SOX13, and HNF4G) through one or

more of the SNPs (multiple SNPs around

chr8:71579362 and chr8:71917527) to cause some of

the observed cancer racial disparities, we conducted lit-

erature search to find more about the links between

XKR9 and cancer. It has been shown that apoptotic

cells expose phosphatidylserine (PtdSer) on their sur-

face as an ‘eat me’ signal and mammalian Xk-related

(Xkr) proteins promote apoptotic PtdSer exposure

[51,52]. A recent study found that this pathway can be

hijacked by tumor cells to suppress the development of

immunity toward tumor cells, which implies that

PtdSer blockade by the therapeutic administration of

PS-targeting agents may restore pathogen and tumor

immunity [53]. Our study indicates another opportu-

nity by targeting on XKR9 to regulate the exposure of

PtdSer on cell surface. The observation that higher

expression of XKR9 is associated with lower survival

probability also suggests that targeting on XKR9 may

be worth exploring as a potentially new therapeutic

direction in cancer immunotherapy.

5. Conclusions

In this study, we found that higher expression of

CST1 is positively correlated with longer overall sur-

vival for breast cancer (BRCA) and bladder cancer

(BLCA), while it is negatively correlated with overall

survival for low-grade glioma (LGG). This is in con-

tradiction with a previous study indicating that ele-

vated CST1 expression promotes breast cancer

progression and predicts a poor prognosis [54]. Litera-

ture review showed that CST1 may play different roles

in different cancers [55–58], but failed to reconcile the

discrepancy between previous studies and ours. Fur-

ther experimental work is needed to shed more light

on the role CST1 plays in cancer.

Our study identified several neural pathways differ-

entially regulated across multiple cancer types. These

include the pathways known as the neuroprotective

role of THOP1 in Alzheimer’s disease, synaptogenesis

signaling pathway, neuroinflammation signaling path-

way, endocannabinoid neuronal synapse pathway,

synaptic long-term depression, and neuropathic pain

signaling in Dorsal horn neurons. Recent studies have

found that the central nervous system and sympathetic

nervous systems may play important roles in cancer’s

genesis, development, metastasis, and response to

treatment [59–61]. The neurobiology of cancer is an

emerging discipline spawning new perspectives in

oncology. The discovery of multiple pathways related

to neural systems that are associated with different

cancer types indicates that neural systems may
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contribute to cancer racial disparities. It also confirms

that these neural pathways may indeed play important

roles in cancer. There have been few discoveries in pre-

vious cancer racial disparity studies pointing to neural

pathways as associated genetic factors. Whether they

act as drivers will require additional investigation in

the future.
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