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Complex problem-solving (CPS) ability has been recognized as a central 21st century

skill. Individuals’ processes of solving crucial complex problems may contain substantial

information about their CPS ability. In this paper, we consider the prediction of duration

and final outcome (i.e., success/failure) of solving a complex problem during task

completion process, by making use of process data recorded in computer log files.

Solving this problem may help answer questions like “how much information about an

individual’s CPS ability is contained in the process data?,” “what CPS patterns will yield a

higher chance of success?,” and “what CPS patterns predict the remaining time for task

completion?” We propose an event history analysis model for this prediction problem.

The trained prediction model may provide us a better understanding of individuals’

problem-solving patterns, which may eventually lead to a good design of automated

interventions (e.g., providing hints) for the training of CPS ability. A real data example

from the 2012 Programme for International Student Assessment (PISA) is provided

for illustration.

Keywords: process data, complex problem solving, PISA data, response time, event history analysis

1. INTRODUCTION

Complex problem-solving (CPS) ability has been recognized as a central 21st century skill of
high importance for several outcomes including academic achievement (Wüstenberg et al., 2012)
and workplace performance (Danner et al., 2011). It encompasses a set of higher-order thinking
skills that require strategic planning, carrying out multi-step sequences of actions, reacting to a
dynamically changing system, testing hypotheses, and, if necessary, adaptively coming up with
new hypotheses. Thus, there is almost no doubt that an individual’s problem-solving process data
contain substantial amount of information about his/her CPS ability and thus are worth analyzing.
Meaningful information extracted from CPS process data may lead to better understanding,
measurement, and even training of individuals’ CPS ability.

Problem-solving process data typically have a more complex structure than that of panel data
which are traditionally more commonly encountered in statistics. Specifically, individuals may
take different strategies toward solving the same problem. Even for individuals who take the
same strategy, their actions and time-stamps of the actions may be very different. Due to such
heterogeneity and complexity, classical regression and multivariate data analysis methods cannot
be straightforwardly applied to CPS process data.

Possibly due to the lack of suitable analytic tools, research on CPS process data is limited. Among
the existing works, none took a prediction perspective. Specifically, Greiff et al. (2015) presented a
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case study, showcasing the strong association between a specific
strategic behavior (identified by expert knowledge) in a CPS
task from the 2012 Programme for International Student
Assessment (PISA) and performance both in this specific task
and in the overall PISA problem-solving score. He and von
Davier (2015, 2016) proposed an N-gram method from natural
language processing for analyzing problem-solving items in
technology-rich environments, focusing on identifying feature
sequences that are important to task completion. Vista et al.
(2017) developed methods for the visualization and exploratory
analysis of students’ behavioral pathways, aiming to detect
action sequences that are potentially relevant for establishing
particular paths as meaningful markers of complex behaviors.
Halpin and De Boeck (2013) and Halpin et al. (2017) adopted
a Hawkes process approach to analyzing collaborative problem-
solving items, focusing on the psychological measurement of
collaboration. Xu et al. (2018) proposed a latent class model that
analyzes CPS patterns by classifying individuals into latent classes
based on their problem-solving processes.

In this paper, we propose to analyze CPS process data from
a prediction perspective. As suggested in Yarkoni and Westfall
(2017), an increased focus on prediction can ultimately lead us
to greater understanding of human behavior. Specifically, we
consider the simultaneous prediction of the duration and the
final outcome (i.e., success/failure) of solving a complex problem
based on CPS process data. Instead of a single prediction, we
hope to predict at any time during the problem-solving process.
Such a data-driven prediction model may bring us insights
about individuals’ CPS behavioral patterns. First, features that
contribute most to the prediction may correspond to important
strategic behaviors that are key to succeeding in a task. In this
sense, the proposed method can be used as an exploratory data
analysis tool for extracting important features from process data.
Second, the prediction accuracy may also serve as a measure of
the strength of the signal contained in process data that reflects
one’s CPS ability, which reflects the reliability of CPS tasks from
a prediction perspective. Third, for low stake assessments, the
predicted chance of success may be used to give partial credits
when scoring task takers. Fourth, speed is another important
dimension of complex problem solving that is closely associated
with the final outcome of task completion (MacKay, 1982).
The prediction of the duration throughout the problem-solving
process may provide us insights on the relationship between
the CPS behavioral patterns and the CPS speed. Finally, the
prediction model also enables us to design suitable interventions
during their problem-solving processes. For example, a hint may
be provided when a student is predicted having a high chance to
fail after sufficient efforts.

More precisely, we model the conditional distribution of
duration time and final outcome given the event history up
to any time point. This model can be viewed as a special
event history analysis model, a general statistical framework for
analyzing the expected duration of time until one or more events
happen (see e.g., Allison, 2014). The proposed model can be
regarded as an extension to the classical regression approach.
The major difference is that the current model is specified over
a continuous-time domain. It consists of a family of conditional

models indexed by time, while the classical regression approach
does not deal with continuous-time information. As a result, the
proposed model supports prediction at any time during one’s
problem-solving process, while the classical regression approach
does not. The proposed model is also related to, but substantially
different from response time models (e.g., van der Linden,
2007) which have received much attention in psychometrics in
recent years. Specifically, response time models model the joint
distribution of response time and responses to test items, while
the proposed model focuses on the conditional distribution of
CPS duration and final outcome given the event history.

Although the proposed method learns regression-type models
from data, it is worth emphasizing that we do not try to
make statistical inference, such as testing whether a specific
regression coefficient is significantly different from zero. Rather,
the selection and interpretation of the model are mainly justified
from a prediction perspective. This is because statistical inference
tends to draw strong conclusions based on strong assumptions on
the data generation mechanism. Due to the complexity of CPS
process data, a statistical model may be severely misspecified,
making valid statistical inference a big challenge. On the other
hand, the prediction framework requires less assumptions and
thus is more suitable for exploratory analysis. More precisely,
the prediction framework admits the discrepancy between
the underlying complex data generation mechanism and the
prediction model (Yarkoni and Westfall, 2017). A prediction
model aims at achieving a balance between the bias due to this
discrepancy and the variance due to a limited sample size. As
a price, findings from the predictive framework are preliminary
and only suggest hypotheses for future confirmatory studies.

The rest of the paper is organized as follows. In Section 2, we
describe the structure of complex problem-solving process data
and then motivate our research questions, using a CPS item from
PISA 2012 as an example. In Section 3, we formulate the research
questions under a statistical framework, propose a model, and
then provide details of estimation and prediction. The introduced
model is illustrated through an application to an example item
from PISA 2012 in Section 4. We discuss limitations and future
directions in Section 5.

2. COMPLEX PROBLEM-SOLVING
PROCESS DATA

2.1. A Motivating Example
We use a specific CPS item, CLIMATE CONTROL (CC)1,
to demonstrate the data structure and to motivate our
research questions. It is part of a CPS unit in PISA 2012
that was designed under the “MicroDYN” framework (Greiff
et al., 2012; Wüstenberg et al., 2012), a framework for the
development of small dynamic systems of causal relationships for
assessing CPS.

In this item, students are instructed to manipulate the panel
(i.e., to move the top, central, and bottom control sliders; left side
of Figure 1A) and to answer how the input variables (control

1The item can be found on the OECD website (http://www.oecd.org/pisa/test-

2012/testquestions/question3/)
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FIGURE 1 | (A) Simulation environment of CC item. (B) Answer diagram of CC item.

sliders) are related to the output variables (temperature and
humidity). Specifically, the initial position of each control slider
is indicated by a triangle “N.” The students can change the top,
central and bottom controls on the left of Figure 1 by using
the sliders. By clicking “APPLY,” they will see the corresponding
changes in temperature and humidity. After exploration, the
students are asked to draw lines in a diagram (Figure 1B)
to answer what each slider controls. The item is considered
correctly answered if the diagram is correctly completed. The
problem-solving process for this item is that the students must
experiment to determine which controls have an impact on
temperature and which on humidity, and then represent the
causal relations by drawing arrows between the three inputs
(top, central, and bottom control sliders) and the two outputs
(temperature and humidity).

PISA 2012 collected students’ problem-solving process data
in computer log files, in the form of a sequence of time-
stamped events. We illustrate the structure of data in Table 1 and
Figure 2, where Table 1 tabulates a sequence of time-stamped
events from a student and Figure 2 visualizes the corresponding
event time points on a time line. According to the data, 14
events were recorded between time 0 (start) and 61.5 s (success).
The first event happened at 29.5 s that was clicking “APPLY”
after the top, central, and bottom controls were set at 2, 0, and
0, respectively. A sequence of actions followed the first event
and finally at 58, 59.1, and 59.6 s, a final answer was correctly
given using the diagram. It is worth clarifying that this log
file does not collect all the interactions between a student and
the simulated system. That is, the status of the control sliders
is only recorded in the log file, when the “APPLY” button
is clicked.

The process data for solving a CPS item typically have two
components, knowledge acquisition and knowledge application,
respectively. This CC item mainly focuses the former, which
includes learning the causal relationships between the inputs
and the outputs and representing such relationships by drawing
the diagram. Since data on representing the causal relationship
is relatively straightforward, in the rest of the paper, we focus
on the process data related to knowledge acquisition and only
refer a student’s problem-solving process to his/her process of
exploring the air conditioner, excluding the actions involving the
answer diagram.

TABLE 1 | An example of computer log file data from CC item in PISA 2012.

Time Event

0 Start.

29.5 Set top, central, and bottom controls at 2, 0, and 0, respectively,

and click APPLY.

32.4 Set top, central, and bottom controls at 0, 0, and 0, respectively,

and click APPLY.

35.2 Click RESET.

36.2 Set all three controls at 0, and click APPLY.

.

.

.
.
.
.

58 Connecting ”top control” with ”temperature.”

59.1 Connecting ”central control” with ”humidity.”

59.6 Connecting ”bottom control” with ”humidity.”

61.5 Success.

Intuitively, students’ problem-solving processes contain
information about their complex problem-solving ability,
whether in the context of the CC item or in a more general
sense of dealing with complex tasks in practice. However, it
remains a challenge to extract meaningful information from
their process data, due to the complex data structure. In
particular, the occurrences of events are heterogeneous (i.e.,
different people can have very different event histories) and
unstructured (i.e., there is little restriction on the order and time
of the occurrences). Different students tend to have different
problem-solving trajectories, with different actions taken at
different time points. Consequently, time series models, which
are standard statistical tools for analyzing dynamic systems, are
not suitable here.

2.2. Research Questions
We focus on two specific research questions. Consider an
individual solving a complex problem. Given that the individual
has spent t units of time and has not yet completed the task,
we would like to ask the following two questions based on
the information at time t: How much additional time does the
individual need? And will the individual succeed or fail upon the
time of task completion?
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FIGURE 2 | Visualization of the structure of process data from CC item in

PISA 2012.

Suppose we index the individual by i and let Ti be the total
time of task completion and Yi be the final outcome. Moreover,
we denote Hi(t) = (hi1(t), ..., hip(t))

⊤ as a p-vector function of
time t, summarizing the event history of individual i from the
beginning of task to time t. Each component of Hi(t) is a feature
constructed from the event history up to time t. Taking the above
CC item as an example, components ofHi(t) may be, the number
of actions a student has taken, whether all three control sliders
have been explored, the frequency of using the reset button, etc.,
up to time t. We refer to Hi(t) as the event history process of
individual i. The dimension p may be high, depending on the
complexity of the log file.

With the above notation, the two questions become to
simultaneously predict Ti and Yi based onHi(t). Throughout this
paper, we focus on the analysis of data from a single CPS item.
Extensions of the current framework to multiple-item analysis
are discussed in Section 5.

3. PROPOSED METHOD

3.1. A Regression Model
We now propose a regression model to answer the two questions
raised in Section 2.2. We specify the marginal conditional models
of Yi and Ti given Hi(t) and Ti > t, respectively. Specifically,
we assume

P(Yi = 1|Hi(t),Ti > t) = 8(b11hi1(t)+ · · · + b1phip(t)), (1)

E(log(Ti − t)|Hi(t),Ti > t) = b21hi1(t)+ · · · + b2phip(t), (2)

and

Var(log(Ti − t)|Hi(t),Ti > t) = σ 2, (3)

where 8 is the cumulative distribution function of a standard
normal distribution. That is, Yi is assumed to marginally follow
a probit regression model. In addition, only the conditional
mean and variance are assumed for log(Ti − t). Our model
parameters include the regression coefficients B = (bjk)2×p and

conditional variance σ 2. Based on the above model specification,
a pseudo-likelihood function will be devived in Section 3.3 for
parameter estimation.

Although only marginal models are specified, we point out
that the model specifications (1) through (3) impose quite strong
assumptions. As a result, the model may not most closely
approximate the data-generating process and thus a bias is likely
to exist. On the other hand, however, it is a working model that
leads to reasonable prediction and can be used as a benchmark
model for this prediction problem in future investigations.

We further remark that the conditional variance of log(Ti− t)
is time-invariant under the current specification, which can be
further relaxed to be time-dependent. In addition, the regression
model for response time is closely related to the log-normal
model for response time analysis in psychometrics (e.g., van der
Linden, 2007). The major difference is that the proposed model is
not a measurement model disentangling item and person effects
on Ti and Yi.

3.2. Prediction
Under the model in Section 3.1, given the event history, we
predict the final outcome based on the success probability
8(b11hi1(t) + · · · + b1phip(t)). In addition, based on the
conditional mean of log(Ti − t), we predict the total time at time
t by t + exp(b21hi1(t) + · · · + b2phip(t)). Given estimates of B
from training data, we can predict the problem-solving duration
and final outcome at any t for an individual in the testing sample,
throughout his/her entire problem-solving process.

3.3. Parameter Estimation
It remains to estimate the model parameters based on a training
dataset. Let our data be (τi, yi) and {Hi(t) : t ≥ 0}, i = 1, ...,N,
where τi and yi are realizations of Ti and Yi, and {Hi(t) : t ≥ 0} is
the entire event history.

We develop estimating equations based on a pseudo
likelihood function. Specifically, the conditional distribution of
Yi givenHi(t) and Ti > t can be written as

f1(y|Hi(t), τ > t; b1) = 8(b⊤1 Hi(t))
y(1− 8(b⊤1 Hi(t)))

1−y,

where b1 = (b11, ..., b1p)
⊤. In addition, using the log-normal

model as a working model for Ti − t, the corresponding
conditional distribution of Ti can be written as

f2(τ |Hi(t), τ > t; b2, σ ) = 1

(τ − t)σ
√
2π

(4)

exp

(

− (log(τ − t)− (b⊤2 Hi(t)))
2

2σ 2

)

,

where b2 = (b21, ..., b2p)
⊤. The pseudo-likelihood is then

written as

L(B, σ ) =
N
∏

i=1

J
∏

j=1

(

f1(yi|Hi(tj), τi > tj; b1)f2(τi|Hi(tj), τi > tj; b2, σ )
)1{τi>tj} ,

(5)
where t1, ..., tJ are J pre-specified grid points that spread out
over the entire time spectrum. The choice of the grid points will
be discussed in the sequel. By specifying the pseudo-likelihood
based on the sequence of time points, the prediction at different
time is taken into accounting in the estimation. We estimate
the model parameters by maximizing the pseudo-likelihood
function L(B, σ ).

In fact, (5) can be factorized into

L(B, σ ) = L1(b1)L2(b2, σ ),
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where

L1(b1) =
N
∏

i=1

J
∏

j=1

(f1(yi|Hi(tj), τi > tj; b1))1{τi>tj} , (6)

and

L2(b2, σ ) =
N
∏

i=1

J
∏

j=1

(f2(τi|Hi(tj), τi > tj; b2, σ ))1{τi>tj} . (7)

Therefore, b1 is estimated by maximizing L1(b1), which takes the
form of a likelihood function for probit regression. Similarly, b2
and σ are estimated by maximizing L2(b2, σ ), which is equivalent
to solving the following estimation equations,

N
∑

i=1

J
∑

j=1

1{τi>tj}
(

log(τi − tj)− b⊤2 Hi(tj)
)

hik(tj) = 0, k = 1, ..., p,

(8)
and

N
∑

i=1

J
∑

j=1

1{τi>tj}
(

σ 2 − (log(τi − tj)− b⊤2 Hi(tj))
2
)

= 0. (9)

The estimating equations (8) and (9) can also be derived directly
based on the conditional mean and variance specification of
log(Ti−t). Solving these equations is equivalent to solving a linear
regression problem, and thus is computationally easy.

3.4. Some Remarks
We provide a few remarks. First, choosing suitable features
into Hi(t) is important. The inclusion of suitable features
not only improves the prediction accuracy, but also facilitates
the exploratory analysis and interpretation of how behavioral
patterns affect CPS result. If substantive knowledge about a
CPS task is available from cognition theory, one may choose
features that indicate different strategies toward solving the task.
Otherwise, a data-driven approach may be taken. That is, one
may select a model from a candidate list based on certain cross-
validation criteria, where, if possible, all reasonable features
should be consider as candidates. Even when a set of features has
been suggested by cognition theory, one can still take the data-
driven approach to find additional features, which may lead to
new findings.

Second, one possible extension of the proposed model is
to allow the regression coefficients to be a function of time t,
whereas they are independent of time under the current model.
In that case, the regression coefficients become functions of time,
bjk(t). The current model can be regarded as a special case of
this more general model. In particular, if bjk(t) has high variation
along time in the best predictive model, then simply applying the
current model may yield a high bias. Specifically, in the current
estimation procedure, a larger grid point tends to have a smaller
sample size and thus contributes less to the pseudo-likelihood
function. As a result, a larger bias may occur in the prediction

at a larger time point. However, the estimation of the time-
dependent coefficient is non-trivial. In particular, constraints
should be imposed on the functional form of bjk(t) to ensure a
certain level of smoothness over time. As a result, bjk(t) can be
accurately estimated using information from a finite number of
time points. Otherwise, without any smoothness assumptions, to
predict at any time during one’s problem-solving process, there
are an infinite number of parameters to estimate.Moreover, when
a regression coefficient is time-dependent, its interpretation
becomes more difficult, especially if the sign changes over time.

Third, we remark on the selection of grid points in the
estimation procedure. Our model is specified in a continuous
time domain that supports prediction at any time point in
a continuum during an individual’s problem-solving process.
The use of discretized grid points is a way to approximate the
continuous-time system, so that estimation equations can be
written down. In practice, we suggest to place the grid points
based on the quantiles of the empirical distribution of duration
based on the training set. See the analysis in Section 4 for an
illustration. The number of grid points may be further selected by
cross validation.We also point out that prediction can be made at
any time point on the continuum, not limited to the grid points
for parameter estimation.

4. AN EXAMPLE FROM PISA 2012

4.1. Background
In what follows, we illustrate the proposed method via an
application to the above CC item2. This item was also analyzed in
Greiff et al. (2015) and Xu et al. (2018). The dataset was cleaned
from the entire released dataset of PISA 2012. It contains 16,872
15-year-old students’ problem-solving processes, where the
students were from 42 countries and economies. Among these
students, 54.5% answered correctly. On average, each student
took 129.9 s and 17 actions solving the problem. Histograms of
the students’ problem-solving duration and number of actions
are presented in Figure 3.

4.2. Analyses
The entire dataset was randomly split into training and testing
sets, where the training set contains data from 13,498 students
and the testing set contains data from 3,374 students. A predictive
model was built solely based on the training set and then its
performance was evaluated based on the testing set. We used
J = 9 grid points for the parameter estimation, with t1 through
t9 specified to be 64, 81, 94, 106, 118, 132, 149, 170, and
208 s, respectively, which are the 10% through 90% quantiles
of the empirical distribution of duration. As discussed earlier,
the number of grid points and their locations may be further
engineered by cross validation.

4.2.1. Model Selection
We first build a model based on the training data, using a
data-driven stepwise forward selection procedure. In each step,

2The log file data and code book for the CC item can be found online: http://www.

oecd.org/pisa/pisaproducts/database-cbapisa2012.htm.
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FIGURE 3 | (A) Histogram of problem-solving duration of the CC item. (B) Histogram of the number of actions for solving the CC item.

we add one feature into Hi(t) that leads to maximum increase
in a cross-validated log-pseudo-likelihood, which is calculated
based on a five-fold cross validation. We stop adding features
into Hi(t) when the cross-validated log-pseudo-likelihood stops
increasing. The order in which the features are added may serve
as a measure of their contribution to predicting the CPS duration
and final outcome.

The candidate features being considered for model selection
are listed in Table 2. These candidate features were chosen to
reflect students’ CPS behavioral patterns from different aspects.
In what follows, we discuss some of them. For example, the

feature Ii(t) indicates whether or not all three control sliders have
been explored by simple actions (i.e., moving one control slider

at a time) up to time t. That is, Ii(t) = 1 means that the vary-

one-thing-at-a-time (VOTAT) strategy (Greiff et al., 2015) has
been taken. According to the design of the CC item, the VOTAT

strategy is expected to be a strong predictor of task success. In

addition, the feature Ni(t)/t records a student’s average number
of actions per unit time. It may serve as a measure of the student’s
speed of taking actions. In experimental psychology, response
time or equivalently speed has been a central source for inferences
about the organization and structure of cognitive processes (e.g.,
Luce, 1986), and in educational psychology, joint analysis of
speed and accuracy of item response has also received much
attention in recent years (e.g., van der Linden, 2007; Klein Entink
et al., 2009). However, little is known about the role of speed
in CPS tasks. The current analysis may provide some initial
result on the relation between a student’s speed and his/her CPS
performance. Moreover, the features defined by the repeating of
previously taken actions may reflect students’ need of verifying
the derived hypothesis on the relation based on the previous
action or may be related to students’ attention if the same actions
are repeated many times. We also include 1, t, t2, and t3 in
Hi(t) as the initial set of features to capture the time effect. For
simplicity, country information is not taken into account in the
current analysis.

Our results on model selection are summarized in Figure 4

and Table 3. The pseudo-likelihood stopped increasing after 11
steps, resulting a final model with 15 components in Hi(t). As
we can see from Figure 4, the increase in the cross-validated
log-pseudo-likelihood is mainly contributed by the inclusion
of features in the first six steps, after which the increment

TABLE 2 | The list of candidate features to be incorporated into the model.

Feature Explanation

1. Ni (t) Number of actions taken up to time t.

2. Ni (t)/t Frequency of actions up to time t.

3. 1{Ni (t)>0} Indicator of whether an action has been taken before time t.

4. Si (t) Number of simple actions (i.e., moving one control slider at a

time)

taken up to time t.

5. Si (t)/t Frequency of simple actions up to time t.

6. 1{Si (t)>0} Indicator of whether a simple action has been taken before

time t.

7. Ii (t) An indicator function, Ii (t) = 1 if all three control sliders

have been explored via simple actions up to time t and

Ii (t) = 0, otherwise.

8. Ri (t) Number of RESET used up to time t.

9. Ri (t)/t Frequency of RESET up to time t.

10. 1{Ri (t)>0} Indicator of whether RESET has been used before time t.

11. RPi (t) Number of times that previously taken actions (excluding

RESET)are repeated.

12. RPi (t)/t Frequency of repeating previously taken actions (excluding

RESET).

13. 1{RPi (t)>0} Indicator of repeating previously taken actions (excluding

RESET).

is quite marginal. As we can see, the first, second, and sixth
features entering into the model are all related to taking simple
actions, a strategy known to be important to this task (e.g.,
Greiff et al., 2015). In particular, the first feature being selected
is Ii(t), which confirms the strong effect of the VOTAT strategy.
In addition, the third and fourth features are both based on
Ni(t), the number of actions taken before time t. Roughly, the
feature 1{Ni(t)>0} reflects the initial planning behavior (Eichmann
et al., 2019). Thus, this feature tends to measure students’
speed of reading the instruction of the item. As discussed
earlier, the feature Ni(t)/t measures students’ speed of taking
actions. Finally, the fifth feature is related to the use of the
RESET button.

4.2.2. Prediction Performance on Testing Set
We now look at the prediction performance of the above model
on the testing set. The prediction performance was evaluated
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FIGURE 4 | The increase in the cross-validated log-pseudo-likelihood based on a stepwise forward selection procedure. (A–C) plot the cross-validated

log-pseudo-likelihood, corresponding to L(B, σ ), L1(b1), L2(b2, σ ), respectively.

TABLE 3 | Results on model selection based on a stepwise forward selection

procedure.

Step Var.add Lik Lik.out Lik.dur

0. 1, t, t2, t3 –72241.7 –63867.9 –8373.7

1. Ii (t) –70663.0 –62856.1 –7806.9

2. 1{Si (t)>0} –70058.3 –62617.0 –7441.4

3. 1{Ni (t)>0} –69744.9 –62315.2 –7429.7

4. Ni (t)/t –69672.7 –62237.6 –7435.1

5. 1{Ri (t)>0} –69601.3 –62239.9 –7361.4

6. Si (t)/t -69547.6 –62226.8 –7320.8

7. RPi (t)/t –69522.5 –62205.1 –7317.4

8. 1{RPi (t)>0} –69507.0 -62190.0 –7317.0

9. Ri (t) –69500.8 –62191.9 –7308.9

10. Ni (t) –69499.4 –62192.6 –7306.8

11. RPi (t) –69498.5 –62191.8 –7306.7

The columns “Lik,” “Lik.out,” and “Lik.dur” give the value of the cross-validated log-

pseudo-likelihood, corresponding to L(B, σ ), L1 (b1 ), L2 (b2, σ ), respectively.

at a larger set of time points from 19 to 281 s. Instead of
reporting based on the pseudo-likelihood function, we adopted
two measures that are more straightforward. Specifically, we
measured the prediction of final outcome by the Area Under the
Curve (AUC) of the predicted Receiver Operating Characteristic
(ROC) curve. The value of AUC is between 0 and 1. A larger AUC
value indicates better prediction of the binary final outcome, with
AUC = 1 indicating perfect prediction. In addition, at each time
point t, we measured the prediction of duration based on the root
mean squared error (RMSE), defined as

√

√

√

√

∑N+n
i=N+1 1{τi>t}(τi − τ̂i(t))2
∑N+n

i=N+1 1{τi>t}
,

where τi, i = N + 1, ...,N + n, denotes the duration of students
in the testing set, and τ̂i(t) denotes the prediction based on
information up to time t according to the trained model.

Results are presented in Figure 5, where the testing AUC
and RMSE for the final outcome and duration are presented. In
particular, results based on the model selected by cross validation
(p = 15) and the initial model (p = 4, containing the initial
covariates 1, t, t2, and t3) are compared. First, based on the
selected model, the AUC is never above 0.8 and the RMSE
is between 53 and 64 s, indicating a low signal-to-noise ratio.
Second, the students’ event history does improve the prediction
of final outcome and duration upon the initial model. Specifically,
since the initial model does not take into account the event
history, it predicts the students with duration longer than t
to have the same success probability. Consequently, the test
AUC is 0.5 at each value of t, which is always worse than the
performance of the selected model. Moreover, the selected model
always outperforms the initial model in terms of the prediction of
duration. Third, the AUC for the prediction of the final outcome
is low when t is small. It keeps increasing as time goes on and
fluctuates around 0.72 after about 120 s.

4.2.3. Interpretation of Parameter Estimates
To gain more insights into how the event history affects
the final outcome and duration, we further look at the
results of parameter estimation. We focus on a model
whose event history Hi(t) includes the initial features
and the top six features selected by cross validation. This
model has similar prediction accuracy as the selected model
according to the cross-validation result in Figure 4, but
contains less features in the event history and thus is easier
to interpret. Moreover, the parameter estimates under this
model are close to those under the cross-validation selected
model, and the signs of the regression coefficients remain
the same.

The estimated regression coefficients are presented in Table 4.
First, the first selected feature Ii(t), which indicates whether all
three control sliders have been explored via simple actions, has
a positive regression coefficient on final outcome and a negative
coefficient on duration. It means that, controlling the rest of the
parameters, a student who has taken the VOTAT strategy tends
to be more likely to give a correct answer and to complete in a
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FIGURE 5 | A comparison of prediction accuracy between the model selected by cross validation and a baseline model without using individual specific event history.

TABLE 4 | Estimated regression coefficients for a model for which the event

history process contains the initial features based on polynomials of t and the top

six features selected by cross validation.

Feature b̂1 b̂2

1. 1 3.1× 10−1 4.8

2. t −5.9× 10−3 −2.7× 10−3

3. t2 3.1× 10−6 −4.5× 10−7

4. t3 1.7× 10−8 3.5× 10−8

5. Ii (t) 5.2× 10−1 −8.4× 10−1

6. 1{Si (t)>0} 6.8× 10−1 −2.1× 10−1

7. 1{Ni (t)>0} −3.1× 10−1 −6.6× 10−1

8. Ni (t)/t −1.1 −1.4

9. 1{Ri (t)>0} 3.7× 10−1 3.8× 10−2

10. Si (t)/t 3.0 7.9× 10−1

shorter period of time. This confirms the strong effect of VOTAT
strategy in solving the current task.

Second, besides Ii(t), there are two features related to taking
simple actions, 1{Si(t)>0} and Si(t)/t, which are the indicator of
taking at least one simple action and the frequency of taking
simple actions. Both features have positive regression coefficients
on the final outcome, implying larger values of both features
lead to a higher success rate. In addition, 1{Si(t)>0} has a negative
coefficient on duration and Si(t)/t has a positive one. Under this
estimated model, the overall simple action effect on duration is

b̂25Ii(t) + b̂261{Si(t)>0} + b̂2,10Si(t)/t, which is negative for most
students. It implies that, overall, taking simple actions leads to
a shorter predicted duration. However, once all three types of
simple actions have been taken, a higher frequency of taking
simple actions leads to a weaker but sill negative simple action
effect on the duration.

Third, as discussed earlier, 1{Ni(t)>0} tends to measure the
student’s speed of reading the instruction of the task and Ni(t)/t
can be regarded as a measure of students’ speed of taking actions.
According to the estimated regression coefficients, the data
suggest that a student who reads and acts faster tends to complete

the task in a shorter period of time with a lower accuracy.
Similar results have been seen in the literature of response time
analysis in educational psychology (e.g., Klein Entink et al., 2009;
Fox and Marianti, 2016; Zhan et al., 2018), where speed of
item response was found to negatively correlated with accuracy.
In particular, Zhan et al. (2018) found a moderate negative
correlation between students’ general mathematics ability and
speed under a psychometric model for PISA 2012 computer-
based mathematics data.

Finally, 1{Ri(t)>0}, the use of the RESET button, has positive
regression coefficients on both final outcome and duration. It
implies that the use of RESET button leads to a higher predicted
success probability and a longer duration time, given the other
features controlled. The connection between the use of the
RESET button and the underlying cognitive process of complex
problem solving, if it exists, still remains to be investigated.

5. DISCUSSIONS

5.1. Summary
As an early step toward understanding individuals’ complex
problem-solving processes, we proposed an event history analysis
method for the prediction of the duration and the final outcome
of solving a complex problem based on process data. This
approach is able to predict at any time t during an individual’s
problem-solving process, which may be useful in dynamic
assessment/learning systems (e.g., in a game-based assessment
system). An illustrative example is provided that is based on a
CPS item from PISA 2012.

5.2. Inference, Prediction, and
Interpretability
As articulated previously, this paper focuses on a prediction
problem, rather than a statistical inference problem. Comparing
with a prediction framework, statistical inference tends to draw
stronger conclusions under stronger assumptions on the data
generation mechanism. Unfortunately, due to the complexity
of CPS process data, such assumptions are not only hardly
satisfied, but also difficult to verify. On the other hand, a
prediction framework requires less assumptions and thus is more
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suitable for exploratory analysis. As a price, the findings from the
predictive framework are preliminary and can only be used to
generate hypotheses for future studies.

It may be useful to provide uncertainty measures
for the prediction performance and for the parameter
estimates, where the former indicates the replicability of the
prediction performance and the later reflects the stability
of the prediction model. In particular, patterns from a
prediction model with low replicability and low stability
should not be overly interpreted. Such uncertainty measures
may be obtained from cross validation and bootstrapping
(see Chapter 7, Friedman et al., 2001).

It is also worth distinguishing prediction methods based on
a simple model like the one proposed above and those based
on black-box machine learning algorithms (e.g., random forest).
Decisions based on black-box algorithms can be very difficult to
understood by human and thus do not provide us insights about
the data, even though they may have a high prediction accuracy.
On the other hand, a simple model can be regarded as a data
dimension reduction tool that extracts interpretable information
from data, which may facilitate our understanding of complex
problem solving.

5.3. Extending the Current Model
The proposed model can be extended along multiple directions.
First, as discussed earlier, we may extend the model by allowing
the regression coefficients bjk to be time-dependent. In that case,
nonparametric estimation methods (e.g., splines) need to be
developed for parameter estimation. In fact, the idea of time-
varying coefficients has been intensively investigated in the event
history analysis literature (e.g., Fan et al., 1997). This extension
will be useful if the effects of the features in Hi(t) change
substantially over time.

Second, when the dimension p of Hi(t) is high,
better interpretability and higher prediction power
may be achieved by using Lasso-type sparse estimators

(see e.g., Chapter 3 Friedman et al., 2001). These
estimators perform simultaneous feature selection and
regularization in order to enhance the prediction accuracy
and interpretability.

Finally, outliers are likely to occur in the data due to
the abnormal behavioral patterns of a small proportion
of people. A better treatment of outliers will lead to
better prediction performance. Thus, a more robust
objective function will be developed for parameter
estimation, by borrowing ideas from the literature of robust
statistics (see e.g., Huber and Ronchetti, 2009).

5.4. Multiple-Task Analysis
The current analysis focuses on analyzing data from a single
task. To study individuals’ CPS ability, it may be of more
interest to analyze multiple CPS tasks simultaneously and
to investigate how an individual’s process data from one
or multiple tasks predict his/her performance on the other
tasks. Generally speaking, one’s CPS ability may be better
measured by the information in the process data that is
generalizable across a representative set of CPS tasks than
only his/her final outcomes on these tasks. In this sense,
this cross-task prediction problem is closely related to the
measurement of CPS ability. This problem is also worth
future investigation.
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