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1  | INTRODUC TION

The acute liver failure caused by drugs has become a major public health 
problem (Jiao, Xiao, Li, Liang, & Tang, 2018; Woolbright & Jaeschke, 
2016). The overdose of acetaminophen, also called N-acetyl-p-
aminophenol (APAP), is considered as the leading cause of acute hepatic 

failure (Ghanem, Pérez, Manautou, & Mottino, 2016). APAP is a nonpre-
scription drug used for the management of cough, pain, and hyperther-
mia. When used <4 g per day for adults, APAP is considered to be safe 
(Amin, Hashem, Alshehri, Awad, & Hassan, 2017). However, in overdose 
cases, such as the inadvertent or intentional ingestion, APAP leads to ne-
crosis of a number of liver cells and acute hepatic failure (Antoine et al., 
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Abstract
Acetaminophen (APAP) overdose causes severe hepatotoxicity and acute liver fail-
ure. The current study aims to investigate the protection effects of silkworm pupa 
oil (SPO) against acute hepatic injury in APAP-exposed Kunming mice. Our results 
showed that the liver index and the levels of serum alanine transaminase (ALT) and 
aspartate transaminase (AST) in mice subjected to APAP treatment were decreased 
by SPO. Supplement of SPO also restored hepatic histopathological alterations in-
duced by APAP. The APAP-induced increase in proinflammatory cytokines, including 
TNF-α, IL-6, and IL-12, was reversed by SPO, which was mediated by the reduction 
of nuclear factor (NF)-κB p65 expression and the increase in the expression of IκB-α 
in liver tissue. Moreover, SPO inhibited APAP-triggered oxidative stress by decreas-
ing MDA level and increasing the activities of SOD and GSH-Px. Collectively, SPO 
attenuated hepatic injury induced by APAP, which attributed to the suppression of 
oxidative stress-mediated NF-κB signaling. Our findings suggest that SPO supple-
mentation may be potential strategy against acute hepatic injury.
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2013; Craig et al., 2011). Thus, an attempt to develop strategies against 
APAP-induced hepatic injury is of great significance. Currently, the only 
FDA-approved drug for APAP overdose is a potent antioxidant named 
N-acetylcysteine (NAC; Khayyat, Tobwala, Hart, & Ercal, 2016). NAC 
promotes the resynthesis of cellular glutathione (GSH) under conditions 
of APAP overdose, which attenuates N-acetyl-p-benzoquinone imine 
(NAPQI)-mediated hepatic injury (Albano, Rundgren, Harvison, Nelson, 
& Moldéus, 1985; Corcoran, Racz, Smith, & Mitchell, 1985). Although 
oral or intravenous administration of NAC protects against APAP-
induced hepatotoxicity, NAC treatment has a high incidence of anaphy-
lactic reactions (McNulty, Lim, Chandru, & Gunja, 2018; Sandilands & 
Bateman, 2009). Therefore, the development of effective ingredients 
with low adverse effects for APAP detoxification is clearly needed.

Some food-derived functional components possess protective 
effects against APAP-induced liver injury, which has received special 
attention. It is reported that Opuntia extracts reduce the levels of he-
patic injury markers, including transaminase and alkaline phosphatase, 
and reverse APAP-induced depletion of liver GSH and histological 
changes of liver (González-Ponce et al., 2016). Baicalein pretreatment 
enhances the levels of hepatic antioxidant enzymes and alleviates the 
elevation of inflammatory cytokines and liver injury in APAP-exposed 
mice (Zhou et al., 2019). Dietary unsaturated fatty acids have received 
extensive attention because of their broad therapeutic and culinary 
values. Supplementation with unsaturated fatty acids contributes to 
the management of various diseases, such as cardiovascular disorders 
and cancers (Asif, 2015; Lee & Park, 2014). Silkworm pupa, the main 
by-product of the silk industry, is used for the preparation of high-qual-
ity oil (Tomotake, Katagiri, & Yamato, 2010; Wei, Liao, Zhang, Liu, & 
Jiang, 2009). The unsaturated fatty acids in silkworm pupa oil (SPO) 
account for approximately 70% of total fatty acids (Hu et al., 2017). 
SPO exhibits the superior activities for 2,2-diphenyl-1-picrylhydrazyl 
radical scavenging and the suppression of lipid peroxidation and tyros-
inase (Hu et al., 2017; Manosroi, Boonpisuttinant, Winitchai, Manosroi, 
& Manosroi, 2010). Furthermore, SPO reduces high-cholesterol diet 
(HCD)-induced elevation of serum lipids and oxidative stress in HCD-
fed rats (Zou et al., 2017). In our previous study, we found that SPO 
protected against gastric ulcer in mice with hydrochloric acid/etha-
nol treatment (Long et al., 2019). However, whether SPO attenuates 
APAP-induced hepatic injury in mice needs to be further investigated.

In our study, the effects of SPO on the serum markers for liver 
injury and pathologic changes in liver tissue were investigated using 
APAP-treated Kunming (KM) mice. The activation of hepatic nuclear 
factor (NF)-κB signaling, as well as the production of inflammatory 
cytokines, was assessed. Moreover, the effects of SPO on oxidative 
stress were further analyzed.

2  | MATERIAL S AND METHODS

2.1 | Materials

Silkworm pupa oil was purchased from Harbin Essen Biotechnology. 
The fatty acid composition of SPO was reported in our previous 

study (Long et al., 2019). The antibody to IκB-α was from Santa Cruz. 
The primary antibodies for β-actin and NF-κB p65, and anti-mouse/
rabbit secondary antibodies for Western blot were from Thermo 
Fisher Scientific.

2.2 | Animal experiments

The 7-week-old male KM mice were supplied by Animal Experimental 
Center of Chongqing Medical University. They were given sufficient 
food and water and maintained under controlled environmental 
conditions (temperature of 25 ± 2°C, 12:12 hr light/dark cycle). 
These animals were divided into five groups: control (group 1); 
APAP (group 2); APAP plus positive drug silymarin (SLM; group 3); 
APAP plus low-dosage SPO (group 4); and APAP plus high-dosage 
SPO (group 5). The mice from groups 1 and 2 were orally gavaged 
with physiological saline once daily, while the mice from groups 3, 
4, and 5 were administrated 100 mg/kg body weight (BW) of SLM, 
3.75 and 7.50 ml/kg BW of SPO, respectively. After 2 weeks, all the 
mice were fasted overnight, and the mice from groups 2, 3, 4, and 5 
were injected with 500 mg/kg BW of APAP intraperitoneally. After 
16 hr, all the mice were euthanized, and the collection of blood and 
liver tissues was performed. The liver index was calculated as liver 
weight divided by the corresponding BW of mice.

2.3 | Measurement of hepatic injury markers

The blood samples were centrifuged at 1,500 g for 10 min for serum 
production. The determinations of alanine transaminase (ALT) and 
aspartate transaminase (AST) were carried out based on commercial 
kits (Nanjing Jiancheng Bioengineering Institute).

2.4 | Histological analysis

Fresh hepatic tissue was fixed in 10% formalin and then embedded 
in paraffin. The 5 µm of hepatic tissue sections was prepared, fol-
lowed by the procedure of hematoxylin and eosin (HE) staining.

2.5 | Inflammatory cytokines assay

The contents of serum tumor necrosis factor (TNF)-α, interleukin 
(IL)-6, IL-12, and IL-10 were assayed by commercial kits obtained 
from Cloud-Clone Corp.

2.6 | Determination of oxidative stress

The levels of serum malondialdehyde (MDA), superoxide dismutase 
(SOD), and glutathione peroxidase (GSH-Px) were determined by 
commercial kits (Solarbio).
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2.7 | Analysis of mRNA expression

Total RNA was isolated from liver tissue using TRIzol reagent 
(Thermo Fisher Scientific), and reverse-transcripted to cDNA 
by Revert-Aid™ first-strand cDNA synthesis kit (Thermo Fisher 
Scientific). Quantitative real-time polymerase chain reaction 
was performed using Master Mix (Thermo Fisher Scientific) in 
StepOnePlus™ Real-Time System (Thermo Fisher Scientific). The 
2−ΔΔT method was used for the calculation of the relative mRNA ex-
pression. The sequences of primers for qRT-PCR were as follows: 
GAPDH forward, 5′-AGGTCGGTGTGAACGGATTTG-3′; reverse, 
5′-GGGGTCGTTGATGGCAACA-3′; IκB-α forward, 5′-TGAAGGAC 
GAGGAGTACGAGC-3′; reverse, 5′-TGCAGGAACGAGTCTCCGT-3′; 
NF-κB forward, 5′-ATGGCAGACGATGATCCCTAC-3′; reverse, 
5′-CGGAATCGAAATCCCCTCTGTT-3′.

2.8 | Western blot

The hepatic proteins were extracted using RIPA lysis buffer sup-
plemented with phenylmethylsulfonyl fluoride (Solarbio). The 
extracted proteins were loaded on sodium dodecyl sulfate poly-
acrylamide gel for electrophoresis separation, and then, the pro-
teins on the gel were transferred onto polyvinylidene fluoride 
(PVDF) membrane (Thermo Fisher Scientific) in a transfer buffer. 
The PVDF membrane containing proteins was blocked by 5% 
nonfat milk powder, followed by incubation with primary and sec-
ondary antibodies according to the recommended methods from 
manufacturers. The SuperSignal West Pico chemiluminescent sub-
strate (Thermo Fisher Scientific) was used for the development of 

protein bands. The quantitative analysis of bands was carried out 
using NIH ImageJ.

2.9 | Statistical analysis

Data were presented as mean ± standard deviations (SD). 
Experimental differences were assessed by one-way ANOVA and 
Duncan's multivariate using SPSS version 22.0 (IBM). A p value of 
<.05 was considered significant.

3  | RESULTS

3.1 | SPO reduced liver index and the levels of 
serum transaminases in mice with APAP treatment

To investigate the protection effects of SPO against hepatic injury in-
duced by APAP, the liver index and the levels of serum transaminases 
were determined. Compared with control mice, APAP treatment sig-
nificantly increased liver index in mice (p < .05; Figure 1). However, 
the increase in liver index induced by APAP was reduced by the pre-
treatment of SLM and high dosage of SPO (p < .05). In addition, as 
shown in Figure 1b,c, the levels of serum transaminases, including 
ALT and AST, in APAP-exposed mice were increased in comparison 
with control mice (p < .05), while SLM and SPO markedly decreased 
the levels of these serum transaminases (p < .05). Moreover, SPO dis-
plays a dose-dependent effect on the suppression of serum transam-
inases in mice subjected to APAP treatment. These results showed 
that SPO reduced APAP-induced increase in liver index and the levels 

F I G U R E  1   Effects of silkworm pupa 
oil on liver index and the levels of serum 
transaminases. (a) Liver index; (b) Serum 
alanine aminotransferase (ALT) level; (c) 
Serum aspartate aminotransferase (AST) 
level. APAP, acetaminophen; SLM, positive 
drug silymarin; SPO, silkworm pupa oil. 
Values presented are mean ± standard 
deviations (SD) of eight mice. Values with 
different letters are significantly different 
(p < .05)
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of serum transaminases, suggesting that SPO possessed protective 
effects against hepatic injury induced by APAP.

3.2 | SPO alleviated APAP-induced liver 
histopathology abnormalities

To further evaluate the hepatic protective effects of SPO, the liver his-
topathology of APAP-treated mice was analyzed. As shown in Figure 2, 
hepatocytes in control mice were separated by blood sinusoids and 
arranged around central vein, which showed normal liver histology. 
APAP treatment damaged liver structure, as indicated by intrahepatic 
hemorrhage and intense cytoplasmic vacuolation of hepatocytes. 
However, supplementation of SPO dose-dependently restored hepatic 
morphological changes. The attenuation of abnormalities in hepatic 
structure was also observed in SLM-treated mice. Collectively, SPO 
has the ability of protecting against APAP-induced liver damage.

3.3 | SPO inhibited APAP-induced inflammation 
in mice

To evaluate the inhibitory effects of SPO on inflammation induced 
by APAP, the contents of serum inflammatory cytokines were as-
sayed. Compared with control mice, APAP mice displayed signifi-
cantly higher contents of serum TNF-α, IL-6, and IL-12 (Figure 3a,b,c; 
p < .05). The administration of SPO with different dosages, as well 
as SLM, effectively decreased the levels of these inflammatory cy-
tokines in APAP-treated mice (p < .05). In addition, Figure 3d showed 
that the serum IL-10 level was reduced by only APAP treatment. This 
decrease in the level of IL-10 in APAP-treated mice was significantly 
reversed by SLM and SPO administration (p < .05). Moreover, we 
found that high-dose SPO treatment exhibited similar effects on the 
contents of serum TNF-α and IL-10 as SLM (p > .05). Our data demon-
strated that SPO inhibited inflammatory response in APAP-treated 
mice, which prevented against hepatic toxicity induced by APAP.

3.4 | SPO inactivated NF-κB signaling in APAP-
treated mice

To elucidate the potential mechanisms underlying SPO-mediated re-
duction in inflammatory response, the activation of hepatic NF-κB 
signaling was assessed. As shown in Figure 4a,c,d, the expression 
of hepatic IκB-α mRNA and protein was markedly reduced by APAP 
treatment (p < .05). However, supplement of SPO dose-dependently 
reversed this decrease in hepatic IκB-α expression in APAP-treated 
mice (p < .05). Similarly, SLM increased IκB-α expression in liver 
tissue of mice with APAP treatment. Furthermore, the expression 
of NF-κB p65 at gene and protein level was markedly elevated in 
APAP-treated mice in comparison to control mice without treatment 
(p < .05), while the elevation effects of APAP on hepatic NF-κB p65 
expression were blocked by SLM and SPO (p < .05; Figure 4b,c,e). 

These results indicated that SPO alleviated APAP-induced inflam-
matory response and hepatotoxicity by the inactivation of NF-κB 
signaling.

3.5 | SPO attenuated oxidative stress in APAP-
treated mice

In order to further explore the mechanisms by which SPO sup-
pressed APAP-induced inflammatory response, the effects of SPO 
on oxidative stress were investigated. Table 1 showed that APAP 
treatment markedly increased the serum MDA level, which indi-
cates that the reactive oxygen species (ROS) and related lipid per-
oxidation occurred in APAP-treated mice. However, the high level 
of serum MDA induced by APAP was dose-dependently decreased 
by SPO supplementation (p < .05). Additionally, in comparison with 
control mice, the levels of serum SOD and GSH-Px were diminished 
in APAP-treated mice (p < .05). However, SPO dose-dependently 
reversed APAP-induced decrease in the activities of these antioxi-
dases (p < .05). As expected, SLM also reduced the levels of oxida-
tive stress in mice with APAP treatment. Altogether, these results 
demonstrated that SPO enhanced antioxidant ability and inhibited 
oxidative stress in APAP-treated mice, which contributes to the at-
tenuation of hepatic inflammation and injury.

4  | DISCUSSION

Overdose of APAP is well known to cause severe hepatic injury, 
which can progress to acute liver failure. Serum ALT and AST are 
common biomarkers for detection of hepatic injury, and the elevated 
levels of serum transaminases have been attributed to damaged liver 
(Goorden, Buffart, Bakker, & Buijs, 2013; Rasool et al., 2019). It is 
reported that APAP overdose leads to hepatic histopathological le-
sions, such as cell swelling and necrosis, which increases the con-
tents of serum ALT and AST (Omidi, Riahinia, Torbati, & Behdani, 
2014; Uchida et al., 2017; Xie, Jiang, Wang, Zhang, & Melzig, 2016). 
As expected, in our study, APAP-treated mice showed the elevated 
levels of serum transaminases, as well as liver swelling and increased 
hepatic index. However, the hepatomegaly and high levels of serum 
transaminases were attenuated by SPO administration. These pre-
liminary observations indicate that SPO protected against liver in-
jury induced by APAP.

It is noteworthy that hepatic injury is considered to be associated 
with the elevated levels of proinflammatory cytokines. TNF-α plays 
a decisive role in the progression of hepatic injury induced by APAP 
(Devkar et al., 2016). The protein expression of hepatic TNF-α is in-
creased 4 hr after APAP treatment and gets to the highest level at 
10 hr (Ishida et al., 2004). The increased level of TNF-α makes TNF-α 
to bind to its receptor TNF-α receptor 1 (TNF-R1), which drives the 
activation of hepatic apoptosis and necrosis signaling (Chao, Wang, 
& Ding, 2017; Filliol et al., 2016). Moreover, TNF-α can induce the re-
lease of other proinflammatory cytokines. The levels of IL-6 and IL-12 
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F I G U R E  2   Effects of silkworm pupa oil on hepatic histology (original magnification 100×). APAP + 3.75 ml/kg BW SPO, acetaminophen-
treated mice received 3.75 ml/kg body weight of silkworm pupa oil; APAP + 7.50 ml/kg BW SPO, acetaminophen-treated mice received 
7.50 ml/kg body weight of silkworm pupa oil; APAP + SLM, acetaminophen-treated mice received positive drug silymarin; APAP, 
acetaminophen treatment; Control, no treatment. n = 6

F I G U R E  3   Effects of silkworm pupa 
oil on the contents of serum inflammatory 
cytokines. (a) Tumor necrosis factor 
(TNF)-α level; (b) Interleukin (IL)-6 level; 
(c) IL-12 level; (d) IL-10 level. APAP, 
acetaminophen; SLM, positive drug 
silymarin; SPO, silkworm pupa oil. Values 
presented are mean ± standard deviations 
(SD) of eight mice. Values with different 
letters are significantly different (p < .05)
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are increased in primary human hepatocytes and mice with APAP 
treatment (Cho et al., 2015; Kim et al., 2017). Inhibition of proinflam-
matory cytokines production attenuates inflammation-mediated he-
patocyte injury following APAP toxicity (Devkar et al., 2016; Hussan 
et al., 2015). By contrast, IL-10, a well-established anti-inflammatory 
cytokine, is shown to protect against APAP toxicity. The susceptibil-
ity of halothane-induced hepatic injury is increased in IL-10 knockout 
mice, while the supplement of IL-10 prevents susceptible mice from 
hepatic damage (Feng et al., 2009). Furthermore, the activation of 
NF-κB signaling can induce the production of proinflammatory cyto-
kines and hepatic inflammation. NF-κB subunits p50/p65 are bound 
to the inhibitory protein IκBα and exist in cytosol as an inactive form 
(Evans, Rodino, Adcox, & Carlyon, 2018; Whitman & Barber, 2015). 
Upon stimulation, IκBα will be phosphorylated and subsequently 
degraded, and then, unbonded NF-κB initiates the transcription of 
proinflammatory cytokines. Hence, the maintenance of hepatocellu-
lar NF-κB/IκBα stability may contribute to the attenuation of hepatic 
injury. It is reported that bioactive components, such as α-mangostin 
and isoquercitrin, show hepatoprotective effects in APAP-treated 
mice, which partially attributes to the inactivation of NF-κB signal-
ing (Fu et al., 2018; Xie, Wang, Chen, Zhang, & Melzig, 2016). In line 
with these findings, our results suggest that SPO significantly inac-
tivated NF-κB signaling in mice subjected to APAP treatment, which 

reduced the production of proinflammatory cytokines, and eventu-
ally prevented inflammation-mediated hepatic injury.

Acetaminophen-induced oxidative stress contributes to inflam-
mation and the pathology process of acute hepatic injury. APAP 
undergoes conversion to a toxic metabolite NAPQI by cytochrome 
P450, which leads to NAPQI-GSH formation, the rapid depletion 
of liver GSH, and the excessive formation of mitochondrial ROS 
(Antoine, Williams, & Park, 2008; Khodayar, Kalantari, Khorsandi, 
Rashno, & Zeidooni, 2018). Except for the reduction of GSH, APAP 
also decreases the activities of antioxidative enzymes to further 
enhance oxidative stress (O'Brien et al., 2000). Moreover, the el-
evated levels of ROS activate NF-κB signaling and upregulate the 
expression of inflammatory mediators, which is associated with he-
patic inflammation and injury (Chen, Hu, & Yin, 2016; Hong, Lee, 
Jung, Lee, & Hong, 2012). Inhibition of hepatic oxidative stress and 
inflammation attenuates hepatotoxicity induced by APAP (Ding et 
al., 2016; Huang et al., 2017). In our study, SPO reduced the level of 
MDA and increased the activities of antioxidases in APAP-treated 
mice, indicating that SPO attenuated APAP-induced oxidative stress 
via inhibiting ROS-mediated lipid peroxidation and improving anti-
oxidant defenses. The reduction effects of SPO on oxidative stress 
may contribute to the inhibition of hepatic inflammation and the pro-
tection against APAP hepatotoxicity. Our previous study reported 

F I G U R E  4   Effects of silkworm pupa 
oil on hepatic nuclear factor (NF)-κB 
signaling. (a) NF-κB inhibitor IκB-α 
mRNA expression; (b) NF-κB p65 mRNA 
expression; (c) A representative blot for 
IκB-α and NF-κB p65; (d) Densitometric 
quantification of IκB-α; (e) Densitometric 
quantification of NF-κB p65. APAP, 
acetaminophen; SLM, positive drug 
silymarin; SPO, silkworm pupa oil. Values 
presented are mean ± standard deviations 
(SD) of six mice. Values with different 
letters are significantly different (p < .05)
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that SPO contained 69.73% unsaturated fatty acid, and the linole-
nic acid and oleic acid accounted for the majority of unsaturated 
fatty acid (Long et al., 2019). Omega-3 polyunsaturated fatty acids 
inhibit NF-κB-mediated inflammation and have potent protective 
effects against hepatotoxicity induced by APAP overdose (Feng et 
al., 2018). The supplement of olive oil rich in oleic acid and palmi-
toleic acid decreases the levels of liver fibrotic markers in carbon 
tetrachloride-induced liver fibrosis (Chiang & Chao, 2018). Based on 
these researches, it could be speculated that the high levels of un-
saturated fatty acid in SPO may be responsible for its anti-hepatic 
injury effects.

5  | CONCLUSION

In summary, SPO reduced the liver index and the levels of serum 
transaminases and improved histological changes in APAP-treated 
mice, suggesting that SPO protected against APAP-induced hepatic 
injury. As depicted in Figure 5, these protection effects of SPO 
against hepatic injury in APAP-exposed mice were involved in the 

inactivation of NF-κB signaling and the decrease in the production 
of proinflammatory cytokines. Furthermore, SPO attenuated APAP-
induced oxidative stress, which alleviates hepatic inflammation and 
injury. Our results indicate that SPO may be a functional agent for 
the management of hepatic injury.
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Group MDA (mol/ml) SOD (U/ml) GSH-Px (U/ml)

Control 2.15 ± 0.07e 117.35 ± 2.11a 85.55 ± 1.83a

APAP 15.69 ± 1.32a 55.42 ± 0.37e 13.67 ± 0.62e

APAP + SLM 4.67 ± 0.23d 109.33 ± 2.79b 69.73 ± 1.11b

APAP + 3.75 ml/kg BW 
SPO

10.16 ± 0.65b 70.49 ± 1.35d 25.36 ± 1.67d

APAP + 7.50 ml/kg BW 
SPO

8.75 ± 0.32c 97.56 ± 2.04c 49.96 ± 2.05c

Note: Values presented are mean ± standard deviations (SD) of eight mice. Values with different 
letters are significantly different (p < .05).
Abbreviations: APAP + 3.75 ml/kg BW SPO, acetaminophen-treated mice received 3.75 ml/
kg body weight of silkworm pupa oil; APAP + 7.50 ml/kg BW SPO, acetaminophen-treated mice 
received 7.50 ml/kg body weight of silkworm pupa oil; APAP + SLM, acetaminophen-treated mice 
received positive drug silymarin; APAP, acetaminophen treatment; Control: no treatment.

TA B L E  1   Effects of silkworm pupa 
oil on the levels of malondialdehyde 
(MDA), superoxide dismutase (SOD), and 
glutathione peroxidase (GSH-Px)

F I G U R E  5   Protection effects of 
silkworm pupa oil (SPO) against hepatic 
injury induced by acetaminophen (APAP). 
SPO reduced APAP-induced oxidative 
stress, and thereby suppressed the 
activation of hepatic nuclear factor 
(NF)-κB signaling and the production 
of proinflammatory cytokines. This 
ultimately attenuated APAP-induced 
hepatic injury. Red solid line arrows 
mean alternations in mice with APAP 
treatment; arrows of blue dotted line 
mean alternations in APAP-treated mice 
receiving SPO
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