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Type IV secreted effectors (T4SEs) can be translocated into the cytosol of host cells via

type IV secretion system (T4SS) and cause diseases. However, experimental approaches

to identify T4SEs are time- and resource-consuming, and the existing computational

tools based on machine learning techniques have some obvious limitations such as the

lack of interpretability in the prediction models. In this study, we proposed a new model,

T4SE-XGB, which uses the eXtreme gradient boosting (XGBoost) algorithm for accurate

identification of type IV effectors based on optimal features based on protein sequences.

After trying 20 different types of features, the best performance was achieved when all

features were fed into XGBoost by the 5-fold cross validation in comparison with other

machine learning methods. Then, the ReliefF algorithm was adopted to get the optimal

feature set on our dataset, which further improved the model performance. T4SE-XGB

exhibited highest predictive performance on the independent test set and outperformed

other published prediction tools. Furthermore, the SHAP method was used to interpret

the contribution of features to model predictions. The identification of key features can

contribute to improved understanding of multifactorial contributors to host-pathogen

interactions and bacterial pathogenesis. In addition to type IV effector prediction, we

believe that the proposed framework can provide instructive guidance for similar studies

to construct prediction methods on related biological problems. The data and source

code of this study can be freely accessed at https://github.com/CT001002/T4SE-XGB.

Keywords: type IV secreted effector, feature secelction, extreme gradient boosting, interpretable analysis, SHAP

(SHapley additive exPlanations)

INTRODUCTION

Different secretion systems have been found in bacteria that secret proteins into the extracellular
environment. Gram-negative bacterial secretion can be categorized into eight types (from type I to
type VIII), and the secreted proteins (also called effectors) play a vital role in bacterial pathogenesis
and bacterium-host interactions. Some databases or web resource have been developed to store
the experimentally validated effectors of Type III, IV, and VI secretion systems (Bi et al., 2013; Li
et al., 2015; Eichinger et al., 2016; An et al., 2017). Type IV secretion system (T4SS) are protein
complexes found in various species that deliver proteins into the cytoplasm of host cell and thus
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cause infection, such as whooping cough (Dorji et al., 2018),
gastritis, peptic ulcer, and crown-gall tumor (Kuzmanovic et al.,
2018). Therefore, the identification of type IV secreted effector
proteins (T4SEs) is a fundamental step toward understanding of
the pathogenic mechanism of T4SS.

There are a variety of experimental methods for identifying
new T4SEs such as immunoblot analysis and pull-down assay
(Cunha et al., 2015). However, they are limited by both a priori
knowledge about biological mechanisms and the sophisticated
implementation of molecular experiments (Zeng and Zou,
2019). Furthermore, these experimental approaches are quite
time-consuming and expensive. Instead, a large number of
computational methods have been developed for prediction
of T4SEs in the last decade, which successfully speed up the
process in terms of time and efficiency. These computational
approaches can be categorized into two main groups: the first
group of approaches infer new effectors based on sequence
similarity with currently known effectors (Chen et al., 2010;
Lockwood et al., 2011; Marchesini et al., 2011; Meyer et al.,
2013; Sankarasubramanian et al., 2016; Noroy et al., 2019) or
phylogenetic profiling analysis (Zalguizuri et al., 2019), and
the second group of approaches involve learning the patterns
of known secreted effectors that distinguish them from non-
secreted proteins based on machine learning and deep learning
techniques (Burstein et al., 2009; Lifshitz et al., 2013; Zou et al.,
2013; Wang et al., 2014; Ashari et al., 2017; Wang Y. et al., 2017;
Esna Ashari et al., 2018, 2019a,b; Guo et al., 2018; Xiong et al.,
2018; Xue et al., 2018; Acici et al., 2019; Chao et al., 2019; Hong
et al., 2019; Wang J. et al., 2019; Li J. et al., 2020; Yan et al., 2020).
In the latter group of methods, Burstein et al. (2009) worked on
Legionella pneumophila to identify T4SEs and validated 40 novel
effectors which were predicted by machine learning algorithms.
Several features such as genomic organization, evolutionary
based attributes, regulatory network attributes, and attributes
specific to the L. pneumophila pathogenesis system were applied
as input of the different machine learning algorithms: naïve
Bayes, Bayesian networks, support vector machine (SVM), neural
network and a voting classifier based on these four algorithms.
Then, Zou et al. (2013) built the tool called T4EffPred based on
the SVM algorithmwith features such as amino acid composition
(AAC), dipeptide composition (DPC), position specific scoring
matrix composition (PSSM), auto covariance transformation
of PSSM to identify T4SEs. Wang et al. (2014) constructed
an effective inter-species T4SS effector prediction tool named
T4SEpre, based on SVM by using C-terminal sequential and
position-specific amino acid compositions, possible motifs, and
structural features. Later, Xiong et al. (2018) used the same
dataset as that of the previous study (Wang Y. et al., 2017) and
developed a stacked ensemble classifier PredT4SE-Stack using
various machine learning algorithms, such as SVM, gradient
boostingmachine, and extremely randomized trees.Wang J. et al.
(2019) developed an ensemble classifier called Bastion4 which
serves as an online T4SS effector predictor. They calculated 10
types of sequence-derived features. Then, the naïve Bayes, k-
nearest neighbor, logistic regression, random forest, SVM and
multilayer perceptron were trained and compared. Significantly
improved predictive performance was achieved when they used

the majority voting strategy based on the six classifiers where
the PSSM-based features were used as input vectors. Recently,
Esna Ashari et al. developed the software called OPT4e (Esna
Ashari et al., 2019a), which assembled various features used
in prior studies to predict a set of candidate effectors for A.
phagocytophilum. This tool yielded reasonable candidate effector
predictions for most T4SS bacteria from the Alphaproteobacteria
and Gammaproteobacteria classes.

Besides the traditional machine learning methods, deep
learning is a new technology based on neural network
architecture and has been successfully applied in wide range of
applications in recent years (Yu et al., 2018; Lv et al., 2019; Ren
et al., 2019; Wu et al., 2019; Deng et al., 2020). Some researchers
explored deep learning techniques to identify T4SEs based on
protein sequences. Xue et al. (2018) proposed a deep learning
method to identify T4SEs from protein sequences. The model
called DeepT4 utilized a convolutional neural network (CNN)
to extract T4SEs-related features from 50 N-terminal and 100
C-terminal residues of the proteins. This work provided the
original idea about using the deep learning method. However,
only few information of protein sequences can be extracted,
which showed a slightly weaker performance compared with
the Bastion4 (Wang J. et al., 2019). Later, Acici et al. (2019)
developed the CNN-based model based on the conversion
from protein sequences to images using AAC, DPC and PSSM
feature extraction methods. More recently, Hong et al. (2019)
developed the new tool CNN-T4SE based on CNN, which
integrated three encoding strategies: PSSM, protein secondary
structure & solvent accessibility (PSSSA) and one-hot encoding
scheme (Onehot), respectively. Compared with other machine
learning methods, CNN-T4SE outperform all other state-of-the-
art sequence-based T4SEs predictors. However, the less-than-
optimal features analysis causes the limited deep learning for
protein data and it is not straightforward to understand which
features extracted from a given protein sequence drive the
final prediction.

In this study, we proposed T4SE-XGB to predict type IV
effectors using XGBoost based on sequence-derived features.
To overcome the limitations of existing methods, we selectively
summarized the features covered in previous studies and added
some new features. The main strength of our method hinges
on two aspects. On one hand, T4SE-XGB trained with features
selected by the ReliefF algorithm significantly improved the
overall performance on the benchmark dataset. On the other
hand, T4SE-XGB uses a post-hoc interpretation technique: the
SHAP (SHapley Additive exPlanations) method to demystify and
explain specific features that led to deeper understanding of
“black box” models.

MATERIALS AND METHODS

The overall workflow of T4SE-XGB is shown in Figure 1,
which is composed of five stages: Dataset Collection, Feature
Extraction, Feature Selection, Model Construction, and
Model Interpretation. The detailed steps are described in the
following sections.
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FIGURE 1 | Overview workflow of T4SE-XGB. First, the benchmark dataset was collected. Next, 20 types of features were used to extract information from original

protein sequences. Then, the ReliefF algorithm was employed to select optimal features. Five-fold cross validation test and independent test were set to verify the

validation of the model. Finally, we not only used the vanilla XGBoost method to get feature importance, but also got SHAP values to realize the model interpretation.

Dataset
In our study, type IV secreted effectors and non-effectors were
selected to build the benchmark dataset to construct the machine
learning-based model for prediction of T4SEs. Our dataset was
directly obtained from the recently published study (Wang

J. et al., 2019), which contained 420 T4SEs and 1262 non-
T4SEs. The protein dataset was passed through a filter of >30%
sequence identity to reduce sequence redundancy by the CD-
HIT tool (Huang et al., 2010). In the end, we got the final
training dataset consisting of 365 T4SE and 1106 non-T4SEs,
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and the independent test dataset consisting of 20 T4SEs and
139 non-T4SEs.

Feature Extraction
In this work, we took full advantage of features derived from
protein sequences that former researchers have used and also
added some novel features, which were used in other large-scale
protein function prediction problems. We utilized the following
four aspects of features to characterize protein sequences:
secondary structure information (Zhu X. J. et al., 2019), peptide
sequence encoding (Yang et al., 2019), evolutionary information
and other features. Details about feature extraction are listed
as below.

Secondary Structure Information
(i) First, we used SCRATCH (Cheng et al., 2005) to predict
3- and 8-state secondary structure (SS) information of amino
acids of sequences and then mono- (1 state i.e., turn, strand, or
coil), di- (two consecutive states) and tri-state (three consecutive
states) frequencies from a given protein sequence were extracted.
(ii) The fraction of exposed residues (FER) with 20 different
relative solvent accessibility (RSA) cutoffs (0–95% cutoffs at 5%
intervals) and the FER by the average hydrophobicity of these
exposed residues at different RSA cutoffs were calculated. (iii)
DISOPRED (Ward et al., 2004) can predict precise disordered
region with annotated protein-binding activity. In the former
study by Elbasir et al. (2019), they used DISOPRED to get 25
disordered features and 25 features of protein binding sites (PBS)
in disordered regions.

Peptide Sequence Encoding
(i) Frequencies of 20 amino acids, 400 di-peptides, 8,000
tri-peptides were extracted from the protein sequences. (ii)
The Composition, Transition, and Distribution (CTD) feature
represents the amino acid distribution patterns of a specific
structural or physicochemical property in a protein or peptide
sequence. Various types of physicochemical properties such as
hydrophobicity, normalized Van der Waals Volume, polarity,
polarizability, charge, secondary structures, and solvent
accessibility have been used for constituting the final feature
vectors. (iii) The composition of k-spaced amino acid pairs
(CKSAAP) feature calculates frequencies of amino acid pairs
separated by any k (ranging from 0 to 5) residues. We use
the default maximum value of k which is 5, and got a 2,400-
dimensional feature vector for one protein sequence. (iv) The
Conjoint Triad descriptor (CTriad) considers the properties
of one amino acid and its vicinal amino acids by regarding
any three continuous amino acids as a single unit (Shen et al.,
2007). The occurrence that each triad appearing in the protein
sequence is used to constitute a 343-dimensional vector after
the amino acids are categorized into seven classes. (v) Pseudo
amino acid composition analyses protein sequences about the
physicochemical properties of the constituent amino acids.
The final feature vectors include the global or long-range
sequence order information. Series correlation pseudo amino
acid composition (SC-PseAAC) (Chou, 2004) is a variant of
PseAAC, which generates protein feature vectors by combining
the amino acid composition and global sequence-order effects

via series correlation. Parallel correlation pseudo amino acid
composition (PC-PseAAC) (Chou, 2001), derived from PseACC,
incorporates the contiguous local sequence-order information
and the global sequence-order information into feature vectors
of protein sequences.

The iFeature (Chen et al., 2018) sever is capable of
calculating and extracting different sequence-based, structural,
and physiochemical features derived from protein sequences. The
BioSeq-Analysis2.0 (Liu B. et al., 2019) sever was employed to
generate modes of pseudo amino acid compositions (such as
SC-PseAAC and PC-PseAAC) for protein sequences.

Evolutionary Information
(i) PSSM of a protein sequence can be obtained in the form
of L∗20 matrix (L is the amino acid length). PSSM represents
the evolutionary, residue, and sequence information features
of input proteins. In our study, we got 400 feature vectors
from the original PSSM profile by summing rows corresponding
to the same amino acid residue. (ii) Smoothed-PSSM (Cheng
et al., 2008) transformed from the standard PSSM encodes the
correlation or dependency from surrounding residues, which
significantly enhanced the performance of RNA-binding site
prediction in proteins. The Smoothed-PSSM profile considered
the first 50 amino acids starting from the protein’s N-terminus
to form a vector with the dimension 1,000. (iii) AAC-PSSM
(Liu et al., 2010) represents the correlation of evolutionary
conservation of the 20 residues between two positions separated
by a predefined distance along the sequence and successfully
converts a protein into a fixed length feature vector with
dimension 20. It reveals the possibility of the amino acid residues
mutated to different types during the evolution process. (iv)
RPM-PSSM (Jeong et al., 2011) filters all entities with values
of <0 from the PSSM matrix by using the residue probing
method, in which each amino acid is regarded as a probe
corresponds to a particular column in the PSSM profiles, and the
negative values were set to 0. For this method, original PSSM
matrix finally transformed into the 20∗20 matrix and can be
constructed into a 400-dimensional vector. (v) Pse-PSSM (Chou
and Shen, 2007) is similar to PseAAC and encodes the PSSM of
proteins with different lengths using a uniform length matrix.
(iv) DP-PSSM (Juan et al., 2009), a protein descriptor based on
similarity, gets the hidden sequential order information and can
avoid cancellation of positive or negative terms in the average
process. As a result, we obtained a 400-dimensional vector for
each sequence.

These PSSM-based features were achieved using the
bioinformatics tool called POSSUM (Wang J. et al., 2017),
including the original PSSM profiles, smoothed-PSSM, AAC-
PSSM, RPM-PSSM, Pse-PSSM, and DP-PSSM. All PSSM-based
features used default parameters the website provided: smoothing
window=7 and sliding window=50 for smoothed-PSSM, ξ =1
for Pse-PSSM, and α =5 for DP-PSSM.

Other Features
(i) Global properties of the protein were calculated such as
sequence length, molecular weight, and total hydropathy et al.
and the list is shown in the Supplementary Table 3. (ii) Terminal
properties like the frequencies of 20 amino acid types in the 50
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amino acids at the C-terminus or N-terminus used in previous
studies were also calculated (Wang Y. et al., 2017; An et al.,
2018; Wang J. et al., 2019; Zeng and Zou, 2019). The frequencies
of di-peptides at the C-terminus, like SS, KE, EE, EK, AA,
AG, and LL involved in former studies have shown variances
between effectors and the non-effectors were also calculated (Zou
et al., 2013; Zou and Chen, 2016). (iii) We also searched for
several types of protein motifs including nuclear localization
signals (NLS), E-Block (EEXXE motif), conserved EPIYA motifs
(EPIYA_CON), hypothetical EPIYA motifs (EPIYA_HYS), and
Prenylation Domain (CaaX motif) that have been proposed and
extracted before (Esna Ashari et al., 2018, 2019a; Noroy et al.,
2019).

Feature Normalization
Normalization is a scaling technique in which values are shifted
and rescaled so that they fall into the same numeric interval.
Having features on a similar scale helps the gradient descent
converge more quickly toward the minima. The following
formula can be used to normalize all feature values and end up
ranging between 0 and 1, which is known as Min-Max scaling:

X′ = X−Xmin
Xmax−Xmin

(1)

Here, Xmax and Xmin are the maximum and the minimum values
of the feature, respectively. We imported the MinMaxScaler
package from the python scikit learn library to calculate the
normalized values.

Feature Selection
The purpose of dimensionality reduction or feature selection is to
reduce the computational time and complexity of the prediction
model, and also to provide more insights into the data abundance
(Xiong et al., 2012, 2019; He et al., 2018; Manavalan et al., 2018;
Tang et al., 2018; Jing et al., 2019; Kang et al., 2019; Liu Y.
et al., 2019; Shi et al., 2019; Basith et al., 2020; Govindaraj et al.,
2020; Li K. et al., 2020; Su et al., 2020; Zhang S. et al., 2020). It
is indispensable to reduce dimensionality to remove redundant
features so that we can reserve the important ones.

Gain Ratio
The gain ratio algorithm based on information theory can be
used to deal with oversized feature sets (Shannon, 1948). We
used the gain ratio function from the R package named FSelector.
The algorithm finds weights of discrete attributes based on their
correlation with continuous class attribute.

ReliefF
The ReliefF algorithm is an improvement of Kononenko’s
standard Relief algorithm (Kira and Rendell, 1992). In this work,
the ReliefF algorithm was implemented by the ReliefFexpRank
function in the attrEval method from R package named
CORElearn (Yu et al., 2019). Rank of nearest instance is
determined by the increasing (Manhattan) distance from the
selected instance and the k nearest instances have weight
exponentially decreasing with increasing rank. This is a default
choice for methods taking conditional dependencies among the
attributes into account.

The ReliefF algorithm fully considers the correlation between
features and labels, in order to effectively remove unnecessary
features after updating the feature weights according to the
degree of correlation. The higher the weight value, the stronger
the classification ability of the feature. The weight W of each
feature is defined as:

W = W −
∑

x∈X d
(

f ,mi, xi
)

nd

+

∑

c 6=class(mi)

[

P(C)

1−P(class(mi))

∑

x∈Y(ci)
d

(

f ,mi, yi
)

]

nd
(2)

where d means samples with the nearest distance mi from each
category selected by the ReliefF algorithm first, f means a certain
feature, n means the number of samples, and d(f ,mi, x) means
the distance between sample X and sample Y for a certain
feature f .

Maximum-Relevance-Maximum-Distance
The Maximum-Relevance-Maximum-Distance (MRMD)
algorithm uses the Pearson’s correlation coefficient to measure
the relevance between features in a subset. The Pearson
correlation coefficient shows the degree of relationship between
features and labels. Besides, Euclidean distance, cosine similarity,
and Tanimoto coefficient are utilized to calculate the redundancy
between features in a subset. In the end, the MRMD algorithm
selects features which have strong correlation with labels and
have lowest redundancy between features (Zou et al., 2016).

Extreme Gradient Boosting
Extreme gradient boosting also named XGBoost (Chen and
Guestrin, 2016) is an optimized distributed gradient boosting
algorithm designed to be highly efficient, flexible, and portable
(Wang et al., 2019a). XGBoost based on decision tree ensembles
consists of a set of classification or regression trees. It uses
the training data (with multiple features) xi to predict a target
variable yi.

To begin with, the objective function is defined as:

obj =
∑n

i=1 l
(

yi, ŷ
(t)
i

)

+
∑t

i=1 �
(

fi
)

(3)

where n is the number of trees, l is the training loss function, Ω
is the regularization term.

Then, the XGBoost takes the Taylor expansion of the loss
function up to the second order and removes all the constants,
so the specific objective at step t becomes:

L(t) =
∑n

i=1

[

gift (xi) + 1
2hif

2
t (xi)

]

+ �
(

ft
)

(4)

where the gi and hi are defined as







gi = ∂
ŷ
(t−1)
i

l
(

yi , ŷ
(t−1)
i

)

hi = ∂2
ŷ
(t−1)
i

l
(

yi , ŷ
(t−1)
i

) (5)

The value of the objective function only depends on gi and hi.
It can optimize every loss function, including logistic regression
and pairwise ranking.
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TABLE 1 | Comparison of predictive power of different features on the training

data set by 5-fold cross validation test.

Feature types ACC (%) SE (%) PRE (%) F-score MCC

ss3 79.94 43.84 64.52 0.5209 0.4125

ss8 81.44 48.77 68.57 0.5640 0.4650

RSA 84.23 58.90 72.80 0.6497 0.5556

Diso 79.81 35.62 68.16 0.4650 0.3856

PBS 79.47 36.16 65.74 0.4643 0.3760

Mono-Freq 85.18 60.00 75.54 0.6669 0.5809

Di-Freq 84.36 53.97 76.16 0.6302 0.5486

Tri-Freq 80.01 30.41 73.85 0.4301 0.3822

PSSM 92.11 78.08 88.99 0.8305 0.7833

smoothed-PSSM 88.51 70.14 81.03 0.7512 0.6806

AAC-PSSM 90.69 74.52 86.27 0.7976 0.7425

RPM-PSSM 91.98 77.26 89.32 0.8262 0.7797

Pse-PSSM 92.59 81.37 88.13 0.8446 0.7984

DP-PSSM 92.79 81.37 88.95 0.8486 0.8039

CKSAAP 84.02 51.78 76.31 0.6153 0.5359

CTD 87.70 67.12 80.24 0.7296 0.6562

CTraid 82.53 49.86 71.04 0.5816 0.4909

SC-PseAAC 85.66 61.92 75.96 0.6811 0.5958

PC-PseAAC 85.52 61.10 76.05 0.6769 0.5913

Other features 84.09 54.52 74.62 0.6288 0.5422

All features 93.95 81.92 93.04 0.8698 0.8346

The traditional treatment of tree learning only emphasized
the improved impurity, while the complexity control was left
to heuristics. Chen and Guestrin (2016) formally defined the
complexity of the tree �

(

f
)

to obtain regularization, and the loss
function in the t-th tree finally can be rewritten as:

L(t) = − 1
2

∑T
j=1

G2
j

Hj+λ
+ γT (6)

where the Gj and Hj are defined as

{

Gj =
∑

i∈Ij gi
Hj =

∑

i∈Ij hi
(7)

Ij is the sample set divided into the j-th leaf node according to the
decision rules for a given tree. The formula (6) can be used as the
score value to evaluate the quality of a tree. They also defined the
score it gains when a leaf is split into two leaves:

Gain = 1
2

[

G2
L

HL+λ
+ G2

R
HR+λ

− (GL+GR)2

HL+HR+λ

]

− γ (8)

This formula is composed of the score on the new left leaf, the
score on the new right leaf, and the score on the original leaf and
regularization on the additional leaf. We can find the best split
efficiently by the maximum value of Gain through a scan from
left to right to get all possible split solutions.

XGBoost with many optimization techniques is able to solve
problems using far fewer resources. It is simple to parallel and
can greatly enhance the program efficiency with a fast model
exploration. More details about XGBoost are given in (Chen and
Guestrin, 2016).

Performance Evaluation
In this work, confusion matrix obtained after prediction contains
four units: true positive (TP), false positive (FP), false negative
(FN), and true negative (TN). In order to evaluate the overall
predictive performance of different classificationmodels, we used
metrics such as Sensitivity (SE), Specificity (SP), Precision (PRE),
Accuracy (ACC), F-score, and Matthew’s correlation coefficient
(MCC) to evaluate the model. They have been widely used in
previous studies (Jing and Dong, 2017; Hu et al., 2018; Zhao
et al., 2018a,b; Al-Ajlan and El Allali, 2019; Chu et al., 2019; Lin
et al., 2019; Manavalan et al., 2019; Zhang et al., 2019a,b; Zhu
X. et al., 2019; Cheng et al., 2020; Hasan et al., 2020; Liu et al.,
2020; Yue et al., 2020; Zhang Y.-F. et al., 2020), with a higher
value indicating better performances. The performance metrics
can be defined as follows:



































Sensitivity = TP
TP+FN

Specificity = TN
TN+FP

Precision = TP
TP+FP

Accuracy = TP+TN
TP+TN+FN+FP

F − score = 2TP
2TP+FP+FN

MCC = (TP×TN)−(FP×FN)√
(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)

(9)

RESULTS AND DISCUSSION

Comparison of Different Features and Their
Combinations on the Training Data Set
In this section, we evaluated the predictive power of the
individual types of features and their combinations using the
XGBoost classification algorithm by the 5-fold cross validation
(CV) method on the training data set. In 5-fold CV, the training
data set was randomly divided into five subsets. XGBoost were
trained by four subsets and the remaining one was used to
evaluate the performance of the model. All steps were repeated
five times. The average of the performance measures such as
ACC and SE of the training set were calculated and the results
are shown in Table 1. It can be seen that some individual
feature types based on PSSM have higher overall prediction
power on the training data set. This observation indicates
that the features based on PSSM have better performance
in the prediction of T4SE when compared with other types
of features.

The combination of different features could depict
protein sequences in a more comprehensive manner
(Wang et al., 2019b). As illustrated in Table 1, using the
combined features yield the ACC of 93.95% and the MCC
of 0.8346, which are both higher than other PSSM-based
features. In summary, compared with single feature-based
models, the combination of all features achieved consistently
better performance.

Comparison of Three Feature Selection
Methods on the Training Data Set
In this section, three kinds of feature selection methods
were compared on the training data set by the 5-fold cross
validation test. They are gain ratio algorithm (Shannon, 1948),

Frontiers in Microbiology | www.frontiersin.org 6 September 2020 | Volume 11 | Article 580382

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Chen et al. Predicting Type IV Secreted Effectors

TABLE 2 | Comparison of different feature selection methods with different dimensions of the selected features on the training data set by 5-fold cross validation test.

Method 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

GainRatio 92.79 92.73 93.34 93.34 93.41 93.47 93.34 93.54 93.60 93.41 93.81

MRMD 92.18 92.45 92.32 92.52 92.18 92.66 92.39 92.93 92.86 92.25 92.93

ReliefF 93.74 93.95 93.61 93.74 94.36 94.42 94.22 94.09 93.95 94.02 94.08

maximum relevance–maximum distance (MRMD) (Zou et al.,
2016) and ReliefF algorithm (Kira and Rendell, 1992). The
ACC of different number of dimensions were obtained and
compared by using different feature selection algorithms to
select most useful features. As shown in Table 2, when the
MRMD algorithm was used for dimensionality reduction on
the training data set, the highest ACC value was 92.93%.
The gain ratio algorithm achieved ACC of 93.81% on the
training data set. By comparing the prediction accuracy of three
methods in different dimensions, it can be found that the ReliefF
algorithm achieved the highest ACC value, 94.42% when the
dimension was 1,000, obviously better than the models using all
original features.

Therefore, the ReliefF algorithm can effectively eliminate
redundant variables and improve prediction accuracy. In
the following sections, the ReliefF algorithm was used for
dimensionality reduction.

Comparison of Different Classification
Algorithms on the Training Data Set
In order to objectively validate the prediction power of
the XGBoost algorithm, we compared the performance
of this algorithm with other classification algorithms by
using the 5-fold cross validation on the training data set.
Based on the optimal set of features, other classification
algorithms such as Random Forests (RF) (Zhang Y.-F. et al.,
2020), naïve Bayes (NB), Logistic Regression (LR), Gradient
Boost (GDBT), support vector machine, k-nearest neighbor
(KNN), Extremely randomized trees (ERT), and Multi-layer
Perceptron (MLP) were all trained and compared. The
grid search method was employed in this work to optimize
hyper-parameters for each classifier (Shan et al., 2019),
and the searching ranges of these parameters are shown
in the Supplementary Table 1. For each ML classifier, we
obtained the best hyper-parameter combination based on
the highest accuracy by the 5-fold cross validation. The
optimal parameters are shown in the Supplementary Table 2.
Table 3 shows the comparison results of XGBoost with other
classification algorithms on the training data set by 5-fold
cross validation.

As shown in Table 3, the ACCs of different classifiers were
falling within the range from 90.89 to 94.42%, and their MCCs
were ranging from 0.76 to 0.84 on the training data set. The
results showed that XGBoost achieved the best performance,
where the ACC, F-score and MCC were significantly higher than
the other classifiers. All in all, the XGBoost algorithm performs
better than the other machine learning-based methods when
applied on the training data set.

TABLE 3 | Comparison of different classification algorithms on the training data

set by 5-fold cross validation test.

ACC (%) SE (%) PRE (%) F-score MCC

NB 90.89 84.11 80.76 0.8207 0.7631

ML 92.32 82.47 86.10 0.8409 0.7920

LR 93.00 83.01 88.28 0.8539 0.8101

KNN 93.20 80.82 91.20 0.8544 0.8148

RF 93.27 80.27 91.94 0.8554 0.8163

ERT 93.54 80.55 92.76 0.8604 0.8235

GDBT 93.81 84.11 90.55 0.8710 0.8323

SVM 94.36 83.56 93.28 0.8794 0.8466

XGB 94.42 83.01 94.02 0.8803 0.8481

Comparison With Other Classification
Algorithms and Existing Methods on the
Independent Test Data Set
To further validate the performance of the proposed model in
the real test, we compared the performance of our T4SE-XGB
model with other classification algorithms and several state-of-
the-art methods on the independent data set. The performance
results of these methods are provided in Table 4, and the ROC
curves are shown in the Supplementary Figure 1. To make a fair
comparison, the same independent data set, which consists of 20
T4SEs and 139 non-T4SEs, was used for all models.

Among these machine learning-based methods, the results
showed that our T4SE-XGB model achieved the overall best
performance with an ACC of 97.48%, F-value of 90.48% and
MCC of 0.8916, followed by the state-of-the-art machine learning
model called Bastion4 (Wang J. et al., 2019), which achieved
96.23% on ACC, 86.96% on F-value and 0.8579 on MCC.
Moreover, the T4SE-XGB trained by fewer training samples also
gets more stable prediction performance than the deep learning-
based method named CNN-T4SE (VOTE 2/3), which takes the
majority votes of the three best-performing convolutional neural
network-based models (CNN-PSSM, CNNPSSSA, and CNN-
Onehot). The CNN-PSSM, a deep learning-based model based
on PSSM features, achieved the best results. However, it gets two
less false positive and one less false negative when compared with
our model.

In summary, there is a consistent observation (from the results
obtained from the 5-fold cross validation test and independent
test) that our T4SE-XGB model achieved higher performance in
terms of sensitivity, specificity, accuracy, and MCC on both the
training data set and independent data set.
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TABLE 4 | Comparison of different classification algorithms and the state-of-the-art methods on the independent data set.

Model TP FN TN FP ACC (%) SE (%) SP (%) PRE (%) F-score MCC

SVM 19 1 134 5 96.23 95.00 96.40 79.17 0.8636 0.8467

LR 19 1 131 8 94.34 95.00 94.24 70.37 0.8085 0.7882

NB 19 1 126 13 91.19 95.00 90.65 59.38 0.7308 0.7084

GDBT 19 1 131 8 94.34 95.00 94.24 70.37 0.8085 0.7882

RF 19 1 132 7 94.97 94.96 95.68 73.08 0.8261 0.8066

ERT 19 1 134 5 96.23 95.00 96.40 79.17 0.8636 0.8467

KNN 20 0 128 11 93.08 100.0 92.09 64.52 0.7843 0.7708

ML 18 2 129 10 92.45 90.0 92.81 64.29 0.7500 0.7209

Bastion4 20 0 133 6 96.23 100.0 95.68 76.92 0.8696 0.8579

CNNT4SE(PSSSA) 14 6 138 1 95.60 70.00 99.28 93.33 0.8000 0.7860

CNNT4SE(Onehot) 14 6 139 0 96.23 70.00 100.0 100.0 0.8235 0.8192

CNNT4SE(PSSM) 20 0 138 1 99.37 100.0 99.28 95.24 0.9756 0.9724

CNNT4SE(VOTE 2/3) 16 4 139 0 97.48 80.00 100.0 100.0 0.8889 0.8818

T4SE-XGB 19 1 136 3 97.48 95.00 97.84 86.36 0.9048 0.8916

Model Interpretation
Estimation of Feature Importance by XGBoost
As a tree-based non-linear machine learning technique, XGBoost
can exploit the interactions between the engineered features.
In contrast to black-box modeling techniques such as SVM,
ANN, CNN, the XGBoost algorithm can easily obtain feature
importance scores for all input features. XGboost can also obtain
the importance score efficiently based on the frequency of a
feature which is used to split data or according to the average gain
a feature brings when it was used during node splitting across
all established trees. For the optimal set of features constructed
on the benchmark dataset, the importance of each feature during
training is available in the Supplementary Table 4, which is the
sum of information gained when used for splits (tree branching).

The total feature importance contribution of all features
according to their feature types are shown in Table 5 and
Figure 2. We can see that the DP-PSSM feature gets the
maximum value of the importance score which is 0.3758. This
may mean that the DP-PSSM feature is more important. Besides,
the PSSM feature which incorporated evolutionary information
has the importance score of 0.1199, followed by other features
based on the transformation of the standard PSSMprofile, such as
RPM-PSSM and Smoothed-PSSM. There are also other features
showing high importance. For example, CTD accounts for 6.46%
of all feature importance score. SS8 makes up 5.84% of the total
variable importance.

Model Interpretation by SHAP
SHAP, a unified framework for interpreting predictions, assigns
each feature an importance value for a particular prediction
(Lundberg and Lee, 2017) and improves the interpretability of
tree-based models such as random forests, decision trees, and
gradient boosted trees (Lundberg et al., 2018, 2020). SHAP is
based on the game theoretically optimal Shapley values that can
be calculated as below (Lipovetsky and Conklin, 2001):

∅i =
∑

S⊆F\{i}
|S|!(|F|−|S|−1)!

|F|!
[

fS∪{i}
(

xS∪{i}
)

− fS (xS)
]

(10)

TABLE 5 | Importance percentages grouped by feature types for the T4SE-XGB

model.

Feature name Importance score

DP-PSSM 0.3758

PSSM 0.1199

RPM-PSSM 0.0764

Smoothed-PSSM 0.0690

CTD 0.0646

SS8 0.0584

Pse-PSSM 0.0532

CKSAAP 0.0449

AAC-PSSM 0.0411

RSA 0.0394

Other features 0.0158

PC-PseAAC 0.0143

Di-Freq 0.0075

CTraid 0.0057

SS3 0.0053

SC-PseAAC 0.0038

Tri-Freq 0.0032

PBS 0.0015

Diso 0

Mono-Freq 0

where F is the set of all features, S is a subset of the features
used in the model without the ith feature, x is the feature vector
of the instance to be explained. SHAP comes with many global
interpretation methods based on aggregations of Shapley values.
More detailed description of the SHAP method is available in
(Lundberg and Lee, 2017).

The SHAP method has the ability to provide interpretable
predictions and also overcomes limitation that the feature
importance scores obtained from XGBoost model, which is
in lack of directivity, and is unable to correspond to specific
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FIGURE 2 | Comparison of importance percentages grouped by feature types for the T4SE-XGB model.

eigenvalues. Figure 3A is the standard bar-chart based on the
averagemagnitude of the Shapley values over all training samples.
The higher value indicates higher feature importance. It can
be seen that DP-PSSM has the largest number of important
features, accounting for 7, among the 30 most important
features. Meanwhile, other features based on PSSM also form the
majority. Among them, the hydrophobicity_PONP930101.G1
coming from the feature unit of CTD can be obviously
identified as the most important. Hydrophobicity_PONP930101
is one physicochemical attribute based on the main clusters
of the amino acid indices of Tomii and Kanehisa (1996). The
hydrophobicity_PONP93-0101.G1={ N(r)/N, rǫ{KPDESNQT}}
represents the global compositions (percentage) of polar residues
of the protein under the hydrophobicity_PONP930101 attribute
(Chen et al., 2018). Several studies have suggested that type IV
effector proteins exhibited some specificities in regard to amino
acid frequency. Zou et al. (2013) calculated the ACC and the
variance in their dataset. They found that Asn (N), Glu (E),
and Lys (K) have higher compositions in type IVB effectors
than non-effectors, and Ala (A), Glu (E), and Ser (S) have
higher compositions in type IVA effectors than non-effectors.
Some polar amino acids, such as Asp (D), Cys (C), and His
(H), have small differences between secreted proteins and non-
secreted proteins. Similarly, The Mann–Whitney U-test and the
permutation test on amino acid frequencies were conducted by
An et al. (2018). It was showed that Ala (A), Gly (G), Met (M),
Arg (R), Val (V), occurred less frequently in type IV effectors
than in cytoplasmic proteins. Meanwhile, Phe (F), Ile (I), Lys
(K), Asn (N), Ser (S), Tyr (Y), Thr (T) occurred more frequently
in type IV effectors than in cytoplasmic proteins. Since different

benchmark datasets were used, the final results are debatable and
incomplete. However, this is the first time to pay attention to
the feature named hydrophobicity_PONP930101.G1, which not
only corresponds to the amino acid frequency, but also represents
the corresponding hydrophilicity. The SHAP summary plot
from TreeExplainer (Lundberg et al., 2020) succinctly displays
the magnitude, prevalence, and direction of a feature’s effect.
Each dot in Figure 3B corresponds to a protein sample in the
study. The position of the dot on the x-axis is the impact
that feature has on the model’s prediction for that protein. For
example, the higher value of hydrophobicity_PONP930101.G1
has higher contribution on predicting a protein being an effector.
In contrast, when the values of top features such as CS_Freq_SS8
and normwaalsvolume.1.residue0 are high, the corresponding
Shapley values are negative driving the model prediction toward
non-effector class. Besides, there are many long tails mean
features with a low global importance which can yet be extremely
important for specific samples. From the analysis above, it is
necessary and effective to consider many characteristics at the
same time.

CONCLUSION

In this study, we have presented T4SE-XGB, a predictor
developed for accurate identification of T4SE proteins based
on the XGBoost algorithm. Especially, we have achieved
the state-of-the-art performance compared with previous
predictors on the benchmark dataset. There are three major
conclusions can be drawn. First, compared with different
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FIGURE 3 | SHAP analysis results for T4SE-XGB. (A) The standard bar plot taken the mean absolute value of the SHAP values for each feature (B) SHAP summary

plot sorts features by the sum of SHAP value magnitudes over all samples.

algorithm, the XGBoost algorithm gives more stable and
accurate prediction performance for prediction of T4SEs.
Second, the feature selection method called ReliefF was

utilized to optimize feature vectors, which extracted important
features from a large number of candidate features and
improved the model performance. Furthermore, unlike other
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sequence-based T4SEs predictors, T4SE-XGB can provide
meaningful explanation based on samples provided using the
feature importance and the SHAP method. It gives us the
details about how some features, such as DP-PSSM features
and hydrophobicity_PONP930101.G1 from CTD contributed
to the final direction of prediction. Meanwhile, it explains
the reason why it is essential to pay attention to some certain
identities, and also considers a variety of features at the
same time.

The final results showed that T4SE-XGB achieved satisfying
and promising performance which is stable and credible.
However, the model is still constrained by the quantity of T4SE
proteins which need to be further updated and the characteristics
of T4SEs which need to be discovered. Besides, some potential
relationships between features need to be explored. In the future,
we plan to find and extract as many features as possible from a
large amount of collected data to discriminate type IV secreted
effectors from non-effectors.
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