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ABSTRACT: Recently, we (Qin, S.; Zhou, H. X. J. Chem.
Theory Comput. 2013, 9, 4633−4643) developed the FFT-
based method for Modeling Atomistic Proteins−crowder
interactions, henceforth FMAP. Given its potential wide use
for calculating effects of crowding on protein folding and
binding free energies, here we aimed to optimize the accuracy
and speed of FMAP. FMAP is based on expressing protein−
crowder interactions as correlation functions and evaluating
the latter via fast Fourier transform (FFT). The numerical
accuracy of FFT improves as the grid spacing for discretizing
space is reduced, but at increasing computational cost. We
sought to speed up FMAP calculations by using a relatively
coarse grid spacing of 0.6 Å and then correcting for discretization errors. This strategy was tested for different types of
interactions (hard-core repulsion, nonpolar attraction, and electrostatic interaction) and over a wide range of protein−crowder
systems. We were able to correct for the numerical errors on hard-core repulsion and nonpolar attraction by an 8% inflation of
atomic hard-core radii and on electrostatic interaction by a 5% inflation of the magnitudes of protein atomic charges. The
corrected results have higher accuracy and enjoy a speedup of more than 100-fold over those obtained using a fine grid spacing of
0.15 Å. With this optimization of accuracy and speed, FMAP may become a practical tool for realistic modeling of protein folding
and binding in cell-like environments.

1. INTRODUCTION

In cellular compartments, the presence of high concentrations
of bystander macromolecules (or crowders) may significantly
affect protein folding and binding free energies.1−3 Earlier
modeling of crowding effects focused on hard-core repulsion
between the test protein and the crowders.1,4−13 Recent
experimental studies have shown that soft interactions,
operating at longer range and having weaker distance
dependence, can counterbalance the effect of hard-core
repulsion.14−22 The balancing act of hard-core and soft
interactions has been reinforced by computational studies and
theoretical analyses.23−28

That the net effects of crowding are determined by the
balance of hard-core and soft interactions increases the
complexity of modeling such effects and raises the level of
accuracy necessary when one aims to model protein−crowder
systems of experimental studies. In the past, many computa-
tional studies have treated the test protein at a coarse-grained
level and the crowders as spherical particles.4,5,10−12,26 An
approach in which protein conformations from crowder-free
simulations are weighted by the excess chemical potential of the
protein has opened the door for modeling effects of crowding
at the atomic level.6,7,22,25 This “postprocessing” approach7

predicts the change in the folding or binding free energy by
crowding, not the latter quantity itself. The excess chemical

potential, Δμ(X), arises from interactions with crowders and is
given by29,30

μ−Δ = −k T U k TX X Rexp( ( )/ ) exp[ ( , )/ ] R cB int B ; (1)

where Uint(X, R) is the protein−crowder interaction energy for
protein conformation X and position R inside the crowder
solution, kB is Boltzmann’s constant, T is the absolute
temperature, and ⟨...⟩R;c means averaging over the position of
the test protein and the configuration of the crowders.
Implementation of this approach by brute-force calculations
of Δμ(X) turned out to be extremely expensive.25 Recently we
developed a method that allows the full potential of the
postprocessing approach to be realized.31 This method is based
on expressing the protein−crowder interactions as correlation
functions and evaluating the latter via fast Fourier transform
(FFT).
In this FMAP (FFT-based Modeling of Atomistic Proteins-

crowder interactions) method, both the protein position and
the protein−crowder interaction functions are discretized on a
grid. Both types of discretization errors can be reduced by
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decreasing the grid spacing, but at increased computational
cost. The aim of the present study was to optimize the accuracy
and speed of FMAP. Our tests through exhaustively
enumerating all protein−crowder atom pairs, referred to as
the atom-based method (similar to the brute-force method of
McGuffee and Elcock25), which is free of the errors from
mapping the interaction functions to the grid, showed that the
errors from discretizing protein positions become negligible at a
0.6 Å grid spacing. On the other hand, errors from discretizing
the interaction functions in FMAP calculations persist even to a
0.15 Å grid spacing, although extrapolation to 0 grid spacing
reaches agreement with the atom-based method. However, we
were able to correct for the latter type of discretization errors.
The corrected results have higher accuracy and enjoy a speedup
of more than 100-fold over those obtained using a fine grid
spacing of 0.15 Å. This optimization of accuracy and speed
positions FMAP for wide usage for realistic modeling of protein
folding and binding in cell-like environments and may be
instructive for improving other methods that employ
discretization of space.

2. COMPUTATIONAL DETAILS
2.1. The Interaction Energy. The protein−crowder

interaction energy is a potential of mean force, with other
solvent degrees of freedom averaged out. Our potential
function consisted of the Lennard-Jones and Debye−Hückel
potentials, which are commonly used to model intermolecular
interactions.25,32−35 Specifically, we modeled steric, van der
Waals, and hydrophobic interactions together using the
Lennard-Jones potential

∑
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= −
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where rij denotes the distance between crowder atom i and
protein atom j. We refer to σii/2 as the hard-core radius of atom
i and dij ≡ (σii + σjj)/2 as the distance of closest approach
between atoms i and j. Electrostatic interactions were modeled
by the Debye−Hückel potential

∑ λ κ= −U q q r rexp( / )/
ij

i j ij ijDH
(3)

where qi are atomic charges and λ and κ are the Debye
screening length and the dielectric constant, respectively, of the
crowder solution.
In calculating Δμ(X), the test protein could be placed

anywhere in the crowder solution, including positions where rij
approaches zero, and hence ULJ (as well as UDH) has
exceedingly large magnitudes. Partly to minimize possible
numerical uncertainties associated with such positions, we split
ULJ into a steric term Ust and a nonpolar attraction term Una
(Figure 1):
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When dij = σij (true, e.g., for the interaction between two atoms
of the same type), the split of ULJ into Ust and Una occurs where
ULJ = 0. We also set UDH to 0 if any rij < dij, thus stipulating that
the Debye−Hückel potential operated only when the protein
was free of steric clash with the crowders. The resulting total
interaction energy is

= + +U U U Uint st na DH (6)

Ust represents the hard-core repulsion, while Una and UDH are
soft interactions.
We emphasize that the steric term is triggered not at the level

of each protein−crowder atom pair but globally, i.e., when all
the atom pairs are considered. If at least one atom pair has rij <
dij, then the protein is labeled as clashing with the crowders,
and the steric term is imposed and the soft interactions are
turned off. In practice, we first evaluated the soft interactions
without considering clash. Based on a separate detection for
clash, we then decided on using either the steric term or the
soft interactions for the total interaction energy. To avoid
floating-point overflow, we set the values of the soft interactions
for atom pairs at rij < 1 Å to the values at rij = 1 Å. This
treatment did not introduce any errors since the soft
interactions at rij < 1 Å would not be used ultimately, as any
rij < 1 Å would trigger the clash condition.
We used Autodock parameters34 for the Lennard-Jones

potential (εαα and σαα of atom type α) and Amber parameters36

for the atomic charges (qα). For Lennard-Jones interactions
between different atom types, we used the combination rule εαβ
= (εααεββ)

1/2 and σαβ = (σαασββ)
1/2. This combination allows

the two terms of the Lennard-Jones potential to be written as
correlation functions (see below) and hence evaluation via
FFT. The resulting σαβ is slightly less than the distance of closet
approach dαβ defined above; so for the interaction between two
different types of atoms, the split of ULJ into Ust and Una occurs
at an interatomic distance where ULJ is slightly negative. We
used the dielectric constant of pure water for κ, but to achieve a
better balance between Una and UDH, we scaled Una down 5-fold
and scaled UDH up 2-fold. Parameter tuning to achieve
agreement with experimental measurements is left for future
studies.

2.2. Discretizing the Protein Position on a Grid and
the Atom-based Method. The averaging in eq 1 over the
protein position inside the crowder solution can potentially be
a very expensive part of the postprocessing approach. The first
approximation of FMAP is to use points on a cubic grid for the
averaging over R, assuming that the crowder configuration is
generated from a simulation with periodic boundary conditions.
We further separated the grid points where the protein would

Figure 1. Split of ULJ into Ust and Una at rij = dij, when only a pair of
atoms is considered. If the two atoms are of the same type, then dij =
σij; the latter is the interatomic distance where ULJ = 0. For two
different types of atoms, dij is slightly larger than σij, and hence when
the split is triggered, Una would be slightly negative instead of 0.
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clash with a crowder from clash-free grid points. The averaging
over R can be written as

−

= − × − +

U k T

U k T U U k T

exp( / )

exp( / ) exp[ ( )/ ]
Rint B

st B 0 na DH B 1
(7)

where ⟨...⟩0 and ⟨...⟩1 signify averaging over all the grid points
and over only the clash-free grid points, respectively. Note that
exp(−Ust/kBT) is either 0 or 1, when the protein is centered at
a clashed or clash-free grid point. Therefore, ⟨exp(−Ust/kBT)⟩0
is equal to the fraction of clash-free grid points. We first
evaluated the soft interactions for the protein centered at all the
grid points without considering clash and then used only those
at the clash-free grid points for the averaging of ⟨exp[−(Una +
UDH)/kBT]⟩1.
To find the grid spacing necessary for reaching convergence

in the Boltzmann average over R and also to provide a
benchmark for assessing the accuracy of the FMAP method, we
implemented eq 7 using the atom-based method, whereby all
the protein−crowder atom pairs are exhaustively enumerated.
To cut down the cost of the expensive atom-based calculations,
we introduced a 12 Å cutoff (denoted as rcut) for the soft
interactions (the same cutoff was also applied in FMAP
calculations). In addition, to minimize the enumeration of atom
pairs with rij > rcut, crowder atoms were assigned indices
according to their partitions in cubic cells with side length of
rcut/2.

37 For each protein atom, only crowder atoms in the two
nearest neighboring cells in each of the six directions were
selected for calculations of interatomic distances and
intermolecular interactions.
Our application of the atom-based method to model systems

containing a small number of crowder molecules showed that
the Boltzmann average over R reached convergence when the
grid spacing, Δ, was reduced to 0.6 Å. For the full systems
presented below, we will further verify that Δ = 0.6 Å is
sufficient for the discretization of R.
2.3. Mapping the Interaction Functions to the Grid.

The second approximation of FMAP is to express exp(−Ust/
kBT), Una, and UDH as discrete correlation functions on the grid.
In the previous paper,31 we detailed the treatment of the hard-
core repulsion and outlined the treatment of soft interactions.
Below we summarize the procedure for the hard-core repulsion
and present details and improvements herein for the soft
interactions studied here.
For calculating exp(−βUst), we represented the crowder

atoms by a function f(n) on the grid, with the grid point n
assigned a value of 1 if it fell within the hard core of any
crowder atom and a value of 0 otherwise. The test protein,
while centered in the middle of the grid (where n = 0), was
represented by an analogously valued function g(n). Protein−
crowder clash would occur at n if both f(n) and g(n) are 1.
When the protein is centered at an arbitrary grid point m, the
correlation function

∑= +c f gm n n m( ) ( ) ( )
n (8)

would equal 0 if the protein is free of clash with any crowder
and be ≥1 with clash. If H(l) is a function with value 1 when l =
0 and value 0 when l ≥ 1, then exp(−βUst) = H[c(m)].
Both UDH and the two separate terms of Una can be written

in the form

∑ γγ=U u r( )
i j

i j ij
, (9)

with u(rij) = exp(−rij/λ)/κrij, 4/rij12, and −4/rij6, respectively,
and γi = qi, εii

1/2σii
6, and εii

1/2σii
3, respectively. This U can be

interpreted as the energy for the protein’s “charges” γj in an
“electric” potential

∑ γ= | − |f un r n( ) ( )
i

i i
(10)

due to the crowders (Figure 2A). If we distribute γj to
neighboring grid points and denote the sum of these

distributions (from different atoms) at n by g(n) (Figure
2B), then U can be approximated by the correlation of f(n) and
g(n) (Figure 2C).
Previously, we distributed γj to the eight grid points forming

the smallest enclosing cube, according to trilinear interpola-
tion.31 Here, we assessed this protocol against the atom-based
method and found it to be satisfactory for the two terms of Una,
thanks to their rapid decay with increasing rij. However, due to
the relatively slower decay of UDH, we found that trilinear
interpolation of qj resulted in significant errors. We also tested a
B-spline distribution of the atomic charges, which has been
implemented in the smooth particle mesh Ewald method for
molecular dynamics simulations38 and in the Adaptive
Poisson−Boltzmann Solver,39 but did not find significant
improvement in accuracy.
We finally settled on a method that guarantees the accuracy

of the energy of an atomic charge up to the second order in a

Figure 2. Illustration of FMAP. (A) The crowders generate a potential,
consisting of hard-core values (orange grid points) near atomic centers
and soft values at nearby (yellow) grid points. (B) The charges of the
test protein are distributed to (green) grid points. (C) For a given
placement of the protein, the protein−crowder interaction energy is
obtained by multiplying the potential with the charge at each grid
point and then adding up the products.
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Taylor expansion. The energy of a charge q at position r is
qf(r). Suppose that this charge is distributed, with amounts {ρl}
at a set of grid points {nl}. The energy of the distributed
charges is∑lρl f(nl). The Taylor expansion of the latter in terms
of the displacements δl ≡ nl − r is

∑ ∑ ∑

∑

δ δ

δ δ

ρ ρ ρ

ρ

+ = +
∂
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+ ·
∂
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· +

f f
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2
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For this result to be exact up to the second order in δl, we must
have

∑ ∑ ∑δ δ δρ ρ ρ= = =q; 0; 0
l

l
l

l l
l

l l l
(12)

which constitute 10 independent linear equations for {ρl}. A
unique solution for {ρl} can be found if q is distributed to 10
grid points. We chose the 10 grid points in the following way
(Figure 3): (i) start with the eight grid points forming the

smallest enclosing cube, and remove the one farthest from q;
(ii) identify the one closest to q, and then add the three nearest
neighbors outside the enclosing cube.
To save time for the charge distribution, we precomputed the

distribution for a full charge (i.e., q = 1) located at each position
on a subgrid. The subgrid consisted of 1000 positions,
generated with 1/10th of the original grid spacing Δ, to
sample the enclosing cube. For each atomic charge qj, we
located the nearest point on the subgrid and then took its
precomputed charge distribution {ρl}. The latter, when
multiplied by qj, and the associated grid points {nl} then
allowed for the distribution of the atomic charge.
We computed the potential function f(n) by exhaustively

enumerating the contributions of each crowder atom to the grid
points within the cutoff distance. A main intended use of FMAP
is for studying different test proteins in selected crowder
solutions.31 For this purpose we can compute f(n) and its
Fourier transform F(k) once and save for later use on different

test proteins. This computation is affordable at Δ = 0.6 Å. Here
for the optimization of FMAP, we needed results at smaller Δ.
Instead of trying to speed up the computation of f(n), we found
an alternative solution, based on the fact that the energy can be
calculated by either multiplying the crowders’ potential with the
protein’s charges, as presented above, or vice versa. We
confirmed that the two ways of calculating the energy gave
essentially identical results, at least at Δ ≤ 0.6 Å. While there
are multiple crowder molecules within the grid, there is only a
single protein molecule. Therefore, computing the potential of
the protein is much faster than that of the crowders. The results
presented below for Δ < 0.6 Å (other than those on timing)
were all obtained by treating the test protein as the source of
potential.

2.4. Implementation of FMAP. In FMAP, we evaluate the
correlation function of eq 8 via FFT, taking advantage of the
fact that, in Fourier space, the correlation function is a direct
product:

= *C F Gk k k( ) ( ) ( ) (13)

After the forward Fourier transforms of f(n) and g(n) and then
the inverse Fourier transform of C(k), we obtain the values of
c(m) at all the grid points, allowing the Boltzmann average over
R to be calculated at once. We used the free library FFTW
(version 3.3; double precision)40 for computing the discrete
Fourier transforms.
As explained already, the protein−crowder interaction energy

used here involves four correlation functions: one for the hard-
core repulsion, two for the soft attraction, and one for the
electrostatic interaction. The values of these terms at the grid
points were all saved on disk for repeated later use, such as
different combinations of terms or scaling of individual terms.

2.5. Test Proteins and Their Conformations. We
studied two proteins, cytochrome b562 and chymotrypsin
inhibitor 2 (CI2), in the native and unfolded states, and two
pairs of proteins, barnase:barstar and the ε and θ subunits of
the Escherichia coli DNA polymerase III holoenzyme (Figure
4A−D), in the unbound and bound states. In all there were 10
distinct test protein systems. Eight of these were studied
previously under crowding by spherical or ellipsoidal
particles.6,31,41 For each system, we took one conformation
(i.e., the first of an ensemble collected from molecular dynamics
simulations) for the study here. In future applications of FMAP,
averaging over orientation and conformation of the test protein
as well as over the crowder configuration will need to be carried
out in order to obtain convergent results.
The two new systems added here are native and unfolded

CI2. Their conformations were generated from room-temper-
ature and high-temperature simulations (293 and 550 K),
respectively, following the protocol of a previous study.42

Briefly, the initial structure was from Protein Data Bank (PDB)
entry 2CI2 (residues 20−83),43 with mutations L20M, I49A,
and I56A introduced to match the sequence in an experimental
study of crowding effects on folding stability.14 The protein was
solvated by TIP3P water molecules and Na+ and Cl− ions at
0.05 M (plus counterions that neutralized the charge of CI2) in
a box with a side length of 66 (or 110) Å for the 293 (or 550)
K simulation. The simulation at either 293 or 550 K was run
using the GROMACS (version 4.5.4) program,44 with the
Amber99SB force field45 and a time step of 2 or 1 fs, and at
constant pressure or volume. All bond lengths involving
hydrogen atoms were constrained. Long-range electrostatic
interactions were treated by the particle mesh Ewald method38

Figure 3. Selection of 10 grid points for distributing an atomic charge
q. The eight grid points forming the smallest enclosing cube are
labeled with index 0 or 1 in each direction. In the case shown, the grid
point at (0, 0, 0) is closest to q, whereas the grid point (shown red) at
(1, 1, 1) is farthest from q. All but the last grid point, plus the three
external nearest neighbors of (0, 0, 0), at (−1, 0, 0), (0, −1, 0), and (0,
0, −1), are included for charge distribution.
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with a grid spacing of 1.6 Å and a direct-space cutoff of 10 Å. A
cutoff of 10 Å was used for evaluation of Lennard-Jones
interactions. The snapshot at 100 (or 10) ns in the 293 (or
550) K simulation was used for the conformation of native
(unfolded) CI2.

2.6. Generation of Crowder Configurations.We studied
three kinds of crowders: bovine serum albumin (BSA),
lysozyme, and dextran 10K (Figure 4E-G). The structure of
BSA was modeled by homology using MODELER,46 with
residues 25−607 of the sequence (UniProtKB P02769) aligned

Figure 4. Test proteins and crowders studied here. (A) Cytochrome b562. (B) CI2. (C) The barnase:barstar complex. (D) The ε:θ complex. (E)
Eight copies of BSA in a (200 Å)3 box. (F) Fourteen copies of lysozyme in a (150 Å)3 box. (G) Twenty copies of dextran 10K in a (150 Å)3 box.

Figure 5. Grid-spacing dependences of FMAP and atom-based results for native cytochrome b562 in 100 g/L of lysozyme (with a configuration
generated by random placement). (A) Δμst. (B) Δμna. (C) ΔμDH. (D) Δμ. Open and closed circles display FMAP and atom-based results,
respectively. Dashed lines (curve) are linear (quadratic) fits using data displayed as red circles. Note that the extrapolated FMAP results at 0 grid
spacing, represented by solid horizontal lines, agree closely with those from the atom-based method. All the FMAP results here and in Figure 6 were
obtained by treating the test protein as the source of potential when evaluating the soft interactions.
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to the structure of the human protein in PDB entry 1AO6.47

The structure of lysozyme was taken from PDB entry 1AKI.48

Dextran (molecular weight 9923.8) was built with 61
monosaccharide units49 using Amber parameters (http://
www.pharmacy.manchester.ac.uk/bryce/amber). BSA at 110
g/L, lysozyme at 100 g/L, and dextran at 100 g/L were created
by placing eight copies in a box with a side length of 200 Å, 14
copies in a box with a side length of 150 Å, and 20 copies in a
box with a side length of 150 Å. In each case, two crowder
configurations were studied. One was obtained by randomly
placing the crowder molecules into the box while ensuring no
clash between the molecules.31 The other was taken from a
subsequent molecular dynamics simulation similar to that
described above for CI2 at 293 K. The snapshots used for BSA,
lysozyme, and dextran were at 70, 95, and 10 ns, respectively, of
the simulations. In addition, we generated a crowder
configuration for dextran at 200 g/L by randomly placing 40
copies in the (150 Å)3 box.

3. RESULTS
We carried out FMAP calculations for the combinations of the
10 test protein systems and seven distinct crowder config-
urations at grid spacings ranging from 1.0 to 0.12 Å. For the ε:θ
complex interacting with dextran at 200 g/L, a very low fraction
of clash-free placements rendered the results spurious. The
FMAP results for the remaining 69 protein−crowder
combinations are all reliable. For a subset of these
combinations, we also applied the atom-based method to
verify that the 0.6 Å grid spacing is adequate for the Boltzmann
average over R and also to provide a benchmark for assessing
the accuracy of FMAP.
Accuracy was assessed on the Boltzmann average of the total

interaction energy, which yields the excess chemical potential
Δμ, as well as on the Boltzmann averages calculated with

individual terms of the interaction energy selectively included,
all at T = 298 K. We loosely refer to the quantities yielded by
the latter Boltzmann averages as components of Δμ.
Specifically, the steric component, Δμst, is defined through

μ−Δ = −k T U k Texp( / ) exp( / )st B st B 0 (14)

whereas the nonpolar-attraction and electrostatic components
are defined through

μ−Δ = −k T U k Texp( / ) exp( / )na B na B 1 (15)

μ−Δ = −k T U k Texp( / ) exp( / )DH B DH B 1 (16)

Note that the sum of these three components does not equal
Δμ, because Una and UDH are not uncorrelated. Indeed, grid
points where UDH is most negative (and thus make the most
electrostatic contribution to Δμ) are often also where Una has
large negative values. As a result, Δμ tends to be more negative
than expected from additivity.

3.1. Benchmark Results Obtained from Extrapolation
to 0 Grid Spacing. Figure 5 displays the dependences of Δμ
and its components on the grid spacing Δ for native
cytochrome b562 in 100 g/L of lysozyme. The Δ dependences
for this and other protein−crowder systems are all apparently
linear when Δ ≤ 0.6 Å. For Δμst in particular, the calculated
values were so precise that a curvature was discernible in the
dependence on Δ. We thus fitted Δμna, ΔμDH, and Δμ to a
linear function of Δ (including only data at Δ ≤ 0.6 Å) and
Δμst to a quadratic function of Δ (including all data).
Given the good quality of these fits, we expect that the

extrapolated values at Δ = 0 should be free of discretization
errors. Indeed, the extrapolated values agree closely with those
calculated by the atom-based method (with Δ = 0.5 or 0.6 Å).
The agreement of the atom-based results themselves at these
two grid spacings verifies that Δ = 0.6 Å is sufficient for the

Figure 6. Corrections of FMAP at 0.6 Å grid spacing, illustrated using the results for native cytochrome b562 in 100 g/L of lysozyme. (A) Correcting
for Δμst by inflating the hard-core radii when detecting for protein−crowder clash. The extrapolated benchmark is shown as a solid horizontal line;
the FMAP results calculated at 0.6 Å grid spacing but with hard-core radii inflated by 1% to 10% are shown as circles. (B) Δμna calculated after
filtering of grid points using inflated radii. (C) ΔμDH at I = 0.15 M. The value before filtering of grid points is shown as a red circle. After filtering
with 8% radius inflation, ΔμDH had a smaller magnitude than the extrapolated benchmark. Scaling up by ∼3% would correct the underestimate in
this case, but on average 5% correction is needed at I = 0.15 M for all the protein−crowder combinations studied.
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discretization of R (this method became prohibitively expensive
at lower grid spacings). Hereafter, we will use the extrapolated
FMAP results as benchmarks for assessing the accuracy of
FMAP at finite grid spacing.
3.2. Corrections of FMAP Results at 0.6 Å Grid

Spacing. For all 69 protein−crowder combinations studied,
we found a negative slope in the dependence of Δμst on Δ.
This observation suggests that FMAP systematically under-
estimated the fraction of clashed grid points, perhaps due to
rounding off of hard-core regions when the protein and
crowders were mapped to the grid. A way to compensate such
round off is to inflate the hard-core radii. Figure 6A shows that
radius inflation does have the desired effect for native
cytochrome b562 in 100 g/L of lysozyme. An 8% inflation
brings the FMAP result for Δμst at Δ = 0.6 Å into agreement
with the extrapolated benchmark. The amount of radius
inflation needed showed very little variation among the
different protein−crowder combinations.
With Δ = 0.6 Å, FMAP systematically overestimated the

magnitude of Δμna (Figure 5B). The grid points that are filtered
by the radius inflation are positions where the protein would
have close contact with one or more crowder molecules. It is
likely that, at a subset of these grid points, Una has large
negative values (see below). Filtering these grid points would
thus be expected to reduce the magnitude of Δμna. Figure 6B

shows that, indeed, the magnitude of Δμna decreases as the
radius scaling factor is increased. Note that Una at all the grid
points was calculated once and then used for obtaining all the
Δμna results when the amount of radius inflation was varied. To
our pleasant surprise, agreement with the extrapolated
benchmark for Δμna is reached also at 8% radius inflation.
Again, the radius scaling factor is stable among the different
protein−crowder combinations. We thus settled on an 8%
radius inflation for the corrections of both the hard-core and
soft interactions.
After the filtering with the 8% radius inflation, ΔμDH

calculated over the remaining clash-free grid points at Δ =
0.6 Å had an underestimated magnitude (Figure 6C). As a
correction, we scaled up the magnitude of ΔμDH (Figure 6C),
which is equivalent to a scaling of the protein atomic charges.
The charge scaling factor (denoted ξ) is also pretty constant
among the different protein−crowder combinations, averaging
at 1.05 for 0.15 M ionic strength (denoted I). The charge
scaling factor has a distinct dependence on ionic strength,
approaching 1 as I increases. This trend is to be expected, since
UDH decays faster at higher I so the correction needed should
reduce accordingly. The average charge scaling factor over the
ionic strength range of 0.05 to 0.25 M can be represented by
the relation ξ = 1 + 0.025I−0.4.

Figure 7. Accuracy assessment of FMAP values for Una and UDH at the individual grid points against the atom-based method, illustrated on native
cytochrome b562 in 100 g/L of lysozyme (with the latter treated as the source of potential when evaluating the soft interactions; Δ = 0.6 Å and I =
0.15 M). The results are shown as two-dimensional histograms, where the abscissa represents bins of atom-based interaction energies at 0.06 kcal/
mol intervals, and the ordinate represents the FMAP counterparts, and the gray or color scale represents the number of (true or nominal) clash-free
grid points in a two-dimensional cell. True clash-free grid points are those identified as such by the atom-based method. Nominal clash-free grid
points are those identified by FMAP, without or with the 8% radius inflation. This inflation serves to filter a subset of the former nominal clash-free
grid points. (A) At the true clash-free grid points, the FMAP values for Una were highly accurate, as shown by significant densities only in the
diagonal cells. (B) Among the grid points filtered through the radius inflation, FMAP values for Una were skewed toward the less negative direction;
there was also a subset with strongly negative Una values, which led to an overestimated magnitude for Δμna. (C) After filtering, the histogram for the
remaining nominal clash-free grid points looks very similar to that calculated at the true clash-free grid points. (D) Densities in off-diagonal cells
indicate inaccuracy in the corrected FMAP results for UDH, but the nearly symmetric distribution of the densities with respect to the diagonal would
lead to significant error cancelation in calculating ΔμDH.
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To verify that the corrections for the components of the
excess chemical potential went to the root of the discretization
errors, we investigated how the corrections impacted the values
of the corresponding interactions at the individual grid points.
Again we use native cytochrome b562 in 100 g/L of lysozyme for
illustration. According to the atom-based method, of the 15.63
× 106 grid points generated with Δ = 0.6 Å, 4.29 × 106 grid
points, or 27.5%, are clash-free. Without radius inflation, FMAP
yielded a 28.5% clash-free fraction, which covered all the true
clash-free grid points, but also included 0.17 × 106 false-positive
grid points. With the 8% radius inflation, FMAP filtered 81% of
the false positives along with just 0.8% of the true clash-free
grid points.
As shown in Figure 7A, at the true clash-free grid points, the

FMAP values for Una were highly accurate when benchmarked
against the atom-based method. At the grid points that were
filtered by the 8% radius inflation, the would-be FMAP values
for Una overall tended to be not as negative as would be
determined by the atom-based method if clash were
disregarded (Figure 7B). However, as we suspected, among
these to-be filtered grid points, there was a small subset with
strongly negative Una values. It is indeed this subset of grid
points that was responsible for the overestimation in the
magnitude of Δμna when FMAP was uncorrected. After filtering
with the 8% radius inflation, the range and distribution of the
FMAP values for Una (Figure 7C) are very similar to those
determined by the atom-based method. On the other hand,
after the filtering of grid points and the scaling of magnitudes
(5% at I = 0.15 M), the FMAP values for UDH still have a 0.29
kcal/mol root-mean-square-deviation (RMSD) from the atom-
based counterparts. Importantly, the deviations are roughly
even in the opposite directions (Figure 7D), so that ΔμDH

resulting from their Boltzmann average has a much small error
(0.03 kcal/mol).
After the corrections with the 8% radius inflation and the 5%

magnitude inflation for UDH, the FMAP results at Δ = 0.6 Å for
the components of Δμ and for Δμ itself become highly
accurate for all the 69 protein−crowder combinations studied
when compared to the extrapolated benchmarks (Figure 8 and
Table 1). Specifically, with the test protein treated as the source
of potential when evaluating the soft interactions, the RMSDs
for Δμst, Δμna, ΔμDH, and Δμ are 0.009, 0.07, 0.02, and 0.23
kcal/mol, respectively. The last value is even somewhat lower
than the RMSD, 0.30 kcal/mol, of the uncorrected FMAP
results at Δ = 0.15 Å and would require Δ = 0.12 Å without
corrections. With the corrections listed above, essentially
identical results were obtained when the crowders were treated
as the source of potential.

3.3. Gain in Speed at 0.6 Å Grid Spacing. In Figure 9, we
display the computational times when FMAP was run on an
AMD Opteron 6174 processor with either the crowders or the
test protein treated as the source of potential (labeled as
Crowders:Protein and Protein:Crowders, respectively), as well
as the times for the FFT portion alone, at grid spacings from
1.0 to 0.15 Å, for native cytochrome b562 in 100 g/L of
lysozyme. At Δ = 0.6 Å, the FFT portion took 7.5 s, but the
“overhead,” mostly the calculation of f(n) and (to a lesser
extent) g(n), took even longer for the Protein:Crowders
implementation (total time at 18.6 s) but especially for the
Crowders:Protein implementation (total time at 121 s). As a
comparison, using the atom-based method, the calculation of
UDH alone took 417 000 s. As noted above, in future
applications we will calculate f(n) and save its Fourier

Figure 8. Comparison of corrected FMAP results at Δ = 0.6 Å for the 69 protein−crowder combinations against the extrapolated benchmarks. (A)
Δμst. (B) Δμna. (C) ΔμDH at I = 0.15 M. (D) Δμ. Results were obtained by treating the test protein as the source of potential when evaluating the
soft interactions. The numerical values and identities of the protein−crowder systems are listed in Table 1.
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Table 1. Extrapolated Benchmarks and Corrected FMAP Results at Δ = 0.6 Å (in kcal/mol) for the 69 Protein−Crowder
Combinations

Δμst Δμna ΔμDH Δμ

protein crowder extrap. Δ at 0.6 extrap. Δ at 0.6 extrap. Δ at 0.6 extrap. Δ at 0.6

b562n BSA 0.596 0.595 −0.615 −0.583 −0.179 −0.191 −0.831 −0.764
BSAsim 0.471 0.470 −0.447 −0.500 −0.122 −0.130 −1.806 −1.220
Dex100 1.198 1.193 −1.334 −1.331 −0.226 −0.214 −1.002 −0.853
Dex100sim 0.737 0.734 −0.998 −1.071 −0.136 −0.128 −0.957 −0.903
Dex200 3.410 3.395 −3.664 −3.691 −0.602 −0.571 −1.452 −0.986
Lys 0.765 0.764 −1.006 −1.006 −0.478 −0.511 −1.744 −2.201
Lyssim 0.542 0.541 −0.620 −0.665 −0.430 −0.493 −1.945 −2.016

b562u BSA 0.723 0.722 −0.608 −0.682 −0.090 −0.090 −0.288 −0.282
BSAsim 0.562 0.562 −0.480 −0.486 −0.060 −0.061 −0.421 −0.398
Dex100 1.361 1.356 −1.432 −1.429 −0.188 −0.178 −0.682 −0.604
Dex100sim 0.900 0.898 −1.267 −1.187 −0.132 −0.123 −0.971 −0.776
Dex200 5.793 5.739 −3.893 −3.767 −0.709 −0.610 1.128 1.226
Lys 0.976 0.975 −1.101 −1.028 −0.363 −0.372 −1.528 −1.350
Lyssim 0.675 0.675 −0.978 −1.166 −0.202 −0.205 −1.818 −1.832

CI2n BSA 0.414 0.413 −0.399 −0.467 −0.097 −0.101 −0.606 −0.741
BSAsim 0.350 0.350 −0.337 −0.375 −0.079 −0.083 −0.511 −0.648
Dex100 0.767 0.764 −1.086 −1.047 −0.139 −0.131 −0.850 −0.773
Dex100sim 0.521 0.520 −0.744 −0.754 −0.091 −0.085 −0.672 −0.703
Dex200 2.329 2.321 −2.854 −2.793 −0.390 −0.363 −1.816 −1.369
Lys 0.522 0.522 −0.863 −0.757 −0.191 −0.193 −1.286 −1.055
Lyssim 0.383 0.382 −0.500 −0.495 −0.125 −0.128 −1.119 −1.058

CI2u BSA 0.540 0.540 −0.408 −0.479 −0.119 −0.122 0.255 −0.371
BSAsim 0.438 0.438 −0.342 −0.363 −0.085 −0.088 −0.510 −0.596
Dex100 0.980 0.978 −1.027 −1.111 −0.140 −0.132 −0.604 −0.558
Dex100sim 0.661 0.659 −0.726 −0.709 −0.092 −0.086 −0.496 −0.435
Dex200 3.129 3.121 −3.179 −3.272 −0.494 −0.464 −1.335 −1.274
Lys 0.695 0.694 −0.806 −0.783 −0.172 −0.174 −1.045 −0.797
Lyssim 0.503 0.502 −0.513 −0.502 −0.112 −0.113 −0.700 −0.713

bn BSA 0.568 0.567 −0.633 −0.668 −0.197 −0.207 −1.765 −1.464
BSAsim 0.455 0.454 −0.493 −0.512 −0.132 −0.139 −1.308 −1.233
Dex100 1.115 1.111 −1.554 −1.558 −0.195 −0.183 −1.083 −1.096
Dex100sim 0.722 0.719 −1.399 −1.350 −0.131 −0.123 −1.093 −1.130
Dex200 3.400 3.385 −3.625 −3.512 −0.518 −0.506 −1.662 −1.095
Lys 0.722 0.721 −1.101 −1.068 −0.216 −0.218 −1.741 −1.800
Lyssim 0.504 0.503 −0.663 −0.634 −0.131 −0.132 −1.010 −0.786

bn:bs BSA 0.859 0.857 −1.245 −1.159 −0.271 −0.286 −1.835 −1.436
BSAsim 0.607 0.607 −0.805 −0.769 −0.168 −0.176 −1.198 −1.232
Dex100 1.797 1.790 −2.477 −2.407 −0.346 −0.328 −1.757 −1.454
Dex100sim 1.060 1.059 −1.971 −1.676 −0.182 −0.169 −1.904 −1.666
Dex200 5.836 5.801 −4.074 −4.009 −0.734 −0.672 0.595 1.175
Lys 1.086 1.085 −1.536 −1.491 −0.503 −0.519 −2.681 −2.543
Lyssim 0.747 0.746 −0.857 −0.925 −0.313 −0.322 −1.412 −1.337

bs BSA 0.486 0.485 −0.523 −0.550 −0.086 −0.091 −0.681 −0.662
BSAsim 0.397 0.397 −0.443 −0.443 −0.061 −0.065 −0.651 −0.683
Dex100 0.914 0.911 −1.208 −1.312 −0.178 −0.168 −1.066 −0.955
Dex100sim 0.612 0.611 −0.974 −0.949 −0.121 −0.112 −1.029 −0.810
Dex200 3.008 2.998 −3.465 −3.529 −0.553 −0.510 −1.414 −1.246
Lys 0.638 0.637 −1.043 −1.000 −0.521 −0.544 −2.262 −2.161
Lyssim 0.451 0.451 −0.626 −0.615 −0.393 −0.418 −2.021 −1.952

ε BSA 0.800 0.799 −0.798 −0.841 −0.264 −0.281 −0.946 −1.148
BSAsim 0.582 0.581 −0.525 −0.560 −0.155 −0.162 −2.013 −1.567
Dex100 1.704 1.696 −1.761 −1.730 −0.291 −0.275 −0.890 −0.838
Dex100sim 1.029 1.026 −1.500 −1.436 −0.180 −0.169 −1.224 −1.109
Dex200 4.617 4.601 −3.590 −3.655 −0.522 −0.511 −0.213 0.019
Lys 1.047 1.045 −1.198 −1.208 −0.469 −0.483 −1.730 −1.655
Lyssim 0.704 0.703 −0.925 −1.058 −0.325 −0.334 −2.007 −1.876

ε:θ BSA 1.091 1.089 −0.929 −1.008 −0.379 −0.399 −1.320 −1.054
BSAsim 0.727 0.727 −0.598 −0.616 −0.223 −0.232 −2.543 −2.627
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transform for selected crowder systems so that this overhead
would not constitute a new cost.
Focusing on the FFT portion, the computational time at Δ =

0.15 Å was 893.1 s, a 120-fold increase over that at Δ = 0.6 Å.
Therefore, with the corrections presented above for Δ = 0.6 Å,
we not only achieve higher accuracy but also gain more than
100-fold in speed when compared to the use of a 0.15 Å fine
grid spacing. Attaining the same accuracy through using an even
finer grid spacing of 0.12 Å would increase the computational
time 220-fold.

4. DISCUSSION
We have presented an accurate and efficient implementation of
the FMAP (FFT-based Modeling of Atomistic Proteins-
crowder interactions) method, based on corrections of results
at a relatively coarse grid spacing. Because we represent the
crowder molecules on a grid, the core of FMAP (involving FFT
operations) would not suffer any loss of computational speed
when crowded conditions of cellular compartments are more
and more realistically modeled, e.g., through increasing the
number of crowder species and other types of complexity. We
are thus hopeful that FMAP will become a practical tool for
realistic modeling of protein folding and binding in cell-like
environments.

A number of important applications of FMAP can be
anticipated. The first is the parametrization of the protein−
crowder interaction energy.25 With the speed of FMAP, we can
afford to do extensive parametrization, e.g., against exper-
imental results for protein folding stability.14−19 Similarly, we
will be able to include much more extensive conformational
sampling of the test protein in the absence of crowders for
predicting the effects of crowding on folding and binding. As
noted previously,30,50 the postprocessing approach underlying
FMAP is premised on thorough crowder-free sampling for
ensuring sufficient overlap with the conformational space of the
protein under crowding.
FMAP is in essence a particle-insertion method51 and as such

is effective only if there is a statistically significant clash-free
fraction. This condition can be broken when inserting a large
protein (or complex) into a very concentrated crowder
solution, as was found here for the ε:θ complex interacting
with dextran at 200 g/L. One way out, as demonstrated in our
previously study,31 is to carry out FMAP calculations at lower
crowder concentrations and then extrapolate the results to the
desired high crowder concentration.
Discretization in general and FFT in particular are widely

used in treating intramolecular and intermolecular interactions,
such as charge−charge interaction. The optimization of
accuracy and speed by correcting for results at a relatively
coarse grid spacing perhaps can be instructive for improving
other methods that employ discretization of space. In this
regard we note an improvement orthogonal to ours, for the
smooth particle mesh Ewald method, that involved doing
calculations over two coarse grids that were staggered at half
grid spacing and then averaging the results.52
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Table 1. continued

Δμst Δμna ΔμDH Δμ

protein crowder extrap. Δ at 0.6 extrap. Δ at 0.6 extrap. Δ at 0.6 extrap. Δ at 0.6

Dex100 2.268 2.261 −2.321 −2.346 −0.387 −0.360 −0.681 −0.845
Dex100sim 1.364 1.360 −1.515 −1.575 −0.218 −0.207 −0.835 −0.788
Lys 1.404 1.403 −1.470 −1.491 −0.720 −0.761 −2.134 −2.105
Lyssim 0.945 0.943 −1.126 −1.128 −0.354 −0.373 −1.678 −1.427

θ BSA 0.538 0.536 −0.451 −0.468 −0.263 −0.291 −0.884 −0.887
BSAsim 0.445 0.445 −0.337 −0.364 −0.175 −0.198 −0.788 −0.802
Dex100 0.987 0.984 −1.091 −1.075 −0.155 −0.146 −0.705 −0.629
Dex100sim 0.679 0.677 −0.733 −0.785 −0.108 −0.102 −0.482 −0.565
Dex200 3.318 3.299 −3.629 −3.686 −0.608 −0.574 −1.032 −0.866
Lys 0.684 0.683 −0.752 −0.737 −0.262 −0.275 −1.584 −1.168
Lyssim 0.480 0.480 −0.488 −0.506 −0.154 −0.161 −0.815 −0.830

Figure 9. Computational times of FMAP on native cytochrome b562 in
100 g/L of lysozyme at Δ from 1.0 to 0.15 Å. Traces labeled
“Crowders:Protein” and “Protein:Crowders” represent total times with
the crowders and the test protein, respectively, treated as the source of
potential; the trace labeled “FFT” represents the times for the FFT
portion of the FMAP calculations.
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