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Abstract

Background: To date, statistical methods that take into account fully the non-linear, longitudinal and multivariate aspects of
clinical data have not been applied to the study of progression in Parkinson’s disease (PD). In this paper, we demonstrate
the usefulness of such methodology for studying the temporal and spatial aspects of the progression of PD. Extending this
methodology further, we also explore the presymptomatic course of this disease.

Methods: Longitudinal Positron Emission Tomography (PET) measurements were collected on 78 PD patients, from 4
subregions on each side of the brain, using 3 different radiotracers. Non-linear, multivariate, longitudinal random effects
modelling was applied to analyze and interpret these data.

Results: The data showed a non-linear decline in PET measurements, which we modelled successfully by an exponential
function depending on two patient-related covariates duration since symptom onset and age at symptom onset. We found
that the degree of damage was significantly greater in the posterior putamen than in the anterior putamen throughout the
disease. We also found that over the course of the illness, the difference between the less affected and more affected sides
of the brain decreased in the anterior putamen. Younger patients had significantly poorer measurements than older
patients at the time of symptom onset suggesting more effective compensatory mechanisms delaying the onset of
symptoms. Cautious extrapolation showed that disease onset had occurred some 8 to 17 years prior to symptom onset.

Conclusions: Our model provides important biological insights into the pathogenesis of PD, as well as its preclinical aspects.
Our methodology can be applied widely to study many other chronic progressive diseases.
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Introduction

Parkinson’s disease (PD) is one of the commonest neurodegen-

erative disorders, with a median incidence of 160 per 100,000

(range 62 to 332 per 100,000) in the American population aged 65

years and above [1]. The burden of the illness is quite substantial

in the aging population with an estimated cost of approximately

$2.5–5 billion annually [2,3]. The cardinal manifestations of PD

include motor symptoms such as tremor, rigidity, slowness

(bradykinesia) or poverty of movements (hypokinesia) affecting

daily activities. These cardinal symptoms are due to neuronal loss

and degeneration in the nigrostriatal dopamine projection in the

brain and consequent loss of striatal dopamine content. Over the

course of the disease, widespread neuronal loss leads to postural

instability with attendant falls, mood problems (which may also

antedate the onset of motor symptoms), cognitive impairment, and

autonomic disturbances, further diminishing the quality of life.

Established treatment options for PD are by and large symptom-

atic and have little influence in altering the underlying neuro-

pathological process. In this context, longitudinal study of disease

progression has relevance not only for better understanding the

natural history of the disease but also for specifically improving the

design and timing of potential neuroprotective interventions when

they become available. However, assessment of progression using

only clinical measures and motor scores is fraught with the

potential subjective confound of prolonged symptomatic benefits

resulting from the therapeutic agents [4]. Hence, objective

assessment of progression using radiotracer imaging such as
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Positron Emission Tomography (PET) with suitable dopaminergic

drug washout has been increasingly utilized in recent years [5,6].

An additional advantage of this functional imaging is the

possibility of quantification of alterations in the metabolic or

neurotransmitter function or level of denervation (neuronal loss)

with reference to control values.

We have previously used multitracer PET to understand the

compensatory changes in the early stages of the disease and in

asymptomatic mutation carriers of genetic forms of PD [7,8].

These PET scans assess presynaptic dopaminergic integrity using:
18F-6-fluoro-L-dopa (FD) reflecting the synthesis of dopamine

(DA) from levodopa and its storage in synaptic vesicles, 11C-(+)a-

dihydrotetrabenazine (DTBZ) labeling vesicular monoamine

transporter type 2 (VMAT2), responsible for the packaging of

monoamine neurotransmitters into synaptic vesicles and estimat-

ing DA terminal density, and 11C-d- threo-methylphenidate (MP)

labeling the membrane DA transporter (DAT), responsible for

reuptake of DA from the synapse into the neurons, thereby

terminating its action at DA receptors. The quantitative measures

include regional values of uptake constant (Kocc) using FD PET

and binding potential (proportional to the maximum specific

binding [Bmax] divided by the equilibrium dissociation constant

Kd) using DTBZ PET and MP PET with reference tissue (occipital

cortex) input function. These measures reflect the affinity for and

occupancy by these radiotracers for the metabolic substrates or

transporters involved in central dopamine processing (for more

detailed information see [5,9]). Serial scanning using these

radiotracers helps to capture the progressive changes in neuronal

density or striatal dopamine processing and thus provides an

objective measure of the neurochemical and neurobiological

progression of the disease. The temporal change in the serial

measure(s) aids in charting the trajectory of the neurobiological

alterations in vivo and serves as a biomarker in following disease

progression. As the dopaminergic dysfunction in sporadic PD

shows an anteroposterior gradient among the striatal subregions

and lateral asymmetry (manifesting as the more and less affected

sides) at least in the initial stage of the disease, comparing the

trajectories within and between striata provides useful information

on the spatial dynamics of disease progression. Such information

aids in better understanding the mechanisms underlying aetio-

pathogenesis.

Multivariate longitudinal data are characterized by multiple

responses measured at multiple times for each subject [10]. Our

multivariate PD PET data consist of simultaneous measurements

taken from several regions of the brain. At each of 3 successive

visits, 4 years apart, data were collected for each patient in four

regions of the brain: the anterior, mid, and posterior putamen, and

the caudate, from both the less affected and the more affected

sides. Thus, a combination of 3 PET tracers, 4 regions, and 2 sides

of the brain resulted in a total of 24 simultaneous measurements

per patient per visit. However, the measurements were observed at

different disease stages for each patient. With the increasing

duration of the symptomatic disease, the measurements were

typically seen to decrease exponentially over time, usually levelling

off at an asymptotic level (Figure 1).

A variety of statistical methods have been applied in the past to

study disease progression in PD. These methods did not allow

simultaneously for both temporal and spatial inferences [11–17].

Authors have developed models which addressed at least one, but

not all, of the multivariate, longitudinal, or non-linear aspects of

the data [18–21]. Recently, Marshall generalized the non-linear

random effects model to allow for multivariate responses and for

missing data [10]. Our new model handles multivariate responses

and longitudinal data, allows for the number and timing of

observations to differ across individuals, allows for the comparisons

of correlated parameters, and has increased power.

We have applied Marshall’s non-linear random effects model

for multivariate measurements to analyze our PD data. In the

Methods and Results, we demonstrate the usefulness of this

statistical method, which has allowed us to characterize the

temporal and spatial aspects of the progression of the disease, and

to explore the pre-symptomatic phase of PD. The Discussion

provides a summary of our findings.

Methods and Results

2.1 Ethics Statement
All patients gave written informed consent and the study was

approved by the Clinical Research Ethics Board of the University

of British Columbia.

2.2 Data
Of the 78 PD patients included in the study, the total number

receiving scans for the tracers on the first, second, and third visit

were 78, 57 and 21, respectively. The average age at symptom

onset was 53 years (SD: 10 years). To illustrate the regional and

temporal correlations we encountered in the data, the median

correlation in MP measurements between the anterior and

posterior putaminal regions was 0.69; the overall median

correlation across successive time points was 0.74.

In addition, a total of 35 normal subjects provided correspond-

ing longitudinal control scans for each of the three tracers, from

the same regions for the left and right sides of the brain. The total

number of normal subjects with scans at the first, second, and third

visit were 35, 29, and 18, respectively. These serial measurements

were also taken 4 years apart. The average age of the normal

control subjects at their first observation was 55 years (SD: 15

years). For the normal subjects, tracer measurements were

modelled as a linear function of age at the time of visit with a

random effect for the intercept (see model (8)). The longitudinally

derived linear regressions for all three tracer measurements

provided a good fit to the data. Non-linear models, both

polynomial and exponential, were tested for their goodness-of-fit

in each case, but failed to provide significant improvement to the

linear fit.

All the data were acquired on the same scanner, the Siemens

ECAT 953B [22], using identical scanning protocols; care was

taken to ensure that data quantification accuracy and reproduc-

ibility were not affected by any instrumentation software upgrade.

All measurements for the PD patients and for the normal subjects

were obtained by the same PET analyst.

2.3 Model
Let Y i~(yijk) be an ni|p response matrix taken on patient

i(i~1,2, . . . ,I) at occasion j(j~1,2, . . . ,ni) on response

k(k~1,2, . . . ,p), where response may refer to region, side, or

tracer. Thus,

Y i =

yi11 yi12 � � � yi1p

yi21 yi22 � � � yi2p

..

. ..
.

P
..
.

yini1 yini2 � � � yinip

0
BBBBB@

1
CCCCCA

ni|p:

Let eijk be the error term associated with yijk. The non-linear

random effects model is given by

yijk~fk(wi,zij)zeijk, ð1Þ

Non-linear Random Effects and Parkinson’s Disease
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where fk is a non-linear function of the parameter vector w i and

covariates zij [10]. The parameter vector wi consists of two

components: a vector of fixed population effects, v (defined

below), and a vector of patient-related random effects, bi. The

random effects, bi, are assumed to follow a multivariate normal

distribution.

Based on visual, biological and statistical evidence, the best fit

for the observed decline in our measurements in PD patients with

increasing symptom duration was found to be an exponential

function (Figure 1) depending on two patient-related covariates:

the duration tij since symptom onset, and the age xi at symptom

onset; such that, zij~(tij ,xi).

Thus, the proposed mean structure for the kth response for

patient i at visit j is

E½yijk Dtij ,xi�~ake{bktij{ckxi zdk: ð2Þ

Our model (2) is a special case of the more general model (1).

Each of the four parameters, ak, bk, ck, and dk, can be associated

with a random effect. We let v~(a1,b1,c1,d1, . . . ,ap,bp,cp,dp) be

the parameter vector and S the corresponding covariance matrix

of their estimates. Further details may be found in [10].

Independence was assumed among patients, and error terms

were assumed to be uncorrelated with the random effects. The

parameter estimates for this model were derived using the EM

algorithm, which was extended to handle estimation of models

with random effects and missing data [10]. In these models,

missing data are assumed to be missing at random (see also

Discussion).

Modelling multivariate data directly permits comparisons of

correlated parameters, parametric functions and the resulting

curves. The progression of PD over time has long been suspected

to be non-linear in nature [11]. The precise estimation of the

coefficient of curvature bk in model (2) above for each of the

response variables is of prime importance in capturing this

potential non-linearity in the evolution of the disease. Longitudinal

data offer a far more precise estimate of this coefficient than do

cross-sectional data (see Section 2.11).

Clinical evidence suggests that patients who developed PD

symptoms at a younger age may have a different time course of

their disease from those whose symptoms began at a later age. The

coefficient ck in model (2) addresses the effect of age at symptom

onset on the corresponding pattern of disease progression.

The asymptote dk in our model refers to the final level of

damage in each response measurement k when the disease

progression, as observed by the PET tracers, appears to level off

and beyond which no further substantial decline is seen. We

interpret dk as the final level of damage: it represents the mean

PET measure as time since symptom onset, tij , approaches infinity.

The comparison of asymptotes between regions, or between sides,

indicates whether regions or sides that may have started out as

affected to different degrees, progress to have a similar final level of

involvement or remain distinct. For PD, the estimated value of

each curve at the time of symptom onset (t~0) identifies the

degree of damage to the dopamine system when symptoms begin

to manifest themselves. From a clinical perspective, for a patient at

age x0, significant losses in PD tracer curve intercepts, as

represented by ake{ckx0zdk (when tij~0 and xij~x0 in model

(2)), relative to the corresponding age-matched normal controls, as

represented by n0zn1x0 (when aij~x0 in model (8)), suggest that

nerve terminals have been lost prior to the onset of symptoms.

Once nerve terminals are lost, a difference in rates of

decline between tracers k and k
0
, ({akbke{bkt{ckx){

({ak
0 bk

0 e{b
k
0 t{c

k
0 x), may be due to compensatory changes or

to differential involvement of various regions (see Section 2.10).

The overall rate of decline at any time is affected by all three

parameters ak, bk, and ck. We limited our model to the well

established factors of age of onset of symptoms and duration of

symptoms; various other initiating factors are suspected in PD but

were not included in the model. These suspected, initiating factors

may have potentially resulted in differential involvement at

different regions.

The time of disease onset (i.e., the time of initial damage to the

dopaminergic function) is known to precede the time of symptom

onset. Back-estimation of the progression curve into the preclinical

and presymptomatic duration of disease in each PET measure-

ment was carried out, and its time of intersection with the

corresponding normal control line was estimated, to give an

indication of how long prior to symptom onset the activity of the

disease might have begun (see Section 2.9). This helped to

examine possible causative factors, at that initial time point, and

shed some new light on the mechanism of disease onset.

We have selected a variety of examples below in order to

illustrate the diversity of statistical methods that were applied to

Figure 1. Scatter plot of observed longitudinal responses (MP measurements) in the less affected side for anterior putamen (left
panel) and posterior putamen (right panel) with the superimposed non-linear curves derived from the random effects model for
patients with an average age at symptom onset of 53 years.
doi:10.1371/journal.pone.0076595.g001

Non-linear Random Effects and Parkinson’s Disease
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different combinations of tracers and regions, and the great deal

that we were thus able to learn about the many aspects of the

progression of PD. In Sections 2.4 to 2.6 we illustrate our methods

with examples of joint estimation of a pair of regions, specifically

comparing parameter values, intercepts and rates between these

regions. In Section 2.7 we further show the estimation of potential

convergence, divergence, or parallelism between the less affected

and the more affected sides for specific regions. In Section 2.8, the

effect of the age of onset of symptoms is related to the degree of

nerve terminal loss at t~0. Estimation of the preclinical duration

of disease is illustrated in Section 2.9. Finally, in Section 2.10, we

compare features of the curves of different (standardized) tracers.

We used SAS 9.1 software (SAS System version 9.1 for

Windows, SAS Institute Incorporation, Cary, NC, USA, 2002–

2003) and R software (R version 2.3.0 for Windows, R Foundation

for Statistical Computing, Vienna, Austria, 2006) for all statistical

analyses. The SAS Procedure NLMIXED was used to estimate

parameter values. R was used to estimate and test non-linear

functions of the parameters using the delta method.

2.4 Estimation and Comparison of Parameter Values:
Anterior vs Posterior Putamen Remain Functionally
Different Over the Course of the Illness

We compared parameter estimates across regions by letting the

kth response in our model represent the kth region. Thus, as an

example, let k~1,2 represent, respectively, the anterior and

posterior putamen. Estimates of the eight parameters,

v̂v~(âa1,b̂b1,ĉc1,d̂d1,âa2,b̂b2,ĉc2,d̂d2), and of their covariance matrix, ŜS,

are readily available from the fitted model. The variance of the

difference in parameter estimates between regions 1 and 2 can be

approximated based on ŜS. For example, the variance of the

difference between the asymptotes is approximated by

dVarVar(d̂d1{d̂d2)&dVarVar(d̂d1)zdVarVar(d̂d2){2dCovCov(d̂d1,d̂d2), ð3Þ

and an approximate 100(1{a)% confidence interval [CI] for the

difference between the 2 asymptotes is given by

d̂d1{d̂d2+�z1{a=2|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarVar(d̂d1{d̂d2)

q
, ð4Þ

where z1{a=2 is the 100(1{a=2)th percentile of the standard

normal distribution. Similarly, we estimate the differences between

a1 and a2, b1 and b2, and c1 and c2.

To illustrate, we compared parameter estimates for the MP

tracer between the anterior and posterior regions of the putamen

in the less affected side. Figure 1 shows the longitudinal scatter

plots of the data together with the superimposed fitted curves for

our patients, whose average age at symptom onset was 53 years.

Visually, measurements in the anterior putamen appear to be

higher than in the posterior putamen.

Table 1 shows the corresponding estimated parameter values

for the anterior putamen (âa1, b̂b1, ĉc1, d̂d1) and for the posterior

putamen (âa2, b̂b2, ĉc2, d̂d2). Several parameter estimates were

statistically significant at the 5% level. Significant curvature was

detected in both the anterior putamen (b̂b1 = 0.16, 95% CI 0.10–

0.22) and posterior putamen (b̂b2 = 0.29, 95% CI 0.11–0.46).

Comparisons between parameter estimates showed that the

asymptote in the anterior putamen was higher by 0.20 Bmax/Kd

than in posterior putamen (d̂d1{d̂d2 = 0.20, 95% CI 0.12–0.29).

From this result, clinicians concluded that these two regions

remain functionally different throughout the course of the illness.

2.5 Estimation and Comparison of Function Values:
Greater Damage at the Posterior Putamen vs Anterior
Putamen at Symptom Onset

As shown in model (2), the estimated value of the curve in

region k for a patient whose age at symptom onset was x years,

and for whom t years had elapsed since this onset, is given by

(suppressing patient and time indices):

ŷyk(v̂v Dt,x)~âake{b̂bkt{ĉckxzd̂dk: ð5Þ

Assuming that
ffiffiffi
n
p

(v̂v{v )?dMVN(0,S ), the delta method

gives an approximate 100(1{a)% CI for the difference between

estimated values in different responses [23,24]:

ŷyk(v̂vDt,x){ŷy
k
0 (v̂vDt,x)+z1{a=2

|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarVar(yk(v̂vDt,x){y
k
0 (v̂vDt,x))

q
:

ð6Þ

As an example, we compared the level of MP at symptom onset

(i.e. t~0) between the anterior and posterior regions of the

putamen in the less affected side. The estimated intercepts for

anterior and posterior putamen were 1.15 Bmax/Kd (95% CI

1.05–1.25) and 0.49 Bmax/Kd (95% CI 0.38–0.59), respectively.

The difference between these two regions was statistically

significant (0.67 Bmax/Kd, 95% CI 0.56–0.77). Clinical research-

ers concluded from these observations that the degree of damage

to the dopamine system at symptom onset was significantly greater

in the posterior putamen than in the anterior putamen.

2.6 Estimation and Comparison of Rates: Rates of Decline
Differ between the Anterior and Posterior Putamen

The rates of decline of these measurements over the duration of

symptoms characterize a major aspect of disease progression. They

allow for year-to-year comparison of the decay rates for each

tracer. The rate of decline of a given tracer in region k at time t is

given by (suppressing patient and time indexes):

Table 1. Estimated nonlinear random effects model of
responses (MP measurements) in the less affected side for
anterior putamen and posterior putamen.

Parameter Estimate SE p value

Anterior putamen

a1 2.21 0.60 ,0.001

b1 0.16 0.03 ,0.001

c1 0.02 0.01 ,0.001

d1 0.40 0.05 ,0.001

Intercept 1.15 0.05 ,0.001

Posterior putamen

a2 1.80 1.46 0.218

b2 0.29 0.09 0.002

c2 0.03 0.01 0.014

d2 0.20 0.02 ,0.001

Intercept 0.49 0.06 ,0.001

Abbreviation: SE = standard error.
doi:10.1371/journal.pone.0076595.t001

Non-linear Random Effects and Parkinson’s Disease
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fk(v):
dyk

dt
~{akbke{bkt{ckx: ð7Þ

Thus, the rate depends on the parameters ak, bk, and ck.

Assuming again that
ffiffiffi
n
p

(v̂v{v)?dMVN(0,S), then the delta

method gives an approximate 100(1{a)% CI for the difference

between rates [23,24].

To illustrate, rates of decline in the measurements were

compared for MP between the anterior and the posterior putamen

in the less affected side, at each year since symptom onset (years 1

through 25). Although the coefficients of curvature bk were not

significantly different, the rates were found to be more rapid in the

anterior putamen than in the posterior putamen: in the anterior

putamen, rates were 20.054, 20.024, 20.011, and 20.005 Bmax/

Kd per year at 5, 10, 15, and 20 years since symptom onset,

respectively, while the rates were generally slower in the posterior

putamen, with 20.020, 20.005, 20.001, and 0.000 Bmax/Kd per

year at 5, 10, 15, and 20 years since symptom onset, respectively.

After Bonferroni adjustment for 25 multiple comparisons from

years 1 through 25, there was evidence for a significantly sharper

decline (i.e., statistically significant differences between rates) in the

anterior putamen during the first 16 years of symptom duration

followed by a more parallel decline (i.e., no statistically significant

differences between rates) in the two regions during the later part

of the disease (Figure 1). The difference in rates at different times

could be explained by a delay or lag in the degree of damage due

to the disease in the less affected side.

2.7 Estimation of Convergence, Divergence, or
Parallelism: the Less Affected and the more Affected
Sides Converge Over the Course of the Illness

Convergence, divergence, or parallelism of curves over the

duration of symptoms was tested to compare the pattern of

progression in different regions or sides. This was done by

analyzing the difference in the extent of separation between the

initial (t~0) minus the final (t~25) estimates of the corresponding

curves. A significant positive difference in separation indicated

convergence and a significant negative difference in separation

indicated divergence.

For example, we compared the less affected to the more affected

sides, by testing the convergence/divergence for MP measure-

ments for each of the anterior and the posterior putamen regions

separately. Convergence between the less and more affected sides

was observed in both regions: The difference between the sides

decreased significantly by 0.33 Bmax/Kd (95% CI 0.22–0.45) in

the anterior putamen and by 0.14 Bmax/Kd (95% CI 0.06–0.22) in

the posterior putamen. Thus, over the course of the illness, the

asymmetry in measurements between the less affected and more

affected sides in both regions became less prominent, as the

corresponding curves significantly converged.

2.8 Effect of Age at Symptom Onset: More Effective
Compensatory Mechanisms in Younger Patients

The trajectories of young versus old onset patients were

estimated from the model using the complete set of data, and

were then compared. We use as an example the measurements of

DTBZ for the more affected side, averaged across the three

putaminal regions. Young patients were 35 years of age at

symptom onset (5th percentile by age) and older patients were

taken to be 70 years of age at symptom onset (95th percentile by

age). At the corresponding times of symptom onset (i.e., tij~0), the

values of DTBZ derived from the model were 0.30 (95% CI 0.21–

0.38) and 0.51 (95% CI 0.40–0.61) for younger (i.e., xi~35) and

for older (i.e., xi~70) patients, respectively. Thus, younger

patients had significantly lower values of DTBZ compared with

older patients (average difference at time of symptom on-

set = 20.21, 95% CI 20.38– 20.04) (Figure 2). For the normal

subjects, tracer measurements were modelled as a linear function

of age at the time of visit with a random effect for the intercept (see

model (8)). Relative to the fitted value for age-matched normal

subjects, younger patients (i.e., xi~35) had lost 71% and older

patients (i.e., xi~70) had lost 34% of DTBZ binding at symptom

onset (i.e., when tij~0). This finding suggests that younger

patients lost considerably more dopamine nerve terminals before

manifesting clinical evidence of PD, and suggests the presence of

more effective compensatory mechanisms at a younger age.

2.9 Estimation of Preclinical and Presymptomatic
Duration of Disease: Disease began Long before
Symptoms

For our PD patients, the tracer-based preclinical and presymp-

tomatic duration of disease was defined to be the time point prior to

symptom onset beginning at the time at which tracer measure-

ments for a patient first departed from those for a normal subject.

Measurements in normal subjects were found to be linearly related

to age: linear mixed effects regression was used to model

longitudinal responses as a function of current age in our normal

control subjects. We derived the corresponding normal control

function for each of the three tracers. The mean value for a given

response for normal control subject i at visit j is given by

E½yij Daij �~n0zn1aij , ð8Þ

where yij represents the tracer measurement for subject i at the jth

visit, aij is the current age at visit j, and n0, n1 are the intercept and

slope parameters, respectively.

To relate our exponential PD functions (model (2)), which were

regressed on t, the duration of symptoms, to the control data,

regressed on age, we expressed current age, aij , as the sum of the

duration of symptoms, tij , and age at symptom onset, xi, so the

modelled measurements for normal subjects (model (8)) could also

be expressed as functions of duration of symptoms:

E½yij Daij �~n0zn1(tijzxi): ð9Þ

For a given age at symptom onset, xi, the intersection between

the fitted line for normal subjects (model (9)) and fitted curve for

PD patients (model (2)) yielded an extrapolated estimate of the

preclinical duration of disease [25].

We first fixed the average age of symptom onset of the patients

at 53 years, the observed mean age of symptom onset in our data.

(Similar analyses could be carried out with any other observed

values of age of symptom onset in the data). This limited the back-

extrapolated analysis of the exponential curve to the one single

remaining time variable in the model, viz. the duration in years

prior to symptom onset. This time variable of duration was directly

linked to the corresponding age variable for the normal controls by

the simple relation: age = duration +53.

We then solved the exponential (patient) function and the linear

(control) function simultaneously, and found their common point

of intersection. The coordinates of this point estimate provided a

value X(0) for the duration and a value Y(0) for the corresponding
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tracer level, at the time of the theoretical onset of the patients’

disease.

We next calculated a 90% confidence interval for the tracer

level Y about Y(0), using the estimated standard error of the

exponential curve at that duration to establish conservative

bounds. We then identified the two points on the exponential

curve that corresponded to the upper and to the lower limits of the

confidence interval for Y. From both points, perpendiculars were

dropped onto the X-axis, and the resulting values X(1) and X(2)

were used as the corresponding 90% ‘‘fiducial limits’’, likely to

contain the true value of the pre-symptomatic duration of disease

onset.

We used the R function uniroot, a one dimensional root finding

algorithm, to solve for the estimated preclinical duration [26,27].

We used the unique root prior to symptom onset for a given age at

symptom onset.

As an application, the measurements of DTBZ were modelled

for the more affected and the less affected sides, averaged across

the three putaminal regions. Curves for the more affected and less

affected sides, for the average age at symptom onset of 53 years,

were extrapolated backward from duration 0 (i.e., time of

symptom onset) to their points of intersection with the corre-

sponding tracer-matched regression lines for the normal control

subjects. Using methods of inverse regression, the preclinical

durations of disease for both sides were derived [25]. The

presymptomatic period for the more affected side was 17 years

(90% fiducial limits 2–24) and for the less affected side was 8 years

(90% fiducial limits 4–11). We regard these estimates with some

caution due to the combined uncertainty in extrapolation and

inverse regression. However, we present these tentative results due

to their highly interesting implications.

2.10 Comparisons of Standardized Responses among
Tracers: Differences in Tracer Information Over Time
Show Diminishing Effects of Early Compensation

Thus far, we have described methods for comparing parameter

estimates, estimated functional values, comparisons of rates of

decay, tests of parallelism, effects of age of symptom onset, and

derivation of age at disease onset. Such comparisons are feasible

when the multivariate responses are on a commensurate scale.

When comparing different tracers, however, such as FD and

DTBZ, the corresponding responses are measured on different

scales. To carry out comparisons between tracers, we therefore

needed to standardize their measurements relative to the

corresponding values of the age-matched normal controls. In the

control data, however, tracer values decline at different rates with

normal aging. We therefore standardized our tracer measurements

by dividing the PD measurements by the corresponding normal

expected values at the same age, derived from the linear

regressions for the control subjects. Thus the disease process

could be compared across different tracers using our model and

methods as described above.

As an illustration, the standardized measurements of FD and

DTBZ were modelled as above for the more affected side averaged

across the three putaminal regions (Figure 3). Thus, at duration 0,

the proportional loss in FD relative to its normal controls was

Figure 2. Longitudinal model fits of responses (DTBZ measurements) in the more affected side for the average of the three
putaminal regions in the younger and older groups (35 and 70 years, respectively).
doi:10.1371/journal.pone.0076595.g002
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significantly less than that of DTBZ (a difference of 0.18, 95% CI

0.11–0.25). This suggested that despite overall nerve terminal loss,

differential compensatory changes occur, reflected in differences

between the tracers at symptom onset. Moreover, the standardized

DTBZ curve remained below the standardized FD curve

throughout the entire duration of symptoms. Significant curvature

was present for FD (b̂b1 = 0.09, 95% CI 0.03–0.15) and DTBZ

(b̂b2 = 0.06, 95% CI 0.01–0.10), but did not differ significantly

between the two tracers. The rates of decline were significantly

different between the two tracers from 3 to 10 years since symptom

onset, after Bonferroni adjustment for multiple yearly compari-

sons. This suggests the effects of early compensation which

dissipate over time.

2.11 Comparison of Fitted Models: Longitudinal vs. Cross-
sectional Analysis: Potential biases and Information Gain

To examine potential biases in our PD longitudinal vs. cross-

sectional data and to assess the gain in efficiency of the information

from our longitudinal data, we compared estimated non-linear

models for FD in the more affected side averaged across the three

putaminal regions and fitted to patients with data from all 3 visits

vs. those with data from 1 visit only (Figure 4). The comparison

clearly indicated that both curves closely agree in their description

of the course of general decline of the disease, suggesting that no

important potential bias was present due to loss of follow-up.

While the longitudinal analysis yielded a significant curvature

(b̂b1 = 0.08, 95% CI 0.00–0.17), the cross-sectional model was not

sufficiently sensitive to detect curvature (b̂b1 = 0.02, 95% CI

20.06–0.10). Compared to modelling data cross-sectionally based

on a single visit, the relative efficiency for the estimate of the

curvature, b1, from data obtained longitudinally from all 3 visits,

offered a 20% improvement in precision. In other cases, such as

models for DTBZ in the less affected side of the anterior putamen,

the corresponding relative efficiency reached a 5-fold improve-

ment in precision for b1.

Similarly, the longitudinal slopes of the regression lines for the

normal controls agreed closely with those derived from subjects

who provided only a single measurement, suggesting the absence

of any significant, longitudinal bias and supporting ‘‘non-

informative missingness’’.

Discussion

We derived non-linear random effects models for multivariate

responses of PET data measured longitudinally in PD patients. In

order to study the temporal and the spatial dynamics of PD

progression, serial PET measurements were collected bilaterally

from striatal subregions of PD patients using three different

tracers. Previous limited PET studies of progression in PD have

indicated some non-linear trends, but have not fully taken into

account the multivariate and longitudinal aspects of their data

[11]. Our work has applied and enlarged on the recently

developed methodology of non-linear random effects models for

multivariate responses [10]. This permitted us to analyze in

Figure 3. Longitudinal, bivariate model fits of standardized responses (FD and DTBZ measurements) in the more affected side
averaged across the three putaminal regions. This suggests that the effects of early compensation dissipate over time (see text).
doi:10.1371/journal.pone.0076595.g003
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greater detail the nature of the progression and of the pathogenesis

of PD, as well as its preclinical aspects.

Our clinical results [28–30] have provided considerable insights

into the evolution of the disease. In particular, we concluded that

the degree of damage to the dopamine system at symptom onset

was greater in the posterior putamen than in the anterior putamen

(Section 2.5). This conclusion was based, inter alia, on the

difference in MP intercepts between the anterior and posterior

regions in the less affected side of the brain. This difference was

supported also by comparison of intercepts of other tracers.

From the comparison of asymptotes, we concluded that MP

levels remained functionally different between the anterior and

posterior regions of the putamen (Section 2.4).

In addition, while significant curvatures were detected within

each of these anterior and posterior putamen regions, the

curvatures did not differ significantly between these regions

(Section 2.4). In fact, the overall rates of decline were initially

greater in the anterior putamen, but became similar in both

regions as the disease progressed (Section 2.6).

Convergence in MP levels between the more and less affected

sides of both the anterior and posterior putamen indicated that

over the course of the illness, differences between the sides tend to

disappear (Section 2.7).

The comparison of trajectories of DTBZ for the more affected

side averaged across the three putaminal regions indicated that

patients with younger symptom onset had lost more dopamine

nerve terminals prior to the onset of their symptoms than had

older onset patients (Section 2.8), thus suggesting that younger

patients had more effective compensatory mechanisms at their

disposal.

A comparison of DTBZ and FD measurements for the anterior

putamen regions on the more affected side showed that despite

overall nerve terminal loss, differential compensatory mechanisms

occur between these two tracers at symptom onset. This results in

significant early differences in the degree of loss corresponding to

normal controls in each tracer (Section 2.10).

Cautionary results were extended to the pre-clinical phase of the

disease. They provided a valuable estimate of the latency period

between disease onset and clinical onset (Section 2.9).

The conclusions derived from the application of our model

provide important biological insights. The combination of

differential involvement of striatal subregions at disease onset with

similar rates of decline over time between subregions can be taken

to imply that the factor(s) that contribute to disease initiation (and

are regionally selective) may be different from those that underlie

disease progression (which appear to be more uniform). This has

important implications for the understanding of PD and conse-

quently for the design of disease-modifying therapies. The

observation that earlier age of disease onset is associated with a

greater degree of denervation prior to symptom onset implies that

younger subjects have more effective compensatory mechanisms

(and are hence able to tolerate greater degrees of denervation). In

summary, the application of this statistical model has allowed us to

understand the neurochemical underpinnings of the PD patho-

genesis in vivo. Our methodology can be applied to study many

other chronic progressive diseases.
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