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Abstract
Relational event models expand the analytical possibilities of existing statistical models for interorga-

nizational networks by: (i) making efficient use of information contained in the sequential ordering of

observed events connecting sending and receiving units; (ii) accounting for the intensity of the relation

between exchange partners, and (iii) distinguishing between short- and long-term network effects. We

introduce a recently developed relational event model (REM) for the analysis of continuously observed

interorganizational exchange relations. The combination of efficient sampling algorithms and sender-

based stratification makes the models that we present particularly useful for the analysis of very

large samples of relational event data generated by interaction among heterogeneous actors. We

demonstrate the empirical value of event-oriented network models in two different settings for inter-

organizational exchange relations—that is, high-frequency overnight transactions among European

banks and patient-sharing relations within a community of Italian hospitals. We focus on patterns of

direct and generalized reciprocity while accounting for more complex forms of dependence present

in the data. Empirical results suggest that distinguishing between degree- and intensity-based network

effects, and between short- and long-term effects is crucial to our understanding of the dynamics of

interorganizational dependence and exchange relations. We discuss the general implications of these

results for the analysis of social interaction data routinely collected in organizational research to exam-

ine the evolutionary dynamics of social networks within and between organizations.
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The increased availability of longitudinal data generated by observable continuous-time interac-
tion among organizations is exposing—and at the same time helping to address some of the lim-
itations of network models typically adopted in empirical studies of interorganizational exchange

Università della Svizzera italiana, Lugano, Switzerland

Corresponding Author:
Federica Bianchi, Institute of Computing, Università della Svizzera italiana, Via Giuseppe Buffi 13, 6900 Lugano,

Switzerland.

Email: federica.bianchi@usi.ch

Article

Organizational Research Methods

2023, Vol. 26(3) 524–565

© The Author(s) 2022

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/10944281211058469

journals.sagepub.com/home/orm

https://orcid.org/0000-0002-4887-8424
mailto:federica.bianchi@usi.ch
https://us.sagepub.com/en-us/journals-permissions
https://journals.sagepub.com/home/orm


and dependence relations (Butts, 2008; Marcum et al., 2012; Perry & Wolfe, 2013; Vu et al.,
2017).

The diffusion of data produced by technology-mediated communication is making continuous-
time social interaction data in the form of digital footprints increasingly common (Golder &
Macy, 2014). Similarly, the new possibilities to record social interaction and individual behavior
in continuous-time offered by mobile technologies (Butts, 2008; Barrat et al., 2013), sensor networks
(Stehlé et al., 2011), sociometric badges (Wu et al., 2008), radio-frequency identification devices
(RFID) (Elmer & Stadtfeld, 2020), and video recordings (Pallotti et al., 2020), are raising new ques-
tions that traditional research designs—and models—adopted in organizational and management
research are ill-suited to address (Gylfe et al., 2016; LeBaron et al., 2018). These new data collection
and observation technologies are making data on social interaction available at an unprecedented
level of detail and precision. Access to continuous-time social interaction data is becoming increas-
ingly common in many well-established areas of organizational research such as, for example, team
composition, productivity and performance (Leenders et al., 2016; Lerner & Lomi, 2019), and orga-
nizational routines (LeBaron et al., 2016), and socialization (Ingram & Morris, 2007). In this paper
we want to suggest that research on interorganizational relations can similarly benefit from models
developed for the analysis of continuous-time interaction (Kitts et al., 2017).

Time-stamped sequences of relational events connecting senders and receivers of action constitute
the observable micro-relational structure of social networks. In fact, social networks are frequently
derived from aggregation of sequences of relational events unfolding in continuous time into discrete
network “ties” (Brandes et al., 2009; Stadtfeld & Block, 2017). Building directly on Butts (2008), our
starting point in the current study is the observation that this aggregation involves the potential loss of
relevant information about the temporal and relational microstructure of interorganizational exchange
and dependence relations. During the last forty years, organizational and management theorists
(Pfeffer & Salancik, 1978; Hillman et al., 2009) have systematically built on the classic theoretical
vision of exchange as a fundamental social relation (Cook, 1977; Blau, 2017).

In modeling exchange processes, the risk of information loss is particularly severe when interac-
tion is characterized by time-ordered, or sequential constraints like, for example, in the case of con-
versational sequences (Gibson, 2005), interorganizational coordination (Butts, 2008), and financial
transactions (Finger & Lux, 2017). Available statistical models for social networks are not well
suited to the analysis of continuous-time exchange, especially when observed interaction frequency
is high (Butts, 2009). For example, in standard statistical models adopted in empirical research on
interorganizational networks (Lomi & Pallotti, 2012), aggregation of relational event sequences
into network ties assumes the presence of stable relations over more or less arbitrary time frames,
and typically ignores information on the sequential order that defines even the most elementary rela-
tional mechanisms (Amati et al., 2019).

Consider reciprocity, for example, a relational mechanism of central importance in theories of
exchange (Molm et al., 2003) and considerable substantive interest in empirical studies of interorga-
nizational relations (Oliver, 1990; Baker & Faulkner, 1993; Uzzi, 1996; Ingram & Roberts, 2000).
Reciprocity is not invariant with respect to the timing in the underlying acts of exchange between
actors. The correct identification of who is initiating action and who is receiving and returning it
—and when—matters precisely because sequential ordering in social interaction provides important
information about status differences and dominance relations (Chase, 1982; Gibson, 2005), and plays
a central role in governance (Larson, 1992) and in the allocation of organizational attention (Cohen,
March, & Olsen, et al., 1972; March & Olsen, 1983). Without information on the timing of exchange
events, and on the time elapsing between them, the notion of reciprocity remains theoretically impor-
tant, but becomes empirically more difficult to identify.

Like other, more complex, relational mechanisms involving multiple actors and multiple
exchange events (Nowak & Sigmund, 2005), direct reciprocity emerges over periods of variable
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length, where the time scale may vary from few minutes for communication in emergency situations
(Butts, 2008), days for email communication (Perry & Wolfe, 2013), and months for complex inter-
organizational exchange (Kitts et al., 2017). Clearly, different rules for aggregating sequences of
time-ordered and time-stamped relational events into network ties, might lead to different conclu-
sions about tendencies toward reciprocity. In summary, to understand relational phenomena, includ-
ing interorganizational networks, it is important to be able to identify who is giving to whom, when,
and how much.

Representing network relations as flows connecting senders and receivers of action or resources
does not exhaust all the empirical possibilities (Borgatti & Halgin, 2011). Data on social relations
may come in many forms (Borgatti & Foster, 2003), and event data are only one of such forms
(Borgatti et al., 2009). In consequence—and how is common in organizational and management
research—different models are appropriate for different settings, and different research questions
(Borgatti et al., 2009; Robins, 2015). For example, networks—and interorganizational networks in
particular—are often generated by formal contractual arrangements between corporate actors
(Jones et al., 1997; Lomi & Pattison, 2006). In such cases, networks do not accumulate flows,
but, rather, enable them. The main purpose of this study is neither to compare different network
models, nor to claim superiority for one specific class of models. Recent comparative research and
critical assessments of different classes of network models—static versus dynamic, tie-oriented
versus actor-oriented, structure-oriented versus change-oriented, etc.—are available elsewhere
(see, e.g., Butts, 2017; Stadtfeld et al., 2017; Block et al., 2018, 2019a, 2019b).

The purpose of this study is to illustrate how recent refinements in the relational event modeling
framework originally introduced by Butts (2008) may be adopted to address some of the core theo-
retical and methodological concerns routinely arising in empirical studies of interorganizational
exchange taking the form of temporal sequences of interaction events (Vu et al., 2017; Amati
et al., 2019). The model that we present combines an efficient approach to sampling (Lerner &
Lomi, 2020b; Vu et al., 2011b) with sender-based stratification (Vu et al., 2015) as well as the pos-
sibility of distinguishing between short- and long-term network effects. The first feature (efficient
sampling) allows the model to be easily scaled for the analysis of samples of relational event data
characterized by a very large risk set, or space of possible events. The second feature (sender strati-
fication) allows the model to control for unobserved heterogeneity—a problem that becomes partic-
ularly serious as the space of possible events increases, and varies over time. The third feature (short-
and long-term network effects) is particularly salient in empirical settings where relational events
occur at a very high-frequency, and/or are clustered within temporal frames of specific length.

The relational event model (REM) that we describe is broadly applicable to diverse levels of anal-
ysis that may be of interest to students of organizational behavior. Examples of research in organi-
zational behavior where REMs have demonstrated their empirical value include studies of small
group interaction (Pilny et al., 2016; Butts & Marcum, 2017), team dynamics (Quintane et al.,
2013; Leenders et al., 2016; Schecter et al., 2018), organizational communication (Foucault
Welles et al., 2014), problem solving (Quintane et al., 2014), learning (Vu et al., 2015), leadership
and hierarchy formation (Lerner & Lomi, 2017), and collaboration and conflict (Lerner & Lomi,
2020a). In a recent study on coordination in surgery teams based on video-recordings Pallotti
et al. (2020) advocate the adoption of event-oriented research designs and models like the one we
discuss in this paper, as the best strategy for understanding continuous-time interaction in teams
and small groups (Leenders et al., 2016).

While the advantages of event-oriented research designs have long been recognized (Tuma &
Hannan, 1984), REMs for data with complex network-like dependencies have been proposed only
relatively recently (Butts, 2008; Brandes et al., 2009; Perry & Wolfe, 2013; Vu, 2012). Building
on these advances, in this paper we propose a relational event modeling framework for the longitu-
dinal analysis of interorganizational exchange and dependence relations based on temporal point-
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process models for directed interaction data (Perry & Wolfe, 2013; Vu et al., 2017; Amati et al.,
2019). We demonstrate the empirical value of the model in an analysis of direct and generalized rec-
iprocity in financial transactions. The empirical case is based on data that we have collected on the
complete set of interbank transactions recorded on a major European trading platform during the year
2006 (Finger et al., 2013; Fricke & Lux, 2015; Hatzopoulos et al., 2015; Finger & Lux, 2017).
Because their recording is accurate to the second, financial transactions provide an almost ideal illus-
tration of directed continuous-time interaction generating time-stamped sequences of relational
events connecting sender (lenders) and receiver units (borrowers). By re-framing financial transac-
tions as relational events, the analysis that we present clarifies how diverse forms of reciprocity
operate differently over distinct time frames to affect the micro-relational structure of financial
markets.

Financial markets show how relational concepts common in the study of interorganizational rela-
tions (see, e.g., Oliver, 1990; Baker et al., 1998; Smith & Chae, 2016; Bowers & Prato, 2018;
Cuypers et al., 2020) may be extended to the analysis of continuous-time interaction between orga-
nizations. Yet, the high-frequency data produced by financial markets make financial transactions a
relatively unusual—but not for this less theoretically interesting or empirically relevant—form of
interorganizational exchange (MacKenzie & Millo, 2003; Knorr-Cetina & Preda, 2006). For this
reason, we supplement our main illustrative empirical analysis with a replication study of interorga-
nizational relations among health care organizations as a common example of an empirical setting
where relational coordination among organizations has been extensively researched (Van de Ven
& Walker, 1984; Hoffer Gittell, 2002; Gittell, 2012).

Lost in (Network) Translation
A major line of theoretical development in the study of organizations posits that organizations
attempt to control uncertainty in their resource environments by actively establishing exchange
and dependence relations with other organizations (Selznick, 1949; Aldrich & Pfeffer, 1976;
Pfeffer & Salancik, 1978). The system of exchange relations generated by these control attempts
has been routinely represented in terms of interorganizational networks (Laumann & Marsden,
1982; Galaskiewicz & Wasserman, 1989; Galaskiewicz & Burt, 1991; Davis & Greve, 1997;
Gulati & Gargiulo, 1999; Lomi & Pattison, 2006). More or less explicitly, research based on
network representations of interorganizational relations has been inspired by the theoretical intuition
of Harrison C. White (White, 1992, Ch.9) according to whom: “Social (…) structures are traces from
successions of control efforts.” Empirical studies inspired by this view typically focus on the analysis
of “structure,” but cannot observe the “successions of control efforts” out of which “structure” ulti-
mately emerges.

Contemporary research on interorganizational networks is frequently based on sophisticated sta-
tistical models for network ties representing directly structures of dependence relations among orga-
nizations (Van de Bunt & Groenewegen, 2007; Atouba & Shumate, 2010; Stadtfeld et al., 2016). The
basic assumption of this line of research is that interaction between organizations takes the form of
network ties, defined as relatively stable and enduring relations between organizations (Van de Bunt
& Groenewegen, 2007). Interaction itself, however, is rarely examined directly. The analytical focus
is on network ties that are typically derived from an aggregation—and, often, dichotomization of
sequences of relational events connecting “sending” and “receiving” organizations (Lomi &
Pallotti, 2012).

This way of representing interorganizational exchange and dependence relations is clearly appro-
priate when relations are produced by relatively stable forms of attachment subject to inertial forces
like, for example, in the case of relational contracts that link organizations to their clients, suppliers,
and competitors (Monteverde & Teece, 1982; Levinthal & Fichman, 1988; Uzzi, 1996; Baker et al. ,
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1998; Lomi & Pallotti, 2012). Yet, this approach becomes increasingly inadequate when organiza-
tions regulate their dependence relations through high-frequency interaction like, for example, in
the case of financial transactions—where “buyers” and “sellers” manage their resources dependence
through continuous-time exchange. In this case, essential information may be lost in the translation of
sequences of time-stamped, instantaneous, and possibly repeated relational events into enduring
network ties. Three kinds of information loss are particularly limiting for empirical studies of
resource dependence relations between organizations.

The first type of information loss concerns the timing of the underlying relational events.
Neglecting information about who initiates and who receives action makes it more difficult to adju-
dicate agency (Gibson, 2003; Stadtfeld et al., 2017; Tasselli & Kilduff, 2021). Identifying direction in
the flow of action is obviously very important in research on task-oriented teams (Pallotti et al.,
2020). In the study of interorganizational relations, the aggregation of individual exchange events
into timeless network ties is particularly problematic because it involves the loss of information
about the temporal order of individual acts of exchange out of which patterns of resource dependen-
cies emerge (Pfeffer & Salancik, 1978). As it is clearly the case in the analysis of conversational turns
(Gibson, 2005), the loss of information on the timing of exchange events between organizations
would make the relation between them more ambiguous.

The second kind of information loss concerns the rates at which relational events are emitted by
the source organization (or sender) toward its target (or receiver). Patterns of interorganizational
exchange happen at rates whose speed is dependent on features both of the context and the relation.
For example, financial transactions—the specific interorganizational events we study in the empirical
part of the paper—typically happen at very high frequency, with a large number of actual events
occurring at short time scales—daily, or even hourly. Strategic alliances, joint ventures and
similar intercorporate relations involve episodic relational events with a duration that is sometime
established by contract. These intercorporate events may be reasonably approximated by stable
network ties (Gulati & Nickerson, 2008), or reconstructed in terms of aggregate counts of events
(Stuart, 1998). The majority of interorganizational relations fall somewhat within these extreme
cases—with streams of relational events connecting sender and receiver organizations that unfold
at a variable rates (Amati et al., 2019).

Finally, network mechanisms do not operate instantaneously—that is, it takes time for configura-
tions of networks ties to emerge and produce their effect. To illustrate consider reciprocity—a social
mechanism commonly studied in organizational research (Larson, 1992; Dabos & Rousseau, 2004;
Caimo & Lomi, 2015), and perhaps one of the most commonly recognized social mechanism in the
study of human organization (Gouldner, 1960; Coleman, 1988; Fehr et al., 2002). Reciprocation, the
process that produces reciprocity, takes time to operate. If actor i offers its support to actor j at time t1,
and j reciprocates at a later time t2, then the time period T = (t2− t1) is the internal timing of the
reciprocation process. Information about the internal timing of network mechanisms is the third kind
of information loss in the translation from events to ties. In the case of reciprocity that we have dis-
cussed, this happens when reciprocation (the mechanism) is reduced to reciprocity (its outcome).
A similar situation holds when transitivity (the mechanism) is reduced to path closure (its
outcome). When information on the internal timing of network mechanisms is ignored, it becomes
more difficult to distinguish between the corresponding short- and long-term effects. Kitts et al.
(2017) demonstrate the practical importance of this distinction in their study of interorganizational
exchange and dependence relations in a small community of Italian hospitals.

The observation that information may be lost in translation from relational “events” to network
“ties” is not reported here for the first time (Borgatti & Halgin, 2011; Stadtfeld & Block, 2017).
In fact, it maps onto the more general distinction between models for “event recurrences” and
“state transitions” developed in the context of early event history models in organizational
ecology and corporate demography (Hannan, 1989). As Marsden (1990) has clearly recognized,
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interpreting networks as units of analysis is possible only if assumptions are made about how to
abstract “relationships or ties” from sequences of observed micro-level relational events connecting
the actors. In the case of directed relational processes that we have discussed, the problem involves
information loss due to aggregation of sequences of time-stamped relational events into ties. In the
next section, we illustrate how newly derived REMs may be adopted to address this problem directly.

Recent Advances in Models for Relational Event Sequences
REMs afford representation of social relations at the same level of time resolution of the observed
data—for example, months, days, minutes, seconds. Their closeness to observed data gives
event-oriented models an obvious advantage over alternative longitudinal models based on
various forms of temporal aggregation. Even when available, sequences of relational events observ-
able in continuous time have been typically aggregated over time into binary cross-sectional network
panels (Tuma & Hannan, 1984). The resulting data structures are conceived as enduring connections
between social units and ultimately modeled using either Exponential Random Graph Models
(ERGMs) (Lusher et al., 2013) or Stochastic Actor-Oriented Models (SAOMs) (Van de Bunt &
Groenewegen, 2007; Snijders et al., 2010). The first attempt directly to model sequences of relational
events without aggregating relational events into ties was proposed by Butts (2008) a decade ago –
but the problematic distinction between relational events and relational states has a much longer
history in the analysis of social networks (Freeman et al., 1987; Marsden, 1990; Doreian, 2002).

More recent studies have introduced specialized models for the analysis of relational event
sequences. All REMs predict the occurrence of a relational event embedded in a sequence of time-
ordered events. However, their specification may refer to distinct statistical traditions. Former REMs
are closely related to event history analysis (e.g., Butts, 2008; Brandes et al., 2009; de Nooy, 2011;
Quintane et al., 2013) and have been progressively extended to the analysis of large-scale networks
(Vu et al., 2011a).

A more recent body of work links REMs to point-process models (Vu et al., 2011b; Perry &
Wolfe, 2013; Vu et al., 2017; Amati et al., 2019) for repeatable data, then emphasizing the estimation
of events’ occurrence rates rather than the duration between successive events (Hannan, 1989). As we
discuss below, the REM that we propose in this paper builds on this more recent line of research.

A last body of methodological and empirical research on REMs is rooted in SAOMs, thus assum-
ing that relational events are the product of utility-driven individual decisions (Stadtfeld &
Geyer-Schulz, 2011; Stadtfeld et al., 2017). The central feature of this approach is the decoupling
of temporal and social interdependence.

Specialized relational event models have been proposed for the analysis of two-mode (Quintane
et al., 2014) and multiplex networks (Lerner & Lomi, 2017). Vu et al. (2011b) introduced a
continuous-time regression model based on Cox (1972, 1975) for accommodating time-dependent
network statistics. Contextually, the authors exploited nested case-control sampling (Borgan et al.,
1995) for extending REMs to a more general relational setting where the counting process of rela-
tional events is placed on the edges rather than on the nodes (Vu et al., 2011b). For simplicity,
the model is developed only for non-recurrent settings—that is, settings where the creation of an
edge between two nodes only occurs at most once. Perry and Wolfe (2013) extended the model of
Vu et al. (2011b) to recurrent settings and multicast interactions—that is, those involving a single
sender and multiple simultaneous recipients—see the recent work of Lerner et al. (2021) for
recent progress on this front.

In turn, this latter body of work has promoted further extensions. Vu et al. (2015), for instance,
combined a flexible stratification method with nested case-control sampling to fit REMs with
more complex data structures, and show the scalability of the approach to very large data sets.
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More recently, Vu et al. (2017) implemented a marked point-process (Cressie, 1993) extension of
Perry and Wolfe (2013). The main advantage of this approach is to control for critical micro-
mechanisms that may connect the same nodes in a recurrent event network. The proposed model
extension accomplishes this task by decomposing the whole sequence of relational events into
two parts. The first involves event times modeled as counting processes. The second involves
event destinations or “marks” which can be modeled via discrete-choice functions.

One innovative aspect of this newly derived framework for REMs is being less computationally
intensive than other related approaches that have attempted to deal with the same issue (Butts, 2008;
Vu et al., 2011b).

The more recent work of Lerner and Lomi (2020b) assessed the reliability of REMs parameters
estimated under a nested case-control sampling that computes explanatory variables only for a
random subset of events while aggregating all events into the network of past events. Their empirical
results suggest that REMs can be reliably fitted to networks with more than 12 million nodes con-
nected by more than 360 million dyadic events simply by analyzing a sample of some tens of thou-
sands of events and a small number of controls per event.

Building on these recent experiences, in this paper we propose a point-process model for recurrent
events that further develops the combination of stratification and nested case-control sampling.
Specifically, we propose (i) a sender stratified REM that accounts for senders’ heterogeneity
defined on the composition of their receivers’ sets, (ii) a nested case-control sampling scheme that
updates, at each point in time, the risk set of each sender, and ultimately samples non observed
events on the basis of senders’ past interaction, and (iii) a classification procedure of time-dependent
statistics that distinguishes between short- and long-term network effects.

A Model for Relational Event Sequences
The REM that we introduce in this work provides a novel analytical framework for studying time-
ordered sequences of relational events in a “behavioral oriented framework” (Butts, 2008, p. 167).

In its current specification, the model represents an extension of Vu et al. (2015) and Lerner and
Lomi (2020b) on the basis of Vu (2012, p. 110) and Perry and Wolfe (2013). This approach improves
other parameterizations adopted in earlier studies—that is, Vu et al. (2011b), Perry andWolfe (2013),
Quintane et al. (2013), Vu et al. (2015), and Vu et al. (2017) by (i) incorporating intensity-based sta-
tistics—so that the strength of relations between senders and receivers can be modeled; (ii) allowing
the predictive value of past events for future event to decay over time—so that events occurred in the
more distant past have a weaker impact on future events; (iii) computing network effects over differ-
ent time horizons—so that the model can distinguish between short- and long-term effects, and
(iv) adopting a stratification procedure that alleviates concerns about how heterogeneity of the
sender units may affect the empirical estimates—an issue that becomes particularly salient as
sample size increases.

This problem was less prominent in prior studies of interorganizational exchange relations based
on REMs where the analysis was limited to small and relatively isolated organizational communities
(Kitts et al., 2017; Amati et al., 2019).

Model Definition
The model assumes that nodes join the network according to a stochastic process and create an edge
every time a new relational event occurs. In other words, at its core, the model is defined in terms of a
count process defined on network edges. Originally developed in survival and event history analysis,
the counting process approach provides now the analytical framework for modeling streams of rela-
tional events.
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The model that we present in the current paper places the counting process N on network edges
between sender i and receiver j. Let,

Nij t( ) = # directed interactions i → j in time interval 0, t[ ]{ }
.

In line with the most recent developments of REMs (Vu et al., 2011b; Perry &Wolfe, 2013; Vu et al.,
2015, 2017), the counting process Nij(t) can be modeled by its conditional intensity function λij(t).
Heuristically,

λij t( )dt = P{interaction i → j occurs in time interval [t, t + dt]}.

The Cox proportional hazard form (Cox, 1972) can be used to define the intensity function, that is

λij t|H t−( ) = Rij(t) · λi(t) · exp θ⊺s t, i, j
( )[ ]

, (1)

where H t− is the history of all past relational events right before time t, s(t, i, j) is a vector of time-
dependent network statistics, and θ is the vector of corresponding parameters to estimate. Rij(t) is the
“at-risk” indicator that takes value 1 if sender i can extend resources to receiver j at time t, and 0
otherwise. In other words, the opportunity for new relational events on the edge (i, j) exists only
if node j has already joined the set of i’s receivers. Ultimately, defining the risk set for the
network units of interest means specifying one or more non overlapping time intervals where rela-
tional events can occur.

In contrast to other similar modeling approaches (Butts, 2008; Vu et al., 2011, 2011?; Perry &
Wolfe, 2013; Vu et al., 2015), the intensity function of our model λi(t) varies across senders, so
that the heterogeneity related to unobservable senders’ characteristics is absorbed by these baseline
functions.

The Temporal Micro-Structure of Relational Event Sequences
Following a well-established practice in statistical modeling of networks, REMs statistics are defined
in terms of local configurations of ties generated by temporal patterns of dependence linking succes-
sive relational events (Snijders et al., 2006; Snijders, 2011; Amati et al., 2018).

Temporal patterns of dependence may be generated by a number of mechanisms such as, for example,
repetition, reciprocity, transitivity, and other kinds of triadic closure. In REMs, these temporal—rather than
spatial—patterns of dependence emerge from—and at the same give rise to structured sequences of events
that are then used to compute network-like statistics (Butts, 2008).

In REMs, the network statistics s(t, i, j) in (1) account for temporal dependencies among past
events. In particular, in the model specification that we introduce in this paper, the computation of
network statistics may involve a weight associated with each past event through a time-decay func-
tion f (t, Te

ij , α) modulating the contribution of past events through α such that:

f t, Te
ij , α

( )
= 1

t − Te
ij

( )α , (2)

where Te
ij refers to the exact time of the relational event e on the edge (i, j).

Intuitively, this time-weighting scheme (Daley & Vere-Jones, 2003) implies that relational events
close to the current time t are given more weight than events farther in the past. Network statistics
containing this term are included in our model.

To account for time-specific variations in network micro-mechanisms, our REM specification
allows for two distinct classes of network statistics. First, degree-based statistics that count the
number of sequences of directed relational events that crystallize into specific local structure of
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dependence. Second, intensity-based statistics that are normalized by the number of sequences of
relational events involving the same pair or groups of nodes. While degree-based statistics unfold
within short- and long-term temporal frameworks, their intensity based counterparts are time-
weighted in order to remove the possible collinearity with degree-based counterparts and then
reduce their correlation. Indeed, by design, network effects are nested one in the other, with more
complex structures containing simpler ones. In our model, shorter and longer temporal frames for
degree-based statistics are determined on the basis of a recency parameter expressed in number of
days. Instead, the temporal decay of intensity-based statistics is driven by the parameter α in (2).
In the empirical application, α is properly tuned in order to assign a constant weight to all the rela-
tional events occurring in a certain time span. While other REM specifications allow for time-
weighted statistics (see, e.g., Amati et al., 2019), the distinction between short- and long-term
network statistics is specific to our extension.

Figure 1 shows how local dependencies of interest may emerge from time-ordered sequences of
relational events. On a solid line that represent time, we depict individual acts of exchange linking
together three actors (A, B, and C) in a way that gives rise to direct and generalized reciprocity.
Figure 1a shows how two time-ordered relational events that channel resources in opposite directions
eventually crystallize in a sequence of reciprocal exchange. Figure 1b shows how a time-ordered
sequence of three relational events may concatenate in a cyclic triadic structure that reveals
actors’ preferences toward generalized exchange or generosity.

More specifically, in Figure 1a the resource transfer from A to B at time t1 is immediately fol-
lowed by a transfer from B to A at time t2. Linking together these relational events—like two
links in a chain—defines a micro-mechanism that is known as direct reciprocation. Figure 1b
applies the same logic expressed in Figure 1a and shows how the chain made of an open
two-path—that is, the sequence C → B → A–may close into a cyclic closure at a later time.

The discussion of some of the main local temporal structures that arise from relational event
sequences is organized around Table 1, which provides an intuitive graphical representation and
summary interpretation of the network statistics that we include in the empirical model specification
discussed later in the paper. Mathematical formulas associated with those network statistics are
reported in Appendix B.

Preferential attachment refers to a generic positive feedback mechanism whereby highly con-
nected nodes increase their connectivity faster than less connected nodes (Jeong et al., 2003).
When the process of interest is directed— that is, it implies a flow of material or symbolic resources
form a sender to a receiver—preferential attachment may be represented in terms of activity—the
tendency of organizations to establish relations with partners—or popularity—the tendency of orga-
nizations to be selected as partners (Stuart, 1998; Stuart & Yim, 2010).

The main implication of preferential attachment is that network nodes establish new edges as a
function of the number of edges that they have established in the past (Newman, 2001). For this
reason, empirical studies on interorganizational networks interpret preferential attachment as a
process that confers network nodes an accumulative advantage resulting in different logics of con-
nectivity (Powell et al., 2005), or prominence in an organizational field (Rosenkopf & Padula, 2008).

We model preferential attachment by means of two distinct sets of network statistics. To model
activity, we introduce “out-degree” and “out-intensity” statistics—both defined as functions of
unique receivers for each sender. To model popularity, we introduce “in-degree” and “in-intensity”
statistics—both defined as functions of senders for each receiver. While the out-degree statistic is a
simple sum of the number of receivers per sender, the out-intensity statistic is a weighted sum of
receivers per sender, in which the weights account for both the number of unique receivers per
sender, and the temporal relevance of the relation flow of resources form a sender to a receiver. A
similar distinction is made between the in-degree and in-intensity statistics.
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Reciprocity refers to the tendency of organizations to establish symmetric relations with partners.
Reciprocity involves role-switching within a dyad given that partners are simultaneously senders and
receivers (Vu et al., 2017). In studies of interorganizational relations, reciprocity is often viewed as a
stabilizing mechanism since non-reciprocated relations have an intrinsic tendency to become sym-
metric or, alternatively, to be dissolved (Rivera et al., 2010). Reciprocity is typically associated
with strategies of uncertainty reduction or avoidance because of its capacity to sustain mutual expec-
tations, obligations, and reputation (Laumann & Marsden, 1982; Coleman, 1988; Uzzi, 1997).

In REMs, repetition refers to the tendency of an observed relational event connecting a sender and
a receiver to be repeated in the future (Vu et al., 2017). Repeated events within the same dyad is a key
feature of relational systems (Freeman et al., 1987). Indeed, prior empirical studies of interorganiza-
tional networks have interpreted the tendency of network ties between partners to endure as a con-
dition for developing trust between partners (Gulati & Nickerson, 2008) and as a response to
uncertainty (Podolny, 1994; Beckman et al., 2004).

Figure 1. The emergence of local dependence structures from time-ordered sequences of relational events.
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Assortativity refers to the tendency of network nodes to connect on the basis of their similarity or
dissimilarity expressed in terms of degree (Snijders et al., 2010) or activity (Vu et al., 2017).
Assortative networks are characterized by connections between nodes with similar number of part-
ners or levels of activity. Disassortative networks, in contrast, are characterized by connections
between nodes of dissimilar degree (Newman, 2002) or activity (Lomi et al., 2014). Empirical evi-
dence of assortativity is mixed. Whereas interorganizational networks have been usually found to be

Table 1. Network Statistics in the Relational Event Model and Their Interpretation.

Network statistics Representation Interpretation

Out-degree A positive estimate of the out-degree coefficient may be taken as

evidence that organizations with a higher number of target partners

are more likely to send resources.

Out-intensity A positive estimate of the out-intensity coefficient may be taken as

evidence that organizations with high sending propensity in the past

tend to send more resources in the future.

In-degree A positive estimate of the in-degree coefficient may be taken as

evidence that organizations with a higher number of sender partners

are more likely to receive resources.

In-intensity A positive estimate of the in-intensity coefficient may be taken as

evidence that organizations with high receiving propensity in the past

tend to receive more resources in the future.

Reciprocity A positive estimate of the reciprocity coefficient may be taken as

evidence that organizations tend to send resources to partners that

they have previously received resources from.

Repetition A positive estimate of the repetition coefficient may be taken as

evidence that organizations tend to choose previous partners for

sending their resources in the future.

Assortativity by

degree

A positive estimate of the assortativity by degree coefficient may be

taken as evidence that organizations with many receiving partners

are more likely to send resources to organizations with many sending

partners.

Assortativity by

intensity

A positive coefficient of assortativity by intensity coefficient may be

taken as evidence that organizations with high sending propensity are

more likely to send resources to organizations with high receiving

propensity.

Transitive closure A positive estimate of the transitive closure coefficient may be taken as

evidence that organizations tend to send resources to the partners of

their partners.

Cyclic closure A negative estimate of the cyclic closure coefficient along with a

positive estimate of the transitive closure effect may be taken as

evidence of a hierarchical clustered exchange structure.

Sending balance Negative estimates of the shared partners statistics may be taken as

evidence of unbalanced exchange structures in the event network. In

other words, organizations are less likely to exchange with each

other if they share the same sending or receiving partners.
Receiving balance
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assortative, recent studies have occasionally found evidence of disassortative mixing (Zhao et al.,
2010).

In directed systems of exchange relations, closuremay present itself in a number of distinct forms,
such as transitivity and generalized exchange (Robins et al., 2009; Lomi & Pallotti, 2013). In general,
closure is associated with path-shortening—the behavioral tendency of organizations connected to
the same partners to become directly connected (Uzzi, 1997; Kogut & Walker, 2001). In our empir-
ical application we initiate four distinct types of closure-related network statistics—that is, “transitive
closure,” “cyclic closure,” “sending” and “receiving balance.” The network statistics associated with
the mechanisms of preferential attachment, reciprocity, repetition, assortativity, and closure are illus-
trated and explained in Table 1. Throughout the paper we keep our focus on the dynamics of direct
and indirect reciprocity—here operationalized through a cyclic type of closure.

Model Estimation and Interpretation
Following Cox (1975), we treat the conditional intensity function as a nuisance parameter and esti-
mate the vector of network statistics θ in (1) using partial likelihood.

To discuss our inference approach, let us consider a general form of partial likelihood—that is,

PL θ( ) =
∏
e∈E

exp θ⊺s te, ie, je
( )[ ]

∑
(i,j)∈R te( )

exp θ⊺s te, i, j
( )[ ] , (3)

where E is the set of all relational events during the observation time and R(te) is the risk set for the
event e at time te.

In many empirical applications, large networks of events produce correspondingly large risk sets.
Even if sparsity can be exploited to make computations more efficient, (Vu et al., 2011b and Perry &
Wolfe, 2013), the presence of temporal network statistics requires an appropriate approach. To make
the partial likelihood inference feasible, we combine stratification (Vu et al., 2015) and nested case-
control sampling (Borgan et al., 1995).

Introducing stratification alters the partial likelihood in (3). For the sender-stratified model, param-
eters in θ can be estimated by maximizing the partial likelihood

PL θ( ) =
∏
e∈E

exp θ⊺s te, ie, je
( )[ ]

∑
j∈R ie,te( )

exp θ⊺s te, ie, j
( )[ ] , (3a)

where the risk set Ri(ie, te) includes only the edges between sender i and the set of its receivers at
time te.

Under the sampling-based inference approach, for each event or case we randomly sample a
subset of nonevents or controls from the current risk set to compute the denominator sum in the
partial likelihood (3a). In other words, R(ie, te) is a case-control dataset of network statistics nested
in the event times—that is, a dataset in which the cases are the statistics (te, ie, je), while controls
are (te, ie, j), with j ≠ je. Consistency and asymptotic results of nested case-control sampling are illus-
trated by Borgan et al. (1995).

Thanks to the sparsity of network statistic changes, a small number of controls is sampled on the
basis of Lerner and Lomi (2020b). In the sender-stratified approach that we implement in this paper,
λi(t) helps to reduce the computational complexity and to increase the efficiency of the sampling
scheme.

The outcome variable associated with the observed relational event takes value 1 for cases or
events and 0 for controls or nonevents, while the explanatory variables are the network statistics
(te, ie, je) and (te, ie, j). The partial likelihood is maximized by using the same estimation algorithm
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that is adopted to estimate conditional logistic regression models (Vu et al., 2017), and standard
errors of parameter estimates are obtained by computing the inverse of the Hessian matrix.

We developed an ad-hoc Java package to produce the nested case-control datasets that feed Cox
proportional hazard procedures for the estimation of network effects. An examples of such routines is
clogit in R. More details on the sampling steps are discussed in Appendix C.

Even if our REM is defined in terms of a conditional logistic regression, interpreting parameter
estimates requires particular care. Quantities of interest like odds ratios can only be interpreted heu-
ristically as the fundamental interdependence among network statistics makes ceteris paribus
assumptions particularly implausible. In discussing the results, we provide an interpretation of
parameter estimates that is based on the sign and the odds ratios of the parameters. Positive values
of parameter estimates reveal an increase in the likelihood of observing the corresponding
micro-mechanisms.

A significant and positive value for direct reciprocity, for example, would be taken as evidence
that organizations are more likely to select as partners other organizations with which they have
exchanged resources in the past. Similarly, a significant and positive value for transitive closure
would be taken as evidence that resource exchange is more likely to be observed between organiza-
tions sharing the same partners.

Empirical Setting: The European Interbank Market
Banks are required by central financial authorities to hold an appropriate amount of liquid assets as
reserves needed to face sudden and unexpected liquidity shortages. However, in the course of their
activities, banks do not always manage to satisfy these liquidity constraints. Borrowing liquidity of
suitable maturities on the interbank market is a legitimate way to cover liquidity shortfalls. The inter-
bank market allows banks facing contingent liquidity constraints and banks willing to invest excess
liquidity to manage their mutual resource dependencies through a technology-based market interface.

The European interbank money market is a specialized market for liquidity that is designed to
facilitate exchange of cash equivalent assets through dedicated credit lines. Funds are transferred
via high-frequency bank-to-bank transactions that commonly involve the purchase and sale of
highly liquid short-term debt securities. These instruments are typically issued in units of at least
0.05 millions and tend to have overnight maturities.

Regarding overnight transactions, we can say that for each market participant liquidity require-
ments vary continuously during the trading period, and market roles are fluid in the sense that par-
ticipants may, at any time, decide to buy or sell liquidity.

No single transaction is sufficient to satisfy liquidity requirements once and for all. Banks may
participate in the market as sellers when their liquidity requirements are temporarily satisfied and
have excess liquid assets.

Several studies have examined the network of credit relations between European banks. In the
typical empirical paper, the network of trading relations is reconstructed by aggregation of events
into network ties, which is done by considering individual transactions as expressions of durable
trading relationships. De Masi et al. (2006) and Iori et al. (2007), for example, examined the presence
of clustering in the aggregate network of interbank transactions. Iori et al. (2008) and Finger et al.
(2013) showed that the interbank market exhibits random network qualities at the daily scale, with
systematic structures emerging over longer periods like months or quarters. In this regard, Bianchi
et al. (2020) have recently shown that quarterly-based patterns of reciprocal exchange are sensitive
to exogenous shocks induced by changes in the global economic scenario. However, in these studies
doubts linger that the empirical regularities reported could in fact be the product of aggregating
sequences of transactions—at the daily level in the case of Iori et al. (2008), or according to
“various horizons of time aggregation” in the case of Finger et al. (2013). This point is illustrated
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and discussed in a recent study comparing estimates of REMs and SAOMs on data of the interbank
money market collected between 2006 and 2009 for the specific purpose of documenting changes in
market micro-structure brought about by the financial crisis (Zappa & Vu, 2021).

By avoiding time aggregation, REMs afford exploration of potential differences between short-
and long-term patterns of interaction—without treating the latter as a necessary consequence of
the former. In available studies on the European interbank market the focus on market efficiency
encourages an interpretation of short-term variations as random fluctuations around a long-term equi-
librium rather than structural signals requiring autonomous interpretation.

In the context of the present study, the interbank money market provides a particularly useful and
stringent testing ground for models of interorganizational exchange based on relational events.
Useful, because REMs help to reveal the micro-organizational structure of the market starting
from individual transactions. Stringent, because the high-frequency of the transactions allows us
to test the model under extreme empirical conditions. The purpose of the replication study that
follows the main empirical illustration is to explore the extent to which the REMs may be specified
and estimated on more conventional interorganizational settings—that is, settings characterized by
more durable collaborative relations produced by more complex and less intermittent coordination
requirements among health care organizations (Provan & Milward, 1995). The replication study is
particularly useful also for testing the properties of a model explicitly designed for the analysis of
samples of hundreds of thousands—perhaps even millions of observations (Lerner & Lomi,
2020a)—when “scaled down” to analyze much smaller samples containing few thousands—or
even only few hundreds—of observations (Breiger, 2015).

Data
The data that we use in the main empirical illustration contain information on time-stamped unse-
cured interbank transactions recorded on the e-MID trading platform in 2006. The e-MID electronic
interface serves as the reference marketplace to trade interbank liquidity in Europe. Thanks to its
special real-time gross settlement system, e-MID guarantees that liquidity is available at a low
price and managed flexibly. Availability of liquidity and its low price are assured by the reserve main-
tenance system operated by the European Central Bank. The e-MID trading platform is open every
day fromMonday to Friday and from 9 am to 5 pm. During the 30 min that anticipate the opening and
follow the closure, it is also possible to exchange liquidity, and occasionally banks trade liquidity
before 9 am and after 5 pm. So, every day, the trading activity is concentrated within 9 hours.
Demand and supply of liquidity are updated every few minutes or seconds in high-frequency
markets like e-MID. For instance, during the year 2006, within the typical trading day, the inter-arrival
time between two consecutive transactions is, on average, 89.4 seconds.

We follow prior studies based on the same data source (see, e.g., Finger et al., 2013; Fricke & Lux,
2015; Bianchi et al., 2020) and restrict the analysis to the set of transactions taking place in the over-
night segment of the European interbank money market, where credit extensions need to be paid back
by the beginning of the next trading day. The e-MID overnight market offers a comprehensive view
of interbank lending, and represents about 85% of the total volume of loan contracts exchanged on
the market (Beaupain & Durré, 2008).

Besides its importance in terms of size, the analysis of the overnight segment is relevant also to the
understanding of trading dynamics in the European interbank market. Thanks to high-frequency
transactions, the overnight market absorbs short-term liquidity shocks and progressively adjusts
the liquidity positions of credit institutions. Moreover, and more substantially, in short-term loans
utilitarian motivations to trade prevail over speculative ones, thus reinforcing the relationships
among credit institutions. Both these features make the overnight segment of the European interbank
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market an ideal empirical setting to investigate the emergence and development of distinct micro-
mechanisms of exchange that emerge from the collection of time-stamped relational events.

The e-MID market takes the form of a multilateral screen-based trading platform where registered
banks can electronically transfer interbank deposits by adhering to the market regulation. Trades are
public in terms of duration, amount, rate, and time. The e-MID trading system is quote-driven.
Market participants that are willing to trade can reveal their intentions to the market by posting a
quote (direct order) specifying the setting of the credit contract. The market operator in this position
is called quoter. If the deal is attractive for another market actor, this can actively hit the pending
quote, disclose the identity of its potential trading counterpart, and eventually send the order back
to close the deal. The market operator is this position is called aggressor. A snapshot of the
e-MID trading mechanism is illustrated in Figure 2. On the e-MID market, banks know, at each
instant in time, what banks are available to trade and what banks have reached a market deal. In
other words, banks receives real-time updates on who trades with whom, then revealing social moti-
vations to trade with direct and indirect counterparts.

The output of e-MID trading is a time-stamped dataset like that depicted in Figure 3. Each row in
the dataset is a transaction that is public in terms of duration, time (precise to the second), amount (in
millions of EUR), and rate. The identity of the banks involved in the trading of overnight funds is
provided by unique identification codes that reveal banks’ country of origin and their role.
Lenders and borrowers of liquidity are identified on the basis of aggressors’ side of the market.
Banks that lend liquidity have a sell label, while banks that are in need of borrowing liquidity
have a buy label.

Our sample consists of 90,368 overnight transactions occurred in year 2006 among 172 banks.
Transactions are not uniformly distributed within the 255 trading days. The daily number of observed
transactions ranges from 135 to 570, with an average of 354.38 transactions per day. Among the 172
organizations that are active on the e-MID market, only 158 credit institutions act as lenders of over-
night liquidity. Transactions are not uniformly distributed among lenders. The trading activity of the
25 most active lenders is 56.22% of the whole credit extensions and this percentage increases to
78.31% when considering the first 50 most active lenders. The distribution of overnight transactions

Figure 2. Trading mechanism on the e-MID platform.
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per sender is then very skewed to the right, with few credit institutions having many more transac-
tions than the average value.

Orienting Questions
The empirical analysis is guided by the general idea that temporal configurations of event sequences
have predictive value for future events. The focus of the empirical analysis narrows on configurations
of event sequences that extant studies of interorganizational dependence and exchange relations have

Figure 3. Distinctive features of e-MID transactions. Quoters and aggressor are market roles of e-MID

market participants. Senders are liquidity lenders and receivers are liquidity borrowers. By design, pay back

transactions are not reported in the available dataset.
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connected to social mechanisms of theoretical relevance. More specifically, we ask three questions of
broad theoretical relevance and contextual empirical interest. The first is: To what extent are
exchange relations between banks reciprocated? In other words, how stable are the institutionally
defined roles of “lender” and “borrower” that make market transactions possible? This question is
important because the stability of market roles is a core feature of markets as institutions designed
to facilitate exchange (White, 1981; Leifer, 1988; Podolny, 1994; Leifer & White, 2004). The
answer to this question depends on the propensity of the banks to reciprocate lending relations or,
in other words, the propensity of borrowers to lend liquidity to their lenders. When this happens, rec-
iprocity erodes the boundaries defined around market roles.

The second question is: To what extent is reciprocity restricted to the parties directly involved in
a financial transaction? Generalized reciprocity—also known as generalized exchange (Bearman,
1997)—emerges when direct reciprocity transcends the boundaries of the parties involved in a specific
transaction, and gives rise to a cyclical sequence of events. This question is important because: “In gen-
eralized exchange, the rewards that an actor receives usually are not directly contingent on the resources
provided by that actor; therefore free riding can occur” (Yamagishi & Cook, 1993, p. 235). The answer
to questions about generalized exchange depends on the possibility to identify transactions that “flow
through all parties in a cycle before a giver can become a taker” (Bearman, 1997, p. 1389).

Finally, we ask: To what extent are future transactions embedded in transitive sequences of past
transactions? In other words, to what extent sharing partners is predictive of direct exchange? This
question is important because triadic closure of this kind is frequently associated with the presence
of trust (Coleman, 1988) and hierarchical order (Lerner & Lomi, 2017)—all essential elements that
support market exchange by diffusing reputation and curbing opportunistic behavior (Williamson,
1979; Bradach & Eccles, 1989; Powell, 1990). The answer to questions about transitivity depends
on the possibility to identify sequences of transactions between banks sharing the same transaction
partners.

The tendency of interorganizational exchange events to become more or less likely when embed-
ded in reciprocated, cyclic, and transitive sequences of past exchange events is what we examine in
the empirical parts of the paper that follows. These forms of historical embedding are important not
only for their predictive value, but also because they may sustain role fluidity (direct reciprocity),
generalized exchange (indirect reciprocity), and cohesion (transitive closure). These are fundamental
mechanisms underlying market exchange when the trustworthiness of potential exchange partners
must be assessed, but cannot be directly observed. This is a theme of general importance in the
study of exchange relations between organizations operating in financial markets (Podolny, 1994).
A number of studies are available that demonstrate the direct relevance of these questions also for
organizations operating in a considerable variety of different environments (Shipilov & Gawer,
2020), including organizations in the field of healthcare (Scott, Ruef, Mendel & Caronna, 2000)—
the field that provides the context for our replication study.

Empirical Illustration
We estimated two models, both including degree- and intensity-based effects. Degree-based network
statistics are computed by counting the number of local structures induced by time-ordered sequences
of relational events as shown in Figure 1. Their intensity-based counterparts are computed by weight-
ing the network effects through a temporal decay parameter α, and eventually normalized by the total
number of resource transfer events, so that a weight is also associated with the number of unique
trading partners per each sender of overnight funds.

We add to our model specifications a monadic covariate indexing the nationality of each bank to
control for home bias in exchange partner selection—a well-known tendency in financial markets
(Strong & Xu, 2003).
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In the baseline model (M0) the effects of interest are computed over the entire observation period.
In the full model (M1), the same effects are computed over two distinct temporal frames to capture
the trading dynamics in the short- and long-term, respectively. In our empirical application, short-
term effects are computed by counting the network configurations of interest within a temporal
frame of one trading day—that is, approximately 9 hours (8:30 am–5:30 pm). The corresponding
long-term counterparts are computed with respect to the whole trading year 2006. In an empirical
setting where trading occurs on a high-frequency scale and loan contracts have overnight duration,
setting the short-term framework equal to one business day is a natural choice.

For the purposes of our illustration, the decay parameter α is set equal to 1 so that tradings occur-
ring within one day are equally weighted. Extensive experimentation suggests that changing α within
a reasonable range does not affect the results we report. While this may not be true in general, in the
specific case under discussion this may be due to the fact that all the transaction are overnight—that
is, have the same time horizon—and occur at very high-frequency—that is, every few seconds or
minutes.

Best empirical practice suggests choosing recency and decay parameters with reference to the
empirical setting that is being examined (see e.g., Amati et al., 2019), and using heuristic methods
based, for instance, on grid search (Daley & Vere-Jones, 2003).

In the current section, we discuss empirical results that refer to direct reciprocity, generalized
exchange, and transitivity because of their substantial relevance in generating more complex micro-
mechanisms of connectivity as well as desirable systemic outputs like, for instance, cooperation,
cohesion, and trust. We also comment briefly on the analysis of repetition, the core social mechanism
in sequences of relational events.

The full empirical estimates, and the complete commentary to all the degree- and intensity-based
effects included in both models M0 and M1 are reported in Appendix A in Table A1. Details on the
estimation procedure and on the nested case-control sampling scheme in particular may be found in
Appendix C. In line with our orienting questions, below we focus on the effects of direct theoretical
interest related to direct and generalized reciprocity, transitivity, and repetition. While commenting
empirical results that are reported in Table 2, we emphasize the differences between short- and long-
term effects, and between degree- and intensity-based patterns of reciprocated exchange.

We propose a heuristic interpretation based on odds ratios since our REM has been ultimately
defined as a conditional logistic regression for matched case-control data. For parameter estimates
associated with network effects of specific theoretical interest, we also report what we call the
“odds for high values”—a term that refers to the odds computed at two standard deviations above
the mean of the value of the corresponding network statistic. We do so to provide a sense of the
range of the strength of the effects implied by the empirical estimates.

The odds implied by degree-based direct reciprocity (exp (0.117) = 1.12) in M0 suggest that the
more banks have engaged in reciprocated exchange in the past, the more they tend to reciprocate
future transactions. Specifically, within any dyad, an increase by one standard deviation in the
number of transactions increases, on average, the odds that the next transaction will be reciprocated
by 12%. Since direct reciprocity is the fundamental mechanism for more complex structures of
dependence, the analysis of direct reciprocity needs further investigation and, to this purpose, we
computed the odds for high values of directed reciprocity. The odds
(exp (estimate × 2 × σ(reciprocity)) = exp (0.117 × 2 × 11.26) = 13.94) are significantly larger
than the simple odds implied by degree-based reciprocity. Such a result signals that for high
levels of past direct reciprocity, the odds that the next event will be reciprocated increase by approx-
imately 14 times. Together, these results seem to suggest that direct reciprocity is a core mechanism
supporting financial transactions. Direct reciprocity also suggests that market roles are contingent on
individual transactions—that is, credit institutions may act as liquidity lenders, as well as liquidity
borrowers.
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The tendency toward reciprocity emerges also when considering intensity-based reciprocity—that
is, reciprocation of transactions occurred within recurrently trading dyads. While degree-based rec-
iprocity captures the simple propensity of European banks to switch their roles of buyers and sellers,
intensity-based reciprocity reveals the tendency towards reciprocation within well-established
trading partners. The odds for intensity-based direct reciprocity (exp (0.025) = 1.025) reveal that,
within any dyad, an increase by one standard deviation in the number of past reciprocated transac-
tions increases the odds that the next transaction will be reciprocated, within the dyad itself, by
2.5%. Similarly, within the same dyad, for high levels of past direct reciprocity, the odds that the
next event will be a reciprocated event approximately doubles (exp (0.025 × 2 × 13.98) = 2.01).

Jointly interpreted, the estimates of direct reciprocity parameters suggest that European banks par-
ticipate in e-MID trading platform both as buyers and sellers. The tendency toward direct reciprocity
is particularly notable with occasional trading partners, and in the presence of high levels of interac-
tion, thus revealing that being active members on both sides of the market interface is a strong signal
of creditworthiness. However, the estimates of intensity-based direct reciprocity reveal that, with
well-established trading partners, European banks usually stick to either market roles, then suggest-
ing that direct reciprocity works as a resolution mechanism aimed at satisfying unexpected liquidity
needs. In summary, the estimates reveal that market roles tend to be stabilized by repeated transac-
tions with the same partner.

When analyzing the temporal dynamics of generalized reciprocity, we narrow our focus on cyclic
closure, or generalized exchange. Model M0 suggests evidence against the presence of generalized
exchange during the whole period of observation. We notice that the odds of observing a direct trans-
fer of liquidity from the former borrower j (exp(−0.046) = 0.95) to the former lender i decreases of
∼5% when this transaction is preceded by an open two-path—that is, a sequence of events
i → h → j—that connects actors i and j through a third party h.

M0 reveals a general tendency of e-MID traders toward transitive relations. The odds implied by
transitive closure (exp (0.478) = 1.61) suggest that a transaction from lender i to borrower j is more
likely to occur when this is preceded by an open two-path. Overall, a positive parameter value for
transitive closure suggests the presence of a hierarchical ordering among the banks endogenously
arising from exchange relations.

Table 2. Estimated Coefficients and Corresponding Standard Errors (SE) of the Relational Event Model With

Recency Window Equal to 1 Day and α Equal to 1.

M0 M1

Estimate SE Estimate SE

Reciprocity (long-term) 0.117*** 0.009 0.062** 0.028

Reciprocity (short-term) 0.040 0.026

Reciprocity (intensity) 0.025*** 0.007 0.020*** 0.007

Cyclic closure (long-term) −0.046*** 0.013 0.130*** 0.035

Cyclic closure (short-term) −0.178*** 0.031

Transitive closure (long-term) 0.478*** 0.035 0.716*** 0.066

Transitive closure (short-term) −0.209*** 0.054

Repetition (long-term) 1.162*** 0.021 −0.393*** 0.055

Repetition (short-term) 1.662*** 0.057

Repetition (intensity) 0.467*** 0.007 0.455*** 0.007

Number of observations 271,104

AIC 99,166.51 95,895.41

*p < .10, **p < .05, ***p < .01.
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Finally, we comment on the results related to the baseline tendency toward repeated events or
“repetition.” The odds for degree- and intensity-based repetition are both positive and reveal the
overall tendency towards repetition of past trades with the same partner. More specifically, for
any pair of trading banks (i, j), an increase by one standard deviation in the number of repeated trans-
actions increases the odds that the next transaction will occur again within the same dyad by approx-
imately three times (exp (1.162) = 3.20). The same conclusion holds when considering intensity-
based repetition. In presence of preferential trading relations, the odds of extending new overnight
credit to a frequently contacted borrower increases by 60% following an increase by one standard
deviation in the number of past transactions.

In M1, we compute degree-based effects over different time frames that define short- and long-
term network statistics. Long-term statistics count the number of configurations of interest during
the full observation period, while short-term statistics evaluate the same configurations during one
trading day.

A likelihood ratio test for nested models suggests that introducing short- and long-term network
effects in M1 (log-likelihood = −47,923.71) provides a more informative representation of the
trading dynamics than M0 (log-likelihood = −49,568.25). With a p-value <.001, we can say that
M1—where effects vary over short and long temporal frames—is a significant improvement over
M0—where a single time frame is assumed. The same evidence is provided when comparing the
values of the Akaike Information Criteria (AIC) of M0 (99,166.51) and M1 (95,895.41) to adjust
for differences in the number of parameters. Comparing the values of the AIC of M0 andM1 suggests
that introducing short- and long-term network effects in M1 provides a more informative represen-
tation of the trading dynamics than M0.

As empirical results in M1 document, distinguishing between short- and long-term effects is
crucial to highlight that the micro-mechanisms that bring buyers and sellers together on the
trading floor do not evolve uniformly over time.

Past reciprocated transactions have a positive impact on future transactions both in the short- and
in the long-run, thus signaling that reciprocity operates to support and facilitate resource exchange
over multiple temporal frameworks. Interestingly, a positive parameter estimate associated with
short-term repetition suggests that the tendency of current transactions to affect future transactions
plays out over a single trading day. Surprisingly, within the same dyad, the stream of transactions
is not uniformly distributed over longer terms, then suggesting that liquidity needs are usually
adjusted within shorter temporal horizons by linking with either occasional or well-established
trading partners—as the positive but weaker intensity-based repetition parameter shows.

Empirical results supported by M0 and M1 provide clear answers to our orienting questions. First,
direct reciprocity emerges quickly in exchange relations. Its influence remains detectable over longer
time periods and operates regardless of trading partners. However, generalized exchange takes longer
time to emerge. Indeed, in the long-run, the positive tendency towards generalized reciprocity
emerges contextually with weaker tendencies towards direct reciprocity—a result supporting the
idea that actors receive a reward that is contingent on its network of direct and indirect borrowers,
rather than on the resources in the exchange system. These findings are coherent with the dynamics
of transitive closure emerging in the longer run as a stabilizing maket form.

Replication Study
Financial markets are not unusual empirical settings for management and organizational research
(Baker, 1984; Abolafia & Kilduff, 1988; Podolny, 1994; Park & Podolny, 2000). Because of their
very high frequency, intermittency, and volatility, however, financial transactions are rarely consid-
ered representative examples of interorganizational relations despite considerable research arguing—
and demonstrating—the opposite (Knorr-Cetina & Bruegger, 2002; Knorr-Cetina & Preda, 2006;
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Abolafia, 2020). Does the model we have discussed apply only to high-frequency exchange like
financial transactions?

To address this question, we now replicate the model estimated in the prior section on data on
low-frequency collaborative patient-sharing relations among health care organizations.
Patient-sharing is a well-recognized and extensively studied collaborative relation connecting orga-
nizations in the field of healthcare (Iwashyna et al., 2009; Veinot et al., 2012; Herrigel et al., 2016).
Patient-sharing happens when a hospital decides to involve a partner hospital in the resolution of a
clinical case (Lomi & Pallotti, 2012). As such, patient-sharing is almost an archetypical form of inter-
organizational collaboration involving significant levels of explicit communication and coordination
between partners (Provan & Milward, 1995). Interhospital patient-sharing and transfer relations are
frequently represented as interorganizational networks (Amati et al., 2021; Iwashyna et al., 2009).

The data we analyze in the replication study is extracted from a larger comprehensive database
that has supported prior studies of inter-hospital coordination and patient-sharing. For detailed infor-
mation on the empirical context, we refer readers to published articles based on the original data
(Lomi et al., 2014; Stadtfeld et al., 2016; Mascia et al., 2017; Kitts et al., 2017; Amati et al., 2019).

The dataset consists of 3,264 patient-sharing events occurred over a period of 2 years among 31
hospitals located in a regional community located in Southern Europe. Each hospital is associated
with a nodal covariate known as “Local Health Unit” (LHU) indicating the membership of each hos-
pital to one of the administrative/territorial units in which the region is partitioned. The analysis is
developed specifically for this paper for the purpose of demonstrating the flexibility of the model,
and establishing its analytical value across empirical settings. More specifically, in this replication
study we seek to (i) establish the general empirical value of differentiating between degree- and inten-
sity-based effects and especially between short- and long-term network effects in conventional inter-
organizational settings; (ii) demonstrate that the insights of the model are not dependent on the
underlying event rate, and (iii) show that the sender-stratified nested case-control sampling
scheme can be flexibly adapted to samples with an event space of very different size. In particular,
the replication study demonstrates that the model scales up, and just as easily “scales down” to event
networks with a small number of nodes connected by low-frequency events (Breiger, 2015).

In the replication study we keep the same model specification as in M0 and M1 to make the two
analyses directly comparable. However, because the granularity of patient-sharing events is much
lower than high-frequency trading—few patient-sharing events versus thousands of credit extension
per day—we differently tuned recency and temporal decay parameters. In this regard, the current
empirical illustration provides some guidelines on how to parameterize recency and decay parameters
from statistical as well as empirical considerations.

Following prior empirical studies (Amati et al., 2019), we set the recency parameter for short-term
statistics equal to 7 days and the decay parameter equal to 0.6—that is, the value of α that maximizes
the model AIC. On the one hand, a short-term period of 7 days is capable of capturing regularities in
patient-sharing on a weekly basis, and, in turn, account for “day-of-the-week” variations (Barnett
et al., 2002; Becker, 2007). On the other hand, a value of α = 0.6 indicates that referral events hap-
pening 6 weeks before the current event have a negligible weight in the determination of network
effects.

Differences in the event rates provide a unique opportunity to test the flexibility of our sampling
scheme based on sender-stratified, nested case-control sampling. Given that the network has only 31
nodes, for each observed event, we sample the whole set of nonevents. For each observed patient-
sharing event we sample all the 29 possible nonevents that could have occurred between the
sender and all its 29 potential counterparts. It is straightforward to adapt our case-control sampling
strategy to cases where sampling is not needed as all the possible nonevents may be considered.

Empirical estimates are reported in Table 3. To facilitate the comparison of results between the
two empirical examples, we focus on the dynamics of direct and indirect reciprocity when discussing
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the new empirical estimates. As in the prior analysis, it is important to keep in mind that the inter-
pretation of the estimates is essentially heuristic. Comparative assessment of statistical significance
of parameter estimates is only qualitative, and has to be understood in the context of samples con-
taining a very different number of observations.

The odds implied by long-term degree-based reciprocity in model specification M0
(exp (0.087) = 1.10) suggest that future patient-sharing events between partner hospitals are more
likely to be observed between reciprocating partners. Specifically, within any pair of hospitals, an
increase by one standard deviation in the number of mutual patient-sharing increases, on average,
the odds that the next patient-sharing event will be reciprocated by 10%. Compared to high-
frequency trading, the tendency to reciprocate a patient-sharing event is, on average, twice as
strong as the tendency among banks. The odds implied by intensity-based reciprocation statistic
(exp (0.252) = 1.29) show that a unit increase in the standard deviation of mutual patient-sharing
occurred within the same pair of hospitals and in the past six weeks, increases the odds that the
next transaction will be reciprocated by 29%.

Patient-sharing is not significantly shaped by generalized exchange. The odds implied by cyclic
closure (exp (− 0.201) = 0.82) reveal that observing a direct patient-sharing from the hospital j to
hospital i decreases by ∼18% when this patient-sharing event is preceded by an open two-path
involving a third hospital h.

The absence of cyclic structures in the patient-sharing network is balanced by a strong preference
toward transitive closure. The odds implied by transitive closure (exp (0.363) = 1.44) suggest that a
patient-sharing event from sending hospital i to receiving hospital j is 44% more likely to occur when
this is preceded by an open two-path connecting i to j through an intermediary h.

Predictably, the parameter associated with the repetition of patient-sharing is considerably smaller
than its counterpart for bank transactions. The parameters associated with repetition of patient-
sharing—in its degree- and intensity-based forms—are both positive, thus singling the overall ten-
dency of hospitals to share patients with specific partners. The odds implied by long-term repetition
(exp (0.363) = 1.24) tell that a one standard deviation increase in the number of past patient-sharing
events between hospital i and j, increases the odds that the next patient-sharing event will occur again
between the same partner hospitals by ∼24%—against the 300% of high-frequency transactions. We

Table 3. Estimated Coefficients and Corresponding Standard Errors (SE) of the Relational Event Model

Estimated on the Patient Transfers Dataset. Recency Window Equal to 7 Days (1 Week) and α = 0.6.

M0 M1

Estimate SE Estimate SE

Reciprocity (long-term) 0.087*** 0.017 0.118*** 0.030

Reciprocity (short-term) −0.032 0.026

Reciprocity (intensity) 0.252*** 0.031 0.228*** 0.032

Cyclic closure (long-term) −0.201*** 0.066 −0.196** 0.080

Cyclic closure (short-term) 0.021 0.054

Transitive closure (long-term) 0.363*** 0.056 0.405*** 0.074

Transitive closure (short-term) −0.121*** 0.046

Repetition (long-term) 0.219*** 0.017 0.044 0.030

Repetition (short-term) 0.212*** (0.028)

Repetition (intensity) 0.937*** 0.045 0.939*** 0.045

Number of observations 97,920

AIC 10,831.48 10,746.51

∗p < .1; ∗∗p < .05; ∗∗∗p < .01.
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also notice that the repetition of past patient-sharing events is particularly intense with partners that
have repeatedly accepted a large number of patients in the past. In fact, the odds associated with
intensity-based repetition (exp (0.937) = 2.55) show that, for a unit increase in the standard deviation
of past patient-sharing from hospital i to its well-established counterpart j, the odds of sending
patients to a frequently targeted hospital increases by 2.5 times.

The distinction between short- and long-term effects in M1 reveals crucial insights on variations in
the internal time structure of network mechanisms. While short-term reciprocity is not significant in
both empirical settings, the magnitude of long-term degree-based reciprocity for hospital data is twice
as large as its counterpart for overnight bank transactions. The odds implied by long-term degree-
based reciprocity (exp (0.118) = 1.13) reveal that, within any pair of hospitals, an increase by one
standard deviation in the number of reciprocated patient-sharing events increases the odds that the
next patient-sharing event will be reciprocated in the next six weeks by 13%. Intensity-based time-
weighted reciprocity is larger for hospitals than banks. When focusing exclusively on the dynamics
of reciprocated patient-sharing events, we notice that reciprocity takes, at least, six weeks to operate
and its effects are prominent in the context of repeated patient-sharing. In fact, the odds for intensity-
based time weighted reciprocity (exp (0.228) = 1.26) show that, within frequently contacted target
hospital, an increase by one standard deviation in the number of mutual patient-sharing events
increases the odds that the next patient-sharing event will be reciprocated during the next six
weeks by 26%.

The positive effect of transitive closure is present in both empirical settings in the long-run.
Patient-sharing events tend to be organized around clusters of organizations that preferably share
resources with the partners of their partners. In contrast, transitive closure does not emerge across
shorter temporal frames, thus suggesting that, in the short-term, two-paths do not tend to generate
transitive triads.

Discussion and Conclusions
Exchange relations between organizations are frequently reconstructed as networks of interdependent
network ties (Lomi & Pattison, 2006). This analytical strategy has sustained important theoretical
progress and considerable empirical success in studies of interorganizational exchange and depen-
dence relations (Galaskiewicz & Wasserman, 1989; Galaskiewicz & Burt, 1991; Mizruchi &
Galaskiewicz, 1993), and in the analysis of social networks more generally (Borgatti et al., 2009;
Brass et al., 2004; Butts, 2009; Robins & Kashima, 2008; Snijders, 2011). Theoretical progress
and empirical success have contributed to cast aside problems inherent in the aggregation of time-
ordered sequences of relational events into network ties (Freeman et al., 1987; Marsden, 1990).
The point-process variant of the REM that we have introduced, discussed, and illustrated in this
paper is an attempt to establish a principled analytical framework to address this issue by avoiding
the information loss implied by time aggregation in the analysis of interorganizational relations (Vu
et al., 2017).

What makes relational event models “social” is their focus on complex temporal dependencies
arising from flows of events linking senders and receivers of action, and their ability to connect
these dependencies to specific social mechanisms of theoretical interest (Butts, 2008). In this
sense—and despite the distinctive differences that we have discussed—the purpose of REMs is
broadly consistent with that of other statistical models for the analysis of social networks based
on assumptions of dependence about network ties (Pattison & Robins, 2002; Snijders et al., 2006;
Snijders, 2011).

While summarizing the current methodological debate on statistical models for network dynamics
(Stadtfeld et al., 2017), we have emphasized three distinctive advantages of event-oriented models for
networks. The first is that REMs maintain all the information available about the natural time-order of
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events. This happens because relational events are directly observable, while network ties typically
are not. This feature makes REMs particularly appropriate to study dependence and exchange
because who depends on whom ultimately depend on the order of exchange events over time. The
second advantage of event-oriented models is that they facilitate the inclusion of information on
the intensity—and not just the presence or absence of a relation linking senders and receivers.
This feature makes REMs particularly useful in the empirical analysis of connected organizational
systems with a skew distribution of relational intensity—that is, systems where a limited number
of organizations account for a disproportionate share of the overall volume, or flow of resources
being exchanged. The third advantage of event-oriented models is the possibility they offer of dis-
tinguishing between short- and long-term effects of past events on the probability to observe
future events. This feature makes REMs uniquely useful in examining how the contextual effects
of generic theoretical network mechanisms—such as, for example, direct and generalized reciprocity,
and transitivity—operate differently over time.

An additional advantage that we have not stressed enough in this paper, but not for this less impor-
tant, is computational. The case-control sampling approach that Vu et al. (2015) and Lerner and Lomi
(2020b) proposed and that we have re-implemented in the context of a sender-stratified REM, allows
the analysis of connected systems at a level of scale that is not currently accessible to more estab-
lished statistical models for network ties—but see Stivala et al. (2020) for important progress on
this front. The possibility of scaling up the model to sample sizes typically beyond the reach of
more conventional statistical models for networks, brings to the fore the problem of unobserved het-
erogeneity. The sender-stratified specification that we have implemented is designed to address this
issue.

The purpose of this work is neither comparing competing models for relational events, nor claim-
ing superiority for one specific class of statistical models for networks over models based on alter-
native representations. Within the class of REMs, we think the stratification and sampling
procedures that we have outlined may have considerable analytical advantages when the focus is
on exchange processes and mechanisms. Readers interested in the current discussion on comparing
competing statistical models for networks can refer to the recent specialized literature on the topic
(Butts, 2017; Stadtfeld et al., 2017; Block et al., 2018, 2019b, 2019a). For the less ambitious purposes
of this paper, we recognize that different definitions of network “ties” and different models are not
only possible (Borgatti & Halgin, 2011), but are differently appropriate depending on the research
questions being asked—and on the understanding of the core structural features of underlying
social and organizational setting that is being observed (Borgatti & Foster, 2003; Borgatti et al.,
2009). Narrowing this general discussion to event-oriented network models, we think readers
would be well advised to refer to the classic works of Freeman et al. (1987) and Marsden (1990)
for foundational statements on the relation between social “events” and social “ties.” We believe
the case studies that we have developed illustrate well the empirical value of the model we
propose. In an analysis of a large number of transactions linking buyers and sellers of liquidity on
the electronic market for interbank deposit (e-MID), we have found that direct reciprocity works in
the short- but not in the long-term. In other words, direct reciprocity stabilizes transactions between
lenders and borrowers only in the shorter term. The reverse is true for generalized reciprocity—that
is, transactions embedded in cyclic sequences are unlikely to be observed in the short term—but sig-
nificantly more likely to be observed in the long term. In other words, generalized reciprocity stabilizes
transactions between lenders and borrowers only in the longer-term—a result that models where rela-
tions are represented as timeless are likely to hide. In the replication study, differences in event rates
provide a unique opportunity to test the flexibility of our model and the generality of our sampling
scheme.We have found that mutual patient-sharing operates more strongly in health care organizations,
while generalized reciprocity does not appear to affect patient-sharing among hospitals in the commu-
nity. Transitivity emerges only in the long-term. Even if to a lesser extent, patient-sharing events tend to
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be organized around clusters of organizations that preferably share resources with partners of their
partners.

In more general terms, the results supported by both empirical illustrations are consistent with a
theoretical view of network effects as results of collective learning processes where actor slowly dis-
cover—while at the same time construct the structural features of their social environment. The fact
that network mechanisms do not work instantaneously simply reflects this learning process. Clearly,
certain structures are more difficult to learn than others—a view that is perfectly consistent with
classic behavioral theories of expectation formation and search (Cyert et al., 1958; Levinthal &
March, 1981). We think that this area of research at the intersection of network and behavioral the-
ories of organizations is completely open.

How do the methodological advances that our model forwards might be usefully applied to areas of
organizational and management research other than the analysis of interorganizational exchange rela-
tions? As an example of specific answer that may be provided to this general question consider Ingram
& Morris, 2007 study of socialization at a “mixer party” attended by business executives. Analysis of
socialization during the social event reveals that social selection based on homophily—that is, the ten-
dency of individuals to select partners similar to themselves—did not operate homogeneously over the
“life of the party.” For example, gender-based homophily operated in the early stages of the social gath-
ering, but not later. Physical attractiveness produced opposite time-dependent patterns of social selec-
tion—that is, tended to operate later in the party rather than earlier. This study provides solid evidence
that social selection mechanisms do not operate homogeneously over time. The study also demonstrates
with unique clarity the risks of modeling social mechanisms and social relations as timeless rather than
as contingent on specific times (when) and places (where) people meet (Abbott, 2007). Without infor-
mation on the exact timing of individual social encounters, the authors would have concluded that ten-
dencies toward homophily were absent during the party. The availability of continuous-time data made
possible by electronic tags worn by participants revealed that this average conclusion would have
masked the time structure of social events. The empirical case studies that we have presented
support similar conclusions—and provide solutions that are generally applicable.

The REM that we have introduced in this paper makes full use of the information contained in the
timing of relational events. These models may be specified, for example, to test hypotheses about
what social selection mechanism operates faster, and what mechanism is likely to emerge in the
longer term. How network mechanisms change over time is an active area of research that relational
event models are opening (Amati et al., 2019). The specification of the time decay parameter facil-
itates the exploration of the link between broad theoretical predictions about how network mecha-
nisms operate, and contextual features of the data or the institutional setting (Kitts et al., 2017).
More generally, the possibility of distinguishing between short-term and long-term effects and
between degree-based and intensity-based effects considerably increases the accuracy and expres-
siveness of REMs (Lomi & Larsen, 2001, pp. 11-12).

The comparative empirical experience that we have discussed suggests that longitudinal studies of
interorganizational networks will have to pay particular attention to the internal time structure of the
core phenomena under observation. Given a fixed observation period, settings characterized by high-
frequency events—for example, financial markets—will produce a larger number of observations than
settings associated with lower frequency events—for example, interorganizational fields. Thisminimal-
ist implication of our comparative empirical analysis has far reaching consequences for future studies of
dynamic networks. Differences in the number of observations will result in differences in statistical
power—and hence differences in the ability of empirical models to detect significant variations in
the data. The same model fitted to samples of events produced by data-generating processes
working at different speed will produce results that may not be directly comparable. What we have
called the minimalist implication of our study is important also because network mechanisms sustained
by different forms of local dependence—for example, “reciprocity,” “transitive closure,” or
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“generalized exchange”—are likely to be characterized by different internal time structures—with
simpler mechanisms generating events at faster rates. If this is the case, the time aggregation
imposed by discrete-time observation schemes is likely to induce forms of time-heterogeneity whose
effects on estimates of models for panel data may then be difficult to identify. The problems posed
by time aggregation are not new (Tuma & Hannan, 1984). However, we are not aware of studies
that have examined systematically the implications of time-aggregation in the context of dynamic
models for networks.

Much work remains to be done in order to increase the appeal of REMs which are derived from event
history analysis with which they share advantages and limitations (Blossfeld et al., 2019). At the moment,
we see three main constraints on the widespread adoption of REMs in organizational research.

The first is that data requirements are considerable. Time-stamped data on relational sequences of
the kind the model takes as input are becoming more common. However, with the exception of
technology-mediated communication (Butts, 2008) and, to some extent, data extracted from video
recordings (LeBaron et al., 2018; Nassauer & Legewie, 2018; Pallotti et al., 2020), fine-grained tem-
poral data are still difficult and expensive to obtain. Conventional research designs based on surveys
and questionnaires are generally incapable of yielding data at an appropriate level of detail and gran-
ularity. Recent innovation in data collection technologies involving wearable sensors (Stehlé et al.,
2011), RFID devices (Elmer & Stadtfeld, 2020), and similar kinds of sociometric badges (Wu et al.,
2008) promise to produce data that will be uniquely suited for analysis through REMs. As fine-
grained, time-stamped social interaction data become more common, REMs are likely to emerge
as the standard analytical framework for the analysis of groups and teams within organizations
(Leenders et al., 2016). Lerner and Lomi (2020b) have recently assessed the reliability of the
REM approach for networks with millions of nodes and dyadic events. In so doing, with the
obvious limitation of a single empirical case, the authors have provided an exhaustive tutorial that
explains how to manage large time-stamped relational datasets. For instance, Lerner and Lomi
(2020b)’s work illustrates simple and clear guidelines for a proper definition of the risk set or the
numbers of nested case-control sampling. By applying the same model specification to very different
empirical cases, our study shows the adaptability of the REM paradigm to other examples of research
design that may be reproduced in other organizational settings.

The second involves a related problem that is particularly salient in organizational research. A dis-
tinctive feature of organizations is their reliance on standard operating procedures and recurrent pat-
terns of action, or routines, that generate repeated and repetitive events (Cyert & March, 1963;
Nelson &Winter, 1982; Becker, 2004). This is true for both intra- as well as inter-organizational rela-
tions. Treating events produced by exogenous organizational routines as “emergent”—that is, events
generated exclusively by interaction among agents— or “self-organizing”—that is, events whose
past occurrence makes future occurrence of other events more or less likely—would lead to model
misspecification and, ultimately, to serious misunderstanding of the underlying relational processes.
The debate on this issue is still in its infancy (Pallotti et al., 2020). We expect this issue to provide a
unique opportunity for statisticians—and social science methodologists more generally—to learn
from organization and management theorists.

The third problem that limits a more general adoption of REMs is the practical difficulty inher-
ent in the relatively limited public availability of specialized software tools. Currently, the
R-package relevent (Marcum & Butts, 2015) is probably the most complete and widely
adopted. Another R-based option is the package rem (Brandenberger, 2018) that has been
recently updated for allowing the computation of endogenous network statistics in signed one-,
two-, and multi-mode network event sequences. goldfish is another R-package (Stadtfeld
et al., 2017; Stadtfeld & Block, 2017) that is currently undergoing further development.
Finally, eventnet (Lerner & Lomi, 2020b) is a very reliable and scalable Java-based interface
that may be used to construct relational event data sets, and compute the network statistics that
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may then be read by virtually any statistical package—commercial or open-source—with reliable
routines for conditional logistic regression.

The first problem we have identified is empirical, and concerns the availability of appropriate data.
The second is conceptual, and concerns the conditions of applicability of REMs to organizational
research. The third is practical, and concerns that availability of adequate software resources. While
these problems deserve further efforts on multiple fronts, we tend to consider them as transitory and
to some extent unavoidable in order to establish an innovative analytical framework that holds great
promises for future research on exchange and dependence relations within and between organizations.
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Appendix A: Empirical Results on Controlling Micro-Mechanisms

In this section, we report empirical estimates for preferential attachment, assortativity, and closure effects
used as general control micro-mechanisms for reciprocity. This is necessary because reciprocity—the
focus of our discussion in the main text of the paper—may be embedded in more complex structures
of exchange and dependence relations among organizations. Hence, empirical model specifications
have to control for competing mechanisms that may be theoretical relevant, or contextually important.
The results on restricted and generalized reciprocity (generalized exchange) discussed in the paper have
to be interpreted in the context of a more general effort to represent the data. Table A1 in this appendix
reports full models for model specifications M0 and M1. As it is the case in the main document, the
parameter interpretation that we offer in this appendix should be considered as heuristic and derived
under ceteris paribus assumptions—assumptions that are typically violated by the way in which
network statistics are computed.

In M0 parameter estimates associated with the exchange mechanisms of interest are in line with
those obtained in extant empirical studies of interorganizational exchange relations (Finger & Lux,
2017; Amati et al., 2019, 2021). As Table A1 shows, M0 captures well the aggregate dynamics of
activity—the tendency of banks with excess liquidity to use the market to place it—, popularity—
the tendency of banks in need of liquidity to rely on the market—, reciprocity—the tendency of
banks in the sample to play both lender and borrower roles—, and closure—the tendency of
future lending events to become more likely between banks currently sharing the same partners.

Positive and significant out- and in-degree effects suggest that banks that are more central as
liquidity sellers and buyers—because they have high out- or in-degree—will tend to become even
more central—that is, expand the number of their partners. The odds ratios corresponding with activ-
ity and popularity parameters tell the likelihood of observing a new event given the whole stream of
past outgoing and incoming events. Specifically, the odds associated with the out-degree parameter
show that, on average, an increase by one standard deviation in the number of past outgoing relational
events increases the odds of observing a new lending event by 17% (exp(0.153) = 1.17). Similarly,
the odds associated with the in-degree parameter show that, on average, an increase by one standard
deviation in the number of past incoming relational events increases the odds of observing a new
lending event by three times (exp(1.214) = 3.37). Jointly interpreted, these results indicate that
there is a generalized positive effect of past trading on the current transfers of overnight liquidity.
Such an effect is notably strong for those banks that act as liquidity borrowers, then showing that
the e-MID trading platform is a well reputed market when shopping for overnight funds.

Intensity-based effects afford a richer and more detailed understanding of degree-based network
effects. Consider, for instance, out- and in-intensity parameters. The significantly negative out-
intensity parameter signals that, within dyads, an increase in the number of past lending events
tends to decrease the probability that a future transaction will occur with the same borrower. The pos-
itive in-intensity parameter signals that, within dyads, an increase in the number of past borrowing
events tends to increase the probability that a future transaction will occur with the same lender.

The estimated out -intensity parameter suggests that the odds of a future lending event
(exp(− 0.372) = 0.69) involving a bank that has been a borrower in the past, decrease by
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approximately 30% in the next business day. Considered together, out-degree and out-intensity
effects imply that, as the network of partners expands, the level of activity with prior partners
decreases because of the simultaneous increase by out-degree and decrease of out-intensity—an
outcome that might be produced by attempts to diversify risk by avoiding concentration of
lending activities in a limited number of familiar partners. Following a similar reasoning, the odds
implied by the in-intensity parameter (exp(0.697) = 2.01) show that, given the whole history of bor-
rowing events, in the next business day, the odds of a future borrowing event coming from well-
established lenders approximately double. In this case, a positive in-intensity parameter implies
that borrowing events with prior lenders increase more than the corresponding trading with new part-
ners—an outcome that is probably induced by banks’ attempts to demonstrate their creditworthiness
to new potential counterparts.

The liquidity trading network is disassortative in degree as well as in intensity. These disassorta-
tive tendencies facilitate market access to banks that do not have extensive networks of partners and
that do not have an intense trading activity. The positive effect of transitive closure suggests a ten-
dency of trading events to be organized around clusters of banks exchanging liquidity. The negative
effect of cyclic closure suggests that considerations of opportunism preclude generalized reciprocity.
The negative effect of sending balance clarifies that transactions are unlikely to be observed between

Table A1. Estimated Coefficients and Corresponding Standard Errors (SE) of the Relational Event Model With

Recency Window Equal to 1 Day and α Equal to 1.

M0 M1

Estimate SE Estimate SE

Out-degree (long-term) 0.153*** 0.018 0.266*** 0.020

Out-degree (short-term) −0.158*** 0.011

Out-intensity −0.372*** 0.010 −0.251*** 0.012

In-degree (long-term) 1.214*** 0.021 0.820*** 0.023

In-degree (short-term) 0.591*** 0.015

In-intensity 0.697*** 0.014 0.396*** 0.016

Reciprocity (long-term) 0.117*** 0.009 0.062** 0.028

Reciprocity (short-term) 0.040 0.026

Reciprocity (intensity) 0.025*** 0.007 0.020*** 0.007

Repetition (long-term) 1.162*** 0.021 −0.393*** 0.055

Repetition (short-term) 1.662*** 0.057

Repetition (intensity) 0.467*** 0.007 0.455*** 0.007

Assortativity by degree (long-term) −1.317*** 0.037 −1.179*** 0.038

Assortativity by degree (short-term) −0.214*** 0.013

Assortativity by intensity −0.340*** 0.014 −0.255*** 0.016

Transitive closure (long-term) 0.478*** 0.035 0.716*** 0.066

Transitive closure (short-term) −0.209*** 0.054

Cyclic closure (long-term) −0.046*** 0.013 0.130*** 0.035

Cyclic closure (short-term) −0.178*** 0.031

Sending balance (long-term) −0.184*** 0.018 −0.577*** 0.059

Sending balance (short-term) 0.330*** 0.054

Receiving balance (long-term) 0.121*** 0.018 0.085 0.055

Receiving balance (short-term) 0.066 0.049

Country-match 0.609*** 0.011 0.621*** 0.011

Number of observations 271,104

AIC 99,116.51 95,895.41

*p < .10, **p < .05, ***p < .01.
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banks competing for the same sources of liquidity. The positive effect of receiving balance shows that
exchange of liquidity is facilitated between banks sharing the same borrowers. The positive effect of
country-match reveals that banks prefer to trade with other credit institutions from the same country
of origin.

In M1, when considering preferential attachment parameters, the out-degree dynamics exhibit
opposite signs over shorter and longer temporal frames. A negative parameter estimate associated
with the short-term out-degree statistic reveals that, within a single trading day, market participants
do not exclusively lend liquidity, but often switch between being buyers and sellers depending on
their contingent liquidity needs and market opportunities. During the same trading day, an increase
by one standard deviation in the number of trading partners tends to slow down the regular trading
activity of liquidity providers with the obvious consequence of reducing the probability that the next
event is a new credit extension. As M0 demonstrates, this result is in stark contrast to the long-term
dynamics of the out-degree parameter that shows a positive tendency towards lending. The positive
value of out-intensity parameter suggests that, in the long-run, having well-established trading part-
ners helps European banks to consolidate their role as liquidity providers.

Positive values for short- and long-term in-degree parameters suggest that market participants
extensively use the e-MID trading platform as an interface for procuring overnight funds. As the pos-
itive in-intensity parameter reveals, the generalized tendency towards the borrowing of overnight
funds occurs both with occasional and well-established trading partners.

In line with M0, M1 confirms that the relational system of transactions in the European interbank
market is globally disassortative. Both in the short- and in the long-term, banks that lend to many
others tend to lend to banks with few other lenders—an effect consistent with the presence on the
market of banks of very different size. The intensity-based assortativity effect is similarly negative,
indicating that “heavy” lenders tend to extend liquidity also to “light” borrowers.

The negative effect of long-term sending balance—or shared borrowers in this specific case—sug-
gests that banks tend to compete for the same sources of liquidity only over short time framework. In
the longer term, banks that are dependent on the same lenders tend to coordinate their liquidity
requirements directly and become exchange partners. In contrast, the positive effects of short- and
long-term receiving balance—or shared lenders—reveal that, in any temporal frame, two credit insti-
tutions trusting the same liquidity borrower are more likely to extend credit to each other, then sup-
porting the general idea that creditworthiness extends to third parties through mutual links.

Regarding the replication study on patient-sharing events, full model parameter estimates are
reported in Table A2. In line with the results of the analysis of overnight credit extensions, in the
short-run patient-sharing events tend to be addressed to the same target hospitals. Differences in
the magnitude of parameters may be imputed to different rates of resource flows in patient-sharing
and liquidity-lending events. Contrary to what was observed in the study of bank transactions, in
the long-run there is no statistical evidence of repeated patient-sharing events. In the longer-term,
the tendency for hospitals to share patients is negative. In the shorter-term, sharing-patient events
are likely to be repeatedly observed within a temporal frame of 7 days. Interestingly, the distinction
between short- and long-term out-degree makes the out-intensity parameter not statistically signifi-
cant, thus suggesting that, on average, there is no empirical evidence of patient-sharing events
after 6 weeks from the current event.

The sending balance effect is significantly positive only in the long-term. In contrast to what was
observed in the context of overnight liquidity transfers, hospitals do not seem to compete for partners.
There is no significant tendency toward balance in incoming events, either in the short- or long-term.
In other words, having common partners does not make collaboration more or less likely among hos-
pitals in the community.
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The nodal covariate associated with the LHU match is positive, indicating that hospitals tend to
share their patients preferentially with hospitals operating in the same local health unit—a results also
reported in prior empirical studies (e.g., Mascia et al., 2017).

Appendix B. Network Statistics
Network statistics in REMs can be classified into three distinct groups: nodal, dyadic, and clustering
statistics. This section in Appendix expands the description of network statistics that have been
included in Table 1. Mathematical definitions of the various network statistics are reported
Specifically, mathematical formulas associated with network configurations are provided.

Nodal Network Statistics
Nodal network statistics are usually included for both sending and receiving nodes of a directed edge
(i, j) to measure their effects on the propensities of initiating or absorbing a relational event. Nodal
statistics such as out-degree, out-intensity, in-degree, and in-intensity are included in REMs to esti-
mate structural and temporal effects of past relational events on future ones.

Table A2. Estimated Coefficients and Corresponding Standard Errors (SE) of the Relational Event Model

Estimated on the Patient Transfers Dataset. Recency Window Equal to 7 Days (1 Week) and α = 0.6.

M0 M1

Estimate SE Estimate SE

Out-degree (long-term) −0.308*** 0.068 −0.328*** 0.071

Out-degree (short-term) 0.108*** 0.029

Out-intensity 0.077** 0.033 −0.051 0.041

In-degree (long-term) 1.035*** 0.088 0.930*** 0.094

In-degree (short-term) 0.043 0.035

In-intensity 0.369*** 0.044 0.334*** 0.049

Reciprocity (long-term) 0.087*** 0.017 0.118*** 0.030

Reciprocity (short-term) −0.032 0.026

Reciprocity (intensity) 0.252*** 0.031 0.228*** 0.032

Repetition (long-term) 0.219*** 0.017 0.044 0.030

Repetition (short-term) 0.212*** 0.028

Repetition (intensity) 0.937*** 0.045 0.939*** 0.045

Assortativity by degree (long-term) −0.770*** 0.099 −0.654*** 0.102

Assortativity by degree (short-term) 0.049 0.030

Assortativity by intensity 0.035 0.049 −0.047 0.055

Transitive closure (long-term) 0.363*** 0.056 0.405*** 0.074

Transitive closure (short-term) −0.121*** 0.046

Cyclic closure (long-term) −0.201*** 0.066 −0.196** 0.080

Cyclic closure (short-term) 0.021 0.054

Sending balance (long-term) 0.358*** 0.069 0.376*** 0.086

Sending balance (short-term) 0.007 0.056

Receiving balance (long-term) 0.045 0.061 0.040 0.078

Receiving balance (short-term) 0.009 0.051

LHU-match 0.457*** 0.025 0.442*** 0.026

Number of observations 97,920

AIC 10,831.48 10,746.51

*p < .10, **p < .05, ***p < .01.
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The out-degree statistic is the number of receiving units to which a sending organization has sent
resources. Formally, it may be defined as follows:

out−degree (t, j) =
∑
h≠j

1 Njh(t
−) > 0

[ ]
. (4)

where Njh(t−) is the number of resource transfers from organization j to a generic organization h right
before time t.

The out-intensity network statistic is defined as the time-weighted number of resource transfers from
a sending organization j. Relational events are weighted in order that recent resource transfers are more
important than those far in the past. Therefore, each transfer event is assigned a time-dependent weight
α as in Eq.(2) to account for the temporal relevance of relational events. The statistic is also normalized
by out-degree to reduce the correlation between its degree counterpart—that is,

out−intensity (t, j) = 1

out−degree (t, j)

∑
h≠j

∑Njh(t−)

e=1

1

t − Te
jh

( )α . (5)

To investigate the effects of popularity on the propensity that organizations will be chosen as transfer
destinations for resources, we consider two nodal network statistics—that is, in-degree and in-intensity.
Specifically, to measure the popularity of an organization j, we define in-degree as the number of orga-
nizations from which j has received resources. It can be defined as:

in−degree (t, j) =
∑
h≠j

1 Nhj(t
−) > 0

[ ]
. (6)

To measure organizations’ popularity in terms of intensity, we define the in-intensity statistics as the
number of resource transfers that an organization has received from each of its sending partners. As
well as its out-intensity counterpart, this statistic is time-weighted and normalized. It can be formally
defined as:

in−intensity (t, j) = 1

in−degree (t, j)

∑
h≠j

∑Nhj(t−)

e=1

1

t − Te
hj

( )α . (7)

Dyadic Network Statistics
Reciprocation is a dyadic network statistic. It is included in our model to account for temporal and
structural effects of previous pairwise resource transfers on future transfer events. Reciprocation mea-
sures the propensity that organization j reciprocates the transfer of resources from organization i.
Accordingly, we define reciprocity as the current number of transfer events from organization j to
organization i. In its more general formulation, reciprocation can be defined as follows:

reciprocation (t, i, j) =
∑Nji(t−)

e=1

1

t − Te
ji

( )α . (8)

Repetition is another dyadic network statistic. This statistic measures the propensity that an orga-
nization i continues its current transfer of resources with an organization j by sending more resources
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to j. Repetition is defined as the current number of transfer events from i to j.

repetition (t, i, j) =
∑Nij(t−)

e=1

1

t − Te
ij

( )α . (9)

Assortativity effects are defined as interactions between corresponding sending and receiving
effects. Assortativity may be considered as a dyadic network statistic too.

Assortativity by degree is defined as the interaction between the out-degree of a sending organi-
zation i and the in-degree of a receiving organization j. Assortativity is defined as:

assortativity by degree (t, i, j) = out−degree(t, i) × in−degree(t, j). (10)

The interaction between out-intensity of a sending organization i and in-intensity of a receiving orga-
nization j models the assortativity effect in terms of resource transfer intensities.

assortativity by intensity (t, i, j) = out−intensity(t, i) × in−intensity(t, j). (11)

Clustering Network Statistics
To model the tendency toward clustering in resource transfers, we consider four triadic statistics—
that is, transitive closure, cyclic closure, and two distinct types of shared partners. All the triadic
effects included in our model specification are based on two-path statistics—that is, sequences
like i → h → j.

Transitive closure measures the total strength of all two-paths from organization i to organization
j. It is defined as follows:

transitive closure (t, i, j) =
∑
h≠i,j

1Nih (t) ∧ 1Nhi (t)
[ ]

∧ 1Njh (t) ∧ 1Nhj (t)
[ ]

. (12)

where 1Nih (t) = 1[Nih(t−) > 0].
Cyclic closure reveals the tendency toward generalized reciprocity (generalized exchange)

(Bearman et al., 2004). This network statistics can be formally defined as:

cyclic closure (t, i, j) =
∑
h≠i,j

1Nih (t) ∧ 1Nhi (t)
[ ]

∧ 1Njh (t) ∧ 1Nhj (t)
[ ]

. (13)

Finally, shared partners network statistics is used to test the hypothesis that organizations are more
likely to establish a direct exchange relation if they share sending or receiving partners, as illustrated
in Figure B1.

Figure B1. Shared partners network statistics.
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A formal definition of the shared partners statistic is given by:

shared partners (t, i, j) =
∑
h≠i,j

1Nih (t) ∧ 1Nhi (t)
[ ]

∧ 1Njh (t) ∧ 1Nhj (t)
[ ]

. (14)

In turn, the network statistic shared partners may exhibit two distinct formulations—that is, sending
balance and receiving balance. Those statistics are reported in Table 1. These network statistics
measure the total number of two-paths involving a third organization h as a common target (or depar-
ture) destination from (or to) organization i and organization j. Sending and receiving balance statis-
tics can be formally defined as follows:

sending balance (t, i, j) =
∑
h≠i,j

1Nih (t) ∧ 1Nhi (t)
[ ]

∧ 1Njh (t) ∧ 1Nhj (t)
[ ]

receiving balance (t, i, j) =
∑
h≠i,j

1Nih (t) ∧ 1Nhi (t)
[ ]

∧ 1Njh (t) ∧ 1Nhj (t)
[ ] . (15)

Appendix C. Nested Case-Control Sampling for Model Estimation
In this section, we discuss relevant details of the nested case-control sampling method that we
adopted for computing network statistics efficiently. When using iterative optimization methods
like the well-known Newton–Raphson algorithm, it is very expensive to compute, at each optimiza-
tion step, network statistics for all nodes and edges. In contrast, the nested case-control sampling runs
through the whole history of relational events and generates a nested case-control dataset of all covar-
iates and network statistics (Lerner & Lomi, 2020b), which, in turn, is used as an input for a Cox
proportional hazard procedure. Therefore, the main advantage of nested case-control sampling is
its ability to exchange computer memory usage for a faster estimation, and eventually take advantage
of the data structure obtained in this way to estimate a simple conditional logistic regression.

The data generation and estimation procedure may be summarized by the following steps:

• Sort the stream of relational events in ascending order, where each relational event is a tuple
made of three elements—that is, time, sender, and receiver (t, i, j);

• Initialize the event history H t− as empty;
• For each event ek ∈ E, and for each edge (i, j) in the risk set right before time tek ,

• compute all the covariates and network statistics for nodes i and j, as well as for directed
edges (i, j);

• add the event ek to the network history H t− .
• Use the nested case-control dataset of network statistics as input for proportional hazard

routines.

An example of the output dataset is illustrated in Figure C1.
In our empirical application, the nested case-control sampling is performed by an ad-hoc created

Java package that allows for a sender stratified version of the sampling. For each observed event, we
sampled two nonevents that may have occurred between a specific sender and the set of its receivers
at a certain point in time. Given the high-number of cases (events), a small number of controls (non-
events) is enough to guarantee unbiased estimates (Lerner & Lomi, 2020b). The resulting dataset is
the input for a conditional logistic regression model. In our empirical application, this dataset is ulti-
mately composed of 271,104 entries—90,368 events × 3 (1 event + 2 nonevents). We estimated the
conditional logistic regression in R through the clogit function from the survival package. The
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event index of each transaction is unique and then it can be used a stratification covariate in the clogit
procedure.

A crucial aspect of nested case-control sampling is the identification of risk set. In both our empir-
ical applications, the risk set is updated every time a new relational event occurs—that is, at each
interaction moment between banks or hospitals. This feature is particularly salient in the case of inter-
bank transactions where a lender cannot extend a loan to a borrower that has not joined the market
yet. Moreover, the continuous updating of risk set allows the space of nonevents to closely resemble
the trading dynamics that could have been reasonably observed on the e-MID platform. In other
words, thanks to the continuous updating mechanism, for lender i we can sample, with a higher prob-
ability, those trading counterparts js that could have been i’s borrowers on the basis of i’s past credit
extensions. In summary, the continuous updating of risk set is motivated by the need of capturing as
much as possible the heterogeneity of lenders’ portfolios of potential borrowers.

The number of relational events included in our main application on high-frequency interbank
transaction is generous—especially compared to currently available organizational studies that
have been recently published. The analyses of Quintane et al. (2013) and Quintane et al. (2014)
or, more recently, Kitts et al. (2017) and Vu et al. (2017) run REMs on approximately 10K, 4K,
4K, and 3.5K events, respectively. Compared to other more traditional organizational settings, the
peculiarity of our empirical illustration is considering an organizational context where relational
events occur at a very high-frequency, that is, every few seconds. With the obvious limitations of
a single empirical case, the example discussed in this paper illustrates our model’s ability to work
with large time-stamped datasets. Supplementary analyses confirm that the performance of our
model is still satisfactory when considering the whole stream of approximately 2 million transactions
occurred between 1999 and 2019, a time window that corresponds to the complete history of the
e-MID trading.

Figure C1. Example of nested case-control dataset.
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