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Abstract

Parasitic diseases caused by kinetoplastid parasites of the genera Trypanosoma and Leish-

mania are an urgent public health crisis in the developing world. These closely related spe-

cies possess a number of multimeric enzymes in highly conserved pathways involved in

vital functions, such as redox homeostasis and nucleotide synthesis. Computational alanine

scanning of these protein-protein interfaces has revealed a host of potentially ligandable

sites on several established and emerging anti-parasitic drug targets. Analysis of interfaces

with multiple clustered hotspots has suggested several potentially inhibitable protein-protein

interactions that may have been overlooked by previous large-scale analyses focusing

solely on secondary structure. These protein-protein interactions provide a promising lead

for the development of new peptide and macrocycle inhibitors of these enzymes.

Author summary

Neglected tropical diseases caused by parasites of the genera Trypanosoma and Leish-
mania affect millions of people, primarily in the developing world. Due to a historical lack

of incentive or interest, few new drugs have been developed to treat these conditions.

Numerous efforts have targeted the metabolism of trypanothione, an essential molecule

for maintaining the redox homeostasis of these parasites. This study uses freely available

structural databases and computational tools to identify new druggable sites on several

essential proteins in these organisms by disrupting the protein-protein interactions that

allow multimeric enzymes to function. Five of the targets identified in this study are

involved in redox homeostasis, while the remainder are involved in other essential meta-

bolic or biosynthetic processes. Nine have been identified in other computational data-

bases, and two have already been experimentally verified, which suggests that protein-

protein interaction inhibition of multimeric enzymes may be a general and viable route

for the development of new trypanocidal agents.
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Introduction

Infections caused by the kinetoplastid parasites Leishmania spp., Trypanosoma brucei, and Try-
panosoma cruzi are estimated collectively to put at risk one billion people, resulting in tens of

millions of infections and upwards of ten thousand deaths per year [1]. Neglected tropical dis-

eases (NTDs) caused by these parasites primarily occur in the developing world and are infre-

quently the target of commercial drug-development efforts [2]. A number of highly conserved

enzymes are present across these pathogenic species, despite substantial genomic diversity [3].

Furthermore, the proliferation of high-resolution crystallographic data affords the opportunity

to identify new mechanisms for inhibiting both established and emerging drug targets in these

organisms. Recent drug-repurposing efforts have allowed for the development of promising

new leads based on previous work on homologous targets, such as kinases and heat-shock pro-

teins, in human diseases [4,5].

Just as neglected tropical diseases have received comparatively little attention from the drug

discovery community, so too have protein-protein interactions (PPIs), which are characterized

by larger surface area and lower binding affinity than is typical for drug-like molecules [6,7]. A

substantial fraction of the protein-protein interaction energy is localized in a few amino acid

residues, known as “hot spots,” which are often surface-exposed hydrophobic amino acid resi-

dues [8]. Computational alanine scanning can generally predict these interface hot spots with

a 79% success rate [9]. This has led to the successful development of several inhibitors of PPIs

[10–12]. Of greatest relevance to NTDs, this approach has been applied to inhibition of the cys-

teine protease cruzain, based on the interaction with its native inhibitor chagasin [13]. Target-

ing PPIs of multimeric enzymes [14,15] in these pathogens, by avoiding the highly conserved

substrate-binding domains, should allow for fine-tuning selectivity to avoid inhibition of the

homologous host enzymes [15]. This approach has been successful in PPI-based inhibition of

the homodimeric enzyme, triosephosphate isomerase (TIM), in P. falciparum [14] and T. cruzi
[16]. Thus, a systematic analysis of these overlooked targets for neglected diseases may reveal

both new drug targets and new approaches to inhibit well-established targets.

Methods

Structures of multi-protein complexes from the family Trypanosomatidae were obtained using

the advanced search functionality of the Protein Data Bank [17]. Structures with>4 Å resolu-

tion or>90% similarity were excluded. The PDB files were cleaned to remove headers, retain-

ing only ATOM line entries, using a shell script. Computational alanine scanning [9] was

performed using Rosetta 3.6 and PyRosetta [18], with a modified version of the alanine-

scanning script originally developed by the Gray lab [19]. The updated Talaris2013 scorefunc-

tion [20] was parameterized to match an established general protocol [9,21] without environ-

ment-dependent hydrogen bonding terms. Default score function weights were retained, but

line 129 of the script was replaced as follows to implement these changes:

scorefxn ¼ create score functionð‘talaris2013’Þ

Interfaces that were determined to have at least three hot spots (ΔΔG� 1.0 Rosetta Energy

Units (REU), average of 20 scans, 8.0 Å interface cutoff) by this method were further examined

for proximity of the hot spots in both primary [22] sequence and secondary/tertiary structure.

Complexes with at least two hot spots in close proximity were cross-checked for presence in

existing databases of helix [23,24] and loop [25,26] interaction motifs, then with existing litera-

ture for experimentally verified interface hot spots, and finally for identity as an established or

emerging drug target [27–31]. Amino acid residues falling just below the threshold (ΔΔG

between 0.8 and 1.0 REU) were also considered when proximal to multiple interface hot spots.

Druggable protein-protein interactions in kinetoplastid parasites
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During the preparation of this manuscript, the authors became aware of the Peptiderive server

[32], which allows for the rapid examination of single PPI interfaces for hot-spot rich segments

of a defined length. The PPIs identified in this study were subsequently re-examined using

Peptiderive to locate decameric “hot segments” for comparison.

Results and discussion

Identification and characterization of PPIs

Of the 1,076 kinetoplastid protein structures deposited in the PDB, 207 are multi-chain biolog-

ical assemblies. Computational alanine scanning identifies 56 structures containing at least

three putative interface hot spots (27%). Hot spots are defined as any amino acid residue that,

when mutated to alanine, increased the ΔΔGcomplex by at least 1.0 REU [33], a threshold that

generally has a 79% correspondence with experimentally observed hot spots [9]. Among these

56 structures, 46 contain multiple hot spots on the same helix (27) or loop (19). Despite the

90% sequence identity cutoff, several homologous proteins from Leishmania spp., Trypano-
soma spp., and the non-pathogenic model organism Crithidia fasciculata appear multiple times

(vide infra), reducing the number of unique interfaces to 34. Analysis of these 34 complexes

reveals 12 unique PPIs that are either established drug targets in T. cruzi, T. brucei, or Leish-
mania spp. or essential enzymes and structurally or functionally obligate multimers. Drug tar-

gets with inhibitable PPIs, their potentially inhibitory peptide sequences, and a comparison to

HippDB, Loopfinder, Peptiderive, and experimental results are listed in Table 1.

Trypanothione metabolism and the pentose phosphate pathway

Five targets are involved in the redox metabolism of trypanothione, an essential pathway for

the parasites’ antioxidant defense that has been the target of numerous drug development

Table 1. Potential self-inhibitory peptides from multimeric enzymes in kinetoplastid parasites.

Target Species Peptide Helix Loop Segment Assay

TryR Cf 71-TIRESAGFGWELD + ++ ++ + [34]

GS Tb 2-VLKLLLEL + + +

TXNPx Lm 145-NDMPVGR + ++ ++

G6PDH Tc 441-AMYLKLTAKTPGLLNDTHQTEL + + + ++ [35]

6PGDH Tb 251-LTEHVMDRI + + +

RpiB Tc 141-RIEKIRAIEASH ++ + ++

GalE Tb 111-PLKYYDNNVVGILRLL ++ ++ ++

FPPS Tb 25-FDMDPNRVRYL + + ++

TAT Tc 54-AQIKKLKEAIDS + - - ++

PTR1 Lm 192-TIYTMAKGALEGLTRSAALELA ++ + ++

dUTPase Lm 51-ELLDSYPWKWWK + - - ++

DHODH Lm 201-VIDAETESVVIKPKQGFG -- ++ ++

Targets for the 12 potentially self-inhibitory peptides identified in this study, organism in which they are found, peptide sequences, and comparison to

previous approaches relying on helical secondary structure (HippDB, “Helix”) or loops amenable to cyclization (Loopfinder, “Loop”), identification of

decameric hot segments (Peptiderive “Segment”), and experimentally validated in vitro enzyme inhibitors (“Assay”). Full sequences and scores for peptides

identified in HippDB, Loopfinder, and using the Peptiderive Server can be found in S1 Table. Cf: Crithidia fasciculata; Tb: Trypanosoma brucei; Tc:

Trypanosoma cruzi; Lm: Leishmania major.

+ non-overlapping peptide sequence

++ overlapping sequence

- -not found in database

https://doi.org/10.1371/journal.pntd.0005720.t001

Druggable protein-protein interactions in kinetoplastid parasites

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005720 June 29, 2017 3 / 16

https://doi.org/10.1371/journal.pntd.0005720.t001
https://doi.org/10.1371/journal.pntd.0005720


efforts [36]. Central to this pathway is Trypanothione reductase (TryR), an essential enzyme

which maintains trypanothione, T(SH)2, in the reduced state. T(SH)2 is produced from gluta-

thione (GSH), which is both synthesized de novo by glutathione synthetase (GS) and scavenged

extracellularly from the host. TryR utilizes NADPH as a reductant, produced primarily from

the pentose phosphate pathway (PPP) by glucose 6-phosphate dehydrogenase (G6PDH),

which itself is induced by the presence of hydrogen peroxide, and 6-phosphogluconate dehy-

drogenase (6PGDH) [37]. Several enzymes use T(SH)2 to detoxify specific reactive oxygen spe-

cies, including tryparedoxin peroxidase (TXNPx), which reduces hydroperoxides produced by

the host’s immune response.

Trypanothione reductase is a well-established drug target, with almost all known inhibitors

targeting the active site through covalent inactivation of the catalytic cysteine residues or bind-

ing of polycationic species in the active site [2,30,38,39]. Recent computational and experimen-

tal studies have identified a hot-spot-containing helix in L. infantum TryR that inhibits TS2

reduction by disrupting dimerization of the enzyme, as demonstrated by kinetics and ELISA

[34,40]. This helix overlaps, but shares little sequence homology with, a helix that disrupts

dimerization of human glutathione reductase (hGR), although it presents a strikingly similar

helical face (S1 Fig). The hGR peptide prevents refolding of denatured hGR, but does not

inhibit the activity of the native enzyme [41], minimizing the possibility of hGR inhibition

from an isosteric TryR inhibitor. Beyond this known mode of inhibition, this study identified

a short helix-breaking loop in C. fasciculata (Fig 1A), T. brucei, T. cruzi, and L. infantum TryR

containing three hotspots, Ile-72, Phe-78, and Leu-82, which matches a loop in LiTryR identi-

fied by Loopfinder (heat score: 3), overlaps a segment predicted by Peptiderive (22% interface

energy), and contains one hotspot (Trp-80) that has been verified experimentally (Fig 1) [34].

This proposed inhibitory peptide is predicted to contribute more to the interface energy than

the established helix-based inhibitor.

Glutathione synthetase is the second step in de novo synthesis of TS2, producing glutathione

from γ-glutamylcysteine, glycine, and ATP. Knockout of GS in T. brucei results in a growth-

restriction phenotype that is not rescued by addition of exogenous glutathione, suggesting that

GS may be druggable [43]. Initial structural characterization of T. brucei GS had suggested that

the high homology in the regions involved in substrate and cofactor binding and catalysis

would make GS a suboptimal drug target [44]. However, the helix identified in this study dif-

fers greatly from the human homolog in both primary sequence and secondary structure.

While the proposed inhibitory sequence, 2-VLKLLLEL, contains only two putative hot spots,

Leu-3 and Leu-7, recombinant TbGS with an N-terminal His6 tag has drastically reduced cata-

lytic turnover [45], suggesting the importance of the N-terminus in dimerization and provid-

ing a plausible route to selective PPI-based inhibition of TbGS in this region. Both HippDB

(17%) and Peptiderive (22%) identified segments near the N-terminus predicted to contribute

substantially to the stability of the PPI.

Tryparedoxin peroxidase catalyzes the TS2-dependant detoxification of peroxides, is an

essential enzyme in T. brucei and L. major, and has been proposed as a potential drug target

due to the constitutively high levels of peroxide, especially in T. brucei [46–50]. TXNPx is an

obligate homodimer, with catalytic cysteine residues for a single active site located on both

subunits [48]. This study identifies an unstructured loop containing three hot spots, Asn-145,

Val-149, and Arg-151, in L. major, T. brucei, and C. fasciculata (Ile-149) in a hydrophobic cleft

on the surface. This peptide matches a loop identified by Loopfinder (heat score: 9) and a seg-

ment identified by Peptiderive (27% interface energy). HippDB contains one short, two-turn

helix, predicted to contribute only 9% interface energy (Fig 1).

Glucose-6-phosphate dehydrogenase catalyzes the first reaction in the pentose phosphate

pathway, oxidizing glucose-6-phosphate to 6-phosphogluconolactone and producing NADPH

Druggable protein-protein interactions in kinetoplastid parasites
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required for TS2 reduction [37]. G6PDH is both an essential enzyme and a validated drug tar-

get [51], in addition to being catalytically active in both dimeric and tetrameric forms. Inhibi-

tion by peptide-based PPI disruption has been successfully applied to human G6PDH [35].

This study identifies a homologous loop from T. cruzi, 441-AMYLKLTAKTPGLLNDTHQ-

TEL, containing three hot spots, Met-442, Leu-446, and Leu-462, which are tightly clustered

on adjacent strands of a beta sheet in a hydrophobic cleft (Fig 1). This suggests that this

approach may find similar success in trypanosomatids with a carefully designed, smaller mac-

rocyclic peptide. Moreover, Peptiderive identifies a decameric segment predicted to contribute

Fig 1. Protein-protein interactions of drug targets involved in redox homeostasis. (A) TryR dimer from

C. fasciculata (PDB: 1FEC) with known inhibitory helix (green cartoon) and predicted inhibitory helix-

terminating loop (yellow cartoon) against calculated electrostatic surface. (B) Detail of interface peptide

71-TIRESAGFGWELD containing hot spots Ile-72, Phe-78, Trp-80, and Leu-82 (orange sticks). (C) TXNPx

dimer from L. major (PDB: 4K1F) with predicted helix from HippDB (green cartoon) and predicted inhibitory

loop (yellow cartoon) against calculated electrostatic surface. (D) Detail of interface peptide 145-NDMPVGR

containing hot spots Asn-145, Val-149, and Arg-151 (orange sticks). (E) G6PDH dimer from T. cruzi (PDB:

4E9I) with predicted helix from HippDB (green cartoon), helix-turn predicted by Loopfinder (purple cartoon),

and long, beta-sheet-anchored loop (yellow cartoon) matching the homologous region of a known inhibitor of

H. sapiens G6PDH. (F) Detail of interface peptide 441-AMYLKLTAKTPGLLNDTHQTEL containing hot spots

Met-442, Leu-446, and Leu-462 (orange sticks) clustered in a hydrophobic pocket. Images were rendered

using PyMOL v0.99rc6 [42].

https://doi.org/10.1371/journal.pntd.0005720.g001
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38% of interface energy, which, when extended to include an adjacent two-turn helix, is

expected to contribute >50% of interface energy by Loopfinder (heat score: 4). Considering

the successful inhibition of hG6PDH and a second predicted inhibitory peptide, G6PDH pres-

ents a logical opportunity to explore PPI-based inhibition.

6-phosphogluconate dehydrogenase catalyzes the third step in the pentose phosphate path-

way, converting 6-phosphogluconate to ribulose 5-phosphate and CO2. G6PDH and 6PGDH

are the primary source of NADPH for the reduction of TS2 [37,52,53]. This essential enzyme

has a highly conserved sequence identity between T. cruzi, T. brucei, and L. major, yet differs

substantially from the human 6PGDH homolog, making it an ideal drug target [54]. Substrate

analogs have shown potent inhibition of 6PGDH and trypanocidal activity in the low micro-

molar range [55]. Substrate binding involves residues from both protomers, suggesting PPI

disruption may also be a viable inhibition strategy [56]. This study identifies a loop in T. brucei
6PGDH, 251-LTEHVMDRI, containing three hot spots, Asp-253, Val-255, and Ile-259.

HippDB, Loopfinder, and Peptiderive all identified peptides immediately surrounding a helix,

445-YGQLVSLQRDVFG, predicted to contribute 10–13% of the interface energy.

Essential enzymes beyond trypanothione metabolism

The remaining seven targets represent a variety of essential metabolic and biosynthetic pro-

cesses. Two targets emerged in sugar metabolism: ribose-5-phosphate isomerase B (RpiB) in

the non-oxidative branch of the PPP and UDP-glucose-4’-epimerase (GalE) in galactose catab-

olism. Three other targets are involved in varied essential biosynthetic processes: Farnesyl

pyrophosphate synthase (FPPS) in the isoprenoid biosynthetic pathway, tyrosine aminotrans-

ferase (TAT) in tyrosine catabolism, and pteridine reductase (PTR1) in cofactor biosynthesis.

Finally, two essential targets are found in nucleotide synthesis: deoxyuridine triphosphate

nucleotidohydrolase (dUTPase) and dihydroorotate dehydrogenase (DHODH).

Ribose 5-phosphate isomerase B catalyzes the interconversion of D-ribose-5-phosphate

and D-ribulose-5-phosphate in the non-oxidative branch of the pentose phosphate pathway.

RpiB is essential for viability of the bloodstream form of T. brucei and is a subtype with no

mammalian homologue [57–59]. RpiBs are functionally obligate dimers, with catalytic resi-

dues spanning both subunits, suggesting that targeting the RpiB interface may a viable inhibi-

tion strategy. The peptide sequence from T. cruzi RpiB identified in this study overlaps a

helix predicted by HippDB to contribute 49% of the interface energy. This helix, 140-RRIE-

KIRAIEASH, contains two predicted hot spots, Ile-145 and Ile-148, on adjacent turns of

the helix and the indispensable residue Glu-149. Experimental mutation of this residue dis-

rupts both structure and function in LdRpiB [60]. This helix is also immediately C-terminal

to His-138, another deactivating mutant (Fig 2). All four amino acid residues are

conserved between T. cruzi and L. donovani, suggesting the generality of a peptide helix-based

inhibitor.

UDP-galactose-4’-epimerase is an essential enzyme for the growth and survival of trypano-

somatid parasites [61]. Unable to acquire galactose from the host, they rely on GalE to

synthesize galactose from glucose [61,62]. T. brucei GalE has 33% homology to the human

enzyme [63], and thus has received substantial attention as a target for trypanocidal drugs. Sev-

eral small-molecule inhibitors have been identified, mainly targeting the active site of the

enzyme [62,64,65]. Additionally, GalE is only fully functional as a dimer [61,62], suggesting

that the interface of this enzyme is potentially druggable. This study identifies a helix,

111-PLKYYDNNVVGILRLL, with two hotspots, Val-119 and Ile-123, on adjacent turns of the

same buried helical face of T. brucei GalE, overlapping sequences identified by both HippDB

(33% interface energy) and Loopfinder (heat score: 9) (Fig 2).
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Farnesyl diphosphate synthase, a key enzyme in sterol biosynthesis, catalyzes the sequential

condensation of isopentenyl diphosphate and dimethylallyl diphosphate to form geranyl

diphosphate and ultimately farnesyl diphosphate, which is the obliged precursor for the bio-

synthesis of sterols, ubiquinones, dolichols, heme A, and prenylated proteins [66]. Recently,

FPPS has been validated as a drug target [67] and the sterol biosynthesis pathway has been tar-

geted at numerous other steps [68]. Most established inhibitors are bisphosphonate substrate

mimics; however, they are commonly associated with poor drug-like characteristics [69–72].

FPPS is a functionally obligate homodimer, with the active site located at the protein-protein

Fig 2. Other essential enzymes where PPI disruption may be a viable inhibition strategy. (A) RpiB

dimer from T. cruzi (PDB: 3M1P) with predicted inhibitory loop (purple cartoon) and helix (yellow cartoon)

against calculated electrostatic surface. (B) Detail of peptide 141-RIEKIRAIEASH containing hot spots Ile-145

and Ile-148 (orange sticks) and known inactivating mutant Glu-149 (green sticks). (C) GalE dimer from T.

brucei (PDB: 1GY8) with inhibitory helix (yellow cartoon) predicted by HippDB, Loopfinder, Peptiderive, and

this study against calculated electrostatic surface. (D) Detail of peptide 111-PLKYYDNNVVGILRLL containing

hot spots Val-119 and Leu-123 (orange sticks) on adjacent turns of the helix. (E) Chains A (grey cartoon), B

(electrostatic surface), and C (pale blue surface) of PTR1 tetramer from L. major (PDB: 2QHX) with predicted

A-C interface inhibitory loop (purple cartoon) and A-B interface inhibitory helix (yellow cartoon). (F) Detail of

PTR1 helix 5, 192-TIYTMAKGALEGLTRSAALELA, containing predicted hotspots Thr-192, Met-196, Leu-

210, Glu-211, and Leu-212 (orange sticks) and catalytic residues Tyr-194 and Lys-198 (green sticks). Images

were rendered using PyMOL v0.99rc6 [42].

https://doi.org/10.1371/journal.pntd.0005720.g002
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interface [66,73]. This study identifies a turn between two helices, 25-FDMDPNRVRYL con-

taining three hotspots, Phe-25, Tyr-34, and Leu-35, in T. brucei FPPS [66]. This same segment

is identified by both Peptiderive (15% interface energy) and Loopfinder (heat score: 3).

Tyrosine aminotransferase, which is involved in the first step of amino acid catabolism, cat-

alyzes transamination for both dicarboxylic and aromatic amino-acid substrates [74]. Struc-

tural studies suggest that TAT is only fully functional in the dimeric state [75]. TAT is

overexpressed in T. cruzi from patients with acute Chagas [76] and associated with resistance

to oxidative damage. This study identifies a three-turn interface helix, 54-AQIKKLKEAIDS, in

T. cruzi and L. infantum TAT with two proximal hotspots, Leu-59 and Ile-63, on adjacent

turns, presenting a hydrophobic face buried in the opposite protomer. This is in contrast to

the only helix found in HippDB, 275-PSFLEGLKRVGMLV (15% interface energy), which

interacts primarily with the domain-swapped, N-terminal 15 amino acids.

Pteridine reductase, a short-chain reductase, participates in the salvage of pterins, for which

trypanosomatids are auxotrophic [77]. PTR1 catalyzes the NADPH-dependent two-stage

reduction of oxidized pterins to the active tetrahydro-forms and provides an alternate pathway

for folate reduction, allowing de novo thymidylate synthesis to occur even in the presence of

methotrexate [77,78]. PTR1 is essential in T. brucei and has been targeted in numerous small-

molecule efforts [79–82]. The enzyme is a functional tetramer with substantial surface contacts

between the A chain and B and C chains [79,83], suggesting the viability of targeting the PPI.

This study identifies six hotspots on helix 5 of L. major PTR1, with hotspots clustered in

hydrophobic pockets at the N-terminal (Thr-192 and Met-196) and C-terminal (Leu-210, Glu-

211, Leu-212, and Leu-215) ends of an otherwise convex surface at the A-B interface (Fig 2).

The C-terminal portion of this helix is predicted by Peptiderive to contribute 24% of the A-B

interface energy and is positioned to mediate the A-C interaction as well. This same helix was

identified by HippDB (67% A-B interface energy) and contains two key catalytic residues, Tyr-

194 and Lys-198, mutation of which inactivates PTR1 [84]. Loopfinder identified a comple-

mentary loop (heat score: 9) that appears to contribute substantially to the A-C interaction.

Deoxyuridine triphosphate nucleotidohydrolase is necessary for both DNA repair and de
novo synthesis of dTTP. It converts dTUP to dUMP and pyrophosphate. dUTPase maintains a

high ratio of dTTP:dUTP, preventing accidental incorporation of uracil into DNA [85,86].

This enzyme was shown to be essential in L. major and T. brucei with decreased proliferation

in both the procyclic and bloodstream forms of the organism [85,87]. T. cruzi dUTPase, an

obligate dimer, shows little homology to the human counterpart, which is a functional mono-

mer, contributing to its potential as a drug target [86,87]. However, among trypanosomatids,

the interface residues are highly conserved [85]. This study identifies an unstructured loop on

the interface of L. major dUTPase, 51-ELLDSYPWKWWK, with two hotspots, Leu-53, Trp-

58, in close proximity. An overlapping segment was identified by Peptiderive (35% interface

energy). Trp-58, Trp-60, and Trp-61 are buried in a deep hydrophobic cavity on the opposite

protomer, although only the former was identified by this computational alanine scan.

Dihydroorotate dehydrogenase catalyzes the oxidation of dihydroorotate to orotate in the

de novo pyrimidine biosynthetic pathway [88]. The highly conserved DHODHs found in try-

panosomatids bear less than 20% sequence homology to the analogous human enzyme

[89,90]. DHODH knockout studies demonstrated that the protein is essential in T. cruzi and

an obligate dimer [89,90], suggesting that DHODH would be an ideal drug target in trypano-

somatids. This study identifies a long, unstructured loop in T. brucei DHODH, 202-VIDAE-

TESVVIKPKQGFG, containing three hotspots, Ile-203, Val-210, and Phe-218, tightly

clustered in a hydrophobic groove. Both Loopfinder (heat score: 3) and Peptiderive (23% inter-

face energy) identify overlapping portions of this peptide, suggesting an ideal starting point for

the development of macrocyclic inhibitors.
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General trends and future outlook

In the past decade, inhibition of PPIs has evolved from the short, primary epitopes exemplified

by RGD-peptide-like integrin antagonists and AVPI-peptide-like Smac mimetics to include

clinically relevant molecules that recapitulate increasingly complex secondary and tertiary

structures like those presented by the BCL family and IL-2, respectively [12,91]. The diversity

of topologies, interaction motifs, and binding affinities at these interfaces presents an intrigu-

ing challenge for the development of new PPI inhibitors [7]. PPI-based inhibition of NTD tar-

gets has achieved some pre-clinical successes, including non-peptide inhibitors of the cysteine

protease cruzain [92,93], and interface-peptide-derived inhibitors of triosephosphate isomer-

ase [14,16].

Ultimately, this analysis identified solely homomultimeric enzymes. This is likely due to the

bias of existing structural data towards these types of targets, which have received substantial

attention as targets for structure-based design of small-molecule inhibitors [28,31,94]. Of the

207 multi-chain trypanosomatid crystal structures in the PDB, 148 (71.5%) are for enzymes

(Table 2). Nevertheless, two of the 12 targets identified in this study have been successfully

inhibited by interface-derived peptides. An interface-derived peptide helix has been demon-

strated to inhibit LiTryR through a mechanism that disrupts the PPI [34,40]. This helix had

also been identified by HippDB as potentially contributing 15% of the interface energy, while

the loop region identified in this analysis is predicted to contribute 22%. Similarly, the G6PDH

interface peptide matches a homologous region in the human enzyme, which has been success-

fully developed into an inhibitory peptide [35]. Given the proximity of the hot spots in space

rather than sequence, it appears amenable to inhibition by a macrocycle or peptidomimetic.

Overall, PPI-based inhibition of multimeric enzymes [14,15] represents a complementary, but

underutilized, approach to these targets.

The interface peptides identified in this study predominantly contain hot-spot amino acids

with aliphatic side chains (Leu, 29%; Ile, 24%; Val, 12%) and Phe (9%). Surprisingly [95–97],

other aromatic amino acids (Tyr, 3%; Trp, 3%) appear to be underrepresented in this analysis.

These percentages do not differ substantially from the hot spots found over the entire interface

(Leu, 30%; Ile, 16%; Val, 16%; Phe, 13%; Tyr, 3%; Trp, 2%). Bogan and Thorn observed a gen-

eral enrichment of Trp, Tyr, and Arg at interface hot spots [98]; the Loopfinder dataset

observed enrichment of Trp, Phe, His, Asp, Tyr, Leu, Glu, and Ile in hot loops [25]. This con-

trast is most apparent when examining specific PPIs in this study. In the case of TryR (Fig 1),

an experimentally verified hot spot (Trp-80) [34] was not identified by the computational ala-

nine scan, despite being buried in the opposite chain of the protein. TryR Trp-80 is conserved

across kinetoplastids (S5 Table), as are two of the three calculated hot spots, Ile/Leu-71 and

Phe-78. Similarly, the hydrophobic face presented by the interface helix identified for GalE

contains a third residue, Tyr-115, not identified in this analysis, but contained in the single

Table 2. Classes of multi-chain kinetoplastid enzymes with structural data in the PDB.

Enzyme Class Number Percent

Oxidoreductases 38 18.4%

Transferases 44 21.3%

Hydrolases 23 11.1%

Lyases 18 8.7%

Isomerases 18 8.7%

Ligases 7 3.4%

Total 148 71.5%

https://doi.org/10.1371/journal.pntd.0005720.t002
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alpha-turn found by HippDB as contributing 33% of interface energy (Fig 2). As in the case of

TryR, the GalE interface peptide contains three highly conserved hotspots, Pro-111, Val-119,

Leu/Ile-123. Sequence conservation of both interface peptides and hot spots was highly variable

from protein to protein, with large differences in enzymes such as G6PDH and RpiB, but high

homology in TXNPx and PTR1 (S5 Table). Overall, since the interface peptides were identified

manually rather than algorithmically, and this is a relatively small data set, it is impractical to

extrapolate broader conclusions about the nature of potentially inhibitory interface peptides.

Conclusion

Computational alanine scanning has revealed 12 drug targets in kinetoplastid parasites that are

likely amenable to PPI-based inhibition. While all 12 targets are covered by previous PDB-

wide analyses focusing on particular structural motifs, manual inspection of this subset has

revealed a number of unique sequences that provide a logical starting point for the develop-

ment of new inhibitors. Nine of the identified targets have sequences overlapping those identi-

fied in previous databases, and two have been experimentally verified, suggesting the potential

generality of PPI-based inhibition for these homomultimeric enzymes. Moreover, this

approach leverages the power of freely available databases and computational tools, allowing

for the rapid analysis of newly disclosed structures for novel modes of inhibition. While a gen-

erally predictive model of PPI inhibition has yet to be established, the targets identified in this

work present particularly attractive opportunities for the exploration of new modes of inhibi-

tion for these targets.

Supporting information

S1 Fig. Sequence and structural alignment of LiTryR and hGR inhibitory peptides. Struc-

ture alignment of the inhibitory peptide helices for LiTryR (435-PEIIQSVGICMKM, shown in

purple) and hGR (436-QGLGCDEMLQGFAVAVKMGATKAD, shown in teal) taken from

PDB structures 2JK6 and 1GRE. In the assumed binding conformation, LiTryR residues E436,

Q439, I443, K446, and M447 (purple sticks) present a nearly identical buried helical face to

hGR residues E442, Q445, V449, K452, and M453 (teal sticks). Image was rendered using

PyMOL v0.99rc6 [42].

(TIF)

S1 Table. Full comparison of predicted peptide inhibitor sequences with existing databases

and tools. HippDB and Peptiderive scores are both listed as % interface energy contributed by

the peptide. Loopfinder heat score is determined using three criteria: A) average amino

acid� 0.6 REU; B)� 3 hot spots; C) contributes > 50% interface energy. A heat score of 2, 3,

or 4 meets only condition A, B, or C, respectively; a heat score of 9 meets all three criteria.

(XLSX)

S2 Table. List of interface hot spots identified for PPIs highlighted in Table 1.

(XLSX)

S3 Table. All PPIs containing at least three interface hot spots.

(XLSX)

S4 Table. All multimeric protein interfaces considered in this study.

(XLS)

S5 Table. Comparison of interface peptide sequences across kinetoplastid species.

(XLSX)
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Characterization of deoxyuridine 50-triphosphate nucleotidohydrolase from Trypanosoma cruzi 1. FEBS

Lett. 2002; 526: 147–150. https://doi.org/10.1016/S0014-5793(02)03158-7 PMID: 12208522

87. Nguyen C, Kasinathan G, Leal-Cortijo I, Musso-Buendia A, Kaiser M, Brun R, et al. Deoxyuridine Tri-

phosphate Nucleotidohydrolase as a Potential Antiparasitic Drug Target. J Med Chem. 2005; 48:

5942–5954. https://doi.org/10.1021/jm050111e PMID: 16161998

88. Björnberg O, Jordan DB, Palfey BA, Jensen KF. Dihydrooxonate is a substrate of dihydroorotate dehy-

drogenase (DHOD) providing evidence for involvement of cysteine and serine residues in base cataly-

sis. Arch Biochem Biophys. 2001; 391: 286–94. https://doi.org/10.1006/abbi.2001.2409 PMID:

11437361

89. Cordeiro AT, Feliciano PR, Pinheiro MP, Nonato MC. Crystal structure of dihydroorotate dehydroge-

nase from Leishmania major. Biochimie. 2012; 94: 1739–1748. https://doi.org/10.1016/j.biochi.2012.

04.003 PMID: 22542640

90. Inaoka DK, Sakamoto K, Shimizu H, Shiba T, Kurisu G, Nara T, et al. Structures of Trypanosoma cruzi

dihydroorotate dehydrogenase complexed with substrates and products: Atomic resolution insights into

mechanisms of dihydroorotate oxidation and fumarate reduction. Biochemistry. 2008; 47:

10881–10891. https://doi.org/10.1021/bi800413r PMID: 18808149

91. Cardote TAF, Ciulli A. Cyclic and Macrocyclic Peptides as Chemical Tools To Recognise Protein Sur-

faces and Probe Protein-Protein Interactions. ChemMedChem. 2016; 11: 787–794. https://doi.org/10.

1002/cmdc.201500450 PMID: 26563831

Druggable protein-protein interactions in kinetoplastid parasites

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005720 June 29, 2017 15 / 16

https://doi.org/10.1110/ps.0229403
https://doi.org/10.1110/ps.0229403
http://www.ncbi.nlm.nih.gov/pubmed/12717026
https://doi.org/10.1107/S2053230X14007845
http://www.ncbi.nlm.nih.gov/pubmed/24817714
https://doi.org/10.1016/j.jprot.2011.05.001
http://www.ncbi.nlm.nih.gov/pubmed/21642025
https://doi.org/10.1074/JBC.272.21.13883
http://www.ncbi.nlm.nih.gov/pubmed/9153248
https://doi.org/10.1016/j.jmb.2005.06.076
http://www.ncbi.nlm.nih.gov/pubmed/16055151
https://doi.org/10.1111/j.1365-2958.2006.05332.x
http://www.ncbi.nlm.nih.gov/pubmed/16968221
https://doi.org/10.1021/jm900414x
http://www.ncbi.nlm.nih.gov/pubmed/19527033
https://doi.org/10.1021/jm901059x
http://www.ncbi.nlm.nih.gov/pubmed/19916554
https://doi.org/10.1021/jm500483b
http://www.ncbi.nlm.nih.gov/pubmed/25007262
https://doi.org/10.1107/S0907444903013131
https://doi.org/10.1006/abbi.1999.1290
https://doi.org/10.1006/abbi.1999.1290
http://www.ncbi.nlm.nih.gov/pubmed/10415124
https://doi.org/10.1074/jbc.M111.224873
http://www.ncbi.nlm.nih.gov/pubmed/21454646
https://doi.org/10.1016/S0014-5793(02)03158-7
http://www.ncbi.nlm.nih.gov/pubmed/12208522
https://doi.org/10.1021/jm050111e
http://www.ncbi.nlm.nih.gov/pubmed/16161998
https://doi.org/10.1006/abbi.2001.2409
http://www.ncbi.nlm.nih.gov/pubmed/11437361
https://doi.org/10.1016/j.biochi.2012.04.003
https://doi.org/10.1016/j.biochi.2012.04.003
http://www.ncbi.nlm.nih.gov/pubmed/22542640
https://doi.org/10.1021/bi800413r
http://www.ncbi.nlm.nih.gov/pubmed/18808149
https://doi.org/10.1002/cmdc.201500450
https://doi.org/10.1002/cmdc.201500450
http://www.ncbi.nlm.nih.gov/pubmed/26563831
https://doi.org/10.1371/journal.pntd.0005720


92. Wiggers HJ, Rocha JR, Fernandes WB, Sesti-Costa R, Carneiro ZA, Cheleski J, et al. Non-peptidic Cru-

zain Inhibitors with Trypanocidal Activity Discovered by Virtual Screening and In Vitro Assay. PLoS

Negl Trop Dis. 2013; 7: e2370. https://doi.org/10.1371/journal.pntd.0002370 PMID: 23991231

93. Ndao M, Beaulieu C, Black WC, Isabel E, Vasquez-Camargo F, Nath-Chowdhury M, et al. Reversible

cysteine protease inhibitors show promise for a Chagas disease cure. Antimicrob Agents Chemother.

2014; 58: 1167–78. https://doi.org/10.1128/AAC.01855-13 PMID: 24323474
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