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Abstract

We introduce Sequence Bloom Trees, a method for querying thousands of short-read sequencing 

experiments by sequence 485 times faster than existing approaches. The approach searches large 

data archives for all experiments that involve a given sequence. We use Sequence Bloom Trees to 

search 2652 human blood, breast, and brain RNA-seq experiments for all 214,293 known 

transcripts in under 4 days using less than 239 MB of RAM and a single CPU.

The NIH Sequence Read Archive (SRA)
1
 contains ~3 petabases of sequence information 

that can be used to answer biological questions that single experiments do not have the 

power to address. However, searching the entirety of such a database for a sequence has not 

been possible in reasonable computational time.

Some progress has been made toward enabling sequence search on large databases. The NIH 

SRA provides a sequence search functionality
2
; however, the search is restricted to a limited 

number of experiments. Existing full-text indexing data structures such as Burrows-Wheeler 

transform
3
, FM-index

4
, or others

5–7
 are currently unable to mine data of this scale. Word-

based indices
8,9, such as those used by Internet search engines, are not appropriate for edit-

distance-based biological sequence search. The sequence-specific solutions caBLAST and 

its variants
10–12

 require an index of known genomes, genes, or proteins and so cannot search 

for novel sequences. Further, none of these existing approaches are able to match a query 

sequence q that spans many short reads.

We use an indexing data structure, Sequence Bloom Tree (SBT), to identify all experiments 

in a database that contain a given query sequence q. A query is an arbitrary sequence, such 

as a transcript. The SBT index is independent of eventual queries, so the approach is not 

limited to searching for known sequences. The SBT index can be efficiently built and stored 

in limited additional space. It also does not require retaining the original sequence files, and 
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the index can be distributed separately from the data. SBTs are dynamic, allowing insertions 

and deletions of new experiments. A coarse-grained version of a SBT can be downloaded 

and subsequently refined as more specific results are needed. They can be searched using 

low memory for the existence of arbitrary query sequences.

SBTs create a hierarchy of compressed bloom filters
13,14

, which efficiently store a set of 

items. Each bloom filter contains the set of kmers (length-k subsequences) present within a 

subset of the sequencing experiments. SBTs are binary trees in which the sequencing 

experiments are associated with leaves, and each node v of the SBT contains a bloom filter 

that contains the set of kmers present in any read in any experiment in the subtree rooted at v 
(Supplementary Fig. 1). We reduce the space usage by using bloom filters that are 

compressed via the RRR
15

 compression scheme (see Online Methods). Hierarchies of bloom 

filters have been used for data management on distributed systems
16

. However, they have 

not previously been applied to sequence search, and we find that this allows us to tune the 

bloom filter error rate much higher than in other contexts (see Theorem 2, Online Methods), 

vastly reducing the space requirements. Bloom filters have also been used for storing 

implicit de Bruijn graphs
17,18

 and one view of SBTs is as a generalization of this to multiple 

graphs.

We used SBTs to search RNA-seq experiments for expressed isoforms. We built a SBT on 

2652 RNA-seq experiments in the SRA for human blood, breast, and brain tissues 

(Supplementary Table 1). The entire SBT requires only 200 GB (2.3% of the size of the 

original sequencing data) (Supplementary Table 2). For these data, construction of the tree 

takes ≈2.5 min per file (Supplementary Table 3).

We find these experiments can be searched for a single transcript query in on average 19 min 

(Fig. 1) using less than 239 MB of RAM with a single thread (see Online Methods). The 

comparable search time using SRA-BLAST
2
 or mapping via STAR

20
 is estimated to be 6.4 

days and 456 days respectively (see Online Methods), though SRA-BLAST and STAR 

return alignments while SBT does not. However, even a very fast aligner such as STAR 

cannot identify query-containing experiments as fast as SBT. We also tested batches of 100 

queries and found SBT is an estimated 3650 times faster than a batched version of the 

mapping approach (Supplementary Fig. 2). These queries were performed over varying 

sensitivity threshold θ as well as the TPM threshold used to select the query set 

(Supplementary Fig. 3 and Supplementary Fig. 4). For a majority of queries, the upper levels 

of the SBT hierarchy provide substantial benefit, particularly on queries that are not 

expressed in any experiment (Supplementary Fig. 5 and Supplementary Table 4).

SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST, by first ruling out 

experiments in which the query sequences are not present. This allows the subsequent 

processing time to scale with size of the number of hits rather than the size of the database. 

We find that first filtering the database with SBT reduces the overall query time of STAR or 

SRA-BLAST by a factor of ≈3.5 (Supplementary Fig. 6).

To analyze the accuracy of the SBT filter, we compare the experiments returned by SBT 

with those in which the query sequence is estimated to be expressed using Salmon
19

. 
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Because it is impractical to use existing tools to estimate expression over the entire set of 

experiments, we query the entire tree but estimate accuracy on a set of 100 random files on 

which we ran Salmon (Fig. 2).

Both false positives (FP) and false negatives (FN) can arise from a mismatch between SBT’s 

definition of present (coverage of kmers over a sufficient fraction of the query) and Salmon’s 

definition of expressed (as estimated via read mapping and an expectation-maximization 

inference). These two definitions are related, but not perfectly aligned, resulting in some 

disagreement that is quantified by the FP and FN rates of Fig. 2. The observed false 

negatives are primarily driven by a few outlier queries for which the SBT reports no results 

but their expression is above the TPM threshold as estimated by Salmon. This is supported 

by the fact that the average true positive rate at θ = 0.7 for queries that return at least one file 

is between 96 – 99%, and the median true positive rate across all queries is between 90 – 

100% for all but the strictest θ (Fig. 2).

We use SBT to search all blood, brain, and breast SRA sequencing runs for the expression of 

all 214,293 known human transcripts and use these results to identify tissue-specific 

transcripts (Supplementary Table 5 and Supplementary Fig. 7. This search takes 3.3 days 

using a single thread (Supplementary Fig. 8). We estimate an equivalent search using 

Salmon would take 76 days.

The speed and computational efficiency of SBTs will enable both individual labs and 

sequencing centers to support large-scale sequence searches. SBTs may be useful to search 

genomic and metagenomic collections as well. An open-source prototype implementation of 

SBT is available at http://www.cs.cmu.edu/~ckingsf/software/bloomtree (Supplementary 

File 1).

Online Methods

Sequence Bloom Tree construction and insertion

A Sequence Bloom Tree is a binary tree that is built by repeated insertion of sequencing 

experiments. Given a (possibly empty) Sequence Bloom Tree T, a new sequencing 

experiment s can be inserted into T by first computing the bloom filter b(s) of the kmers 

present in s and then walking from the root along a path to the leaves and inserting s at the 

bottom of T in the following way. When at node u, if u has a single child, a node 

representing s (and containing b(s)) is inserted as u’s second child. If u has two children, 

b(s) is compared against the bloom filters b(left(u)) and b(right(u)) of the left left(u) and 

right right(u) children of u. The child with the more similar filter under the Hamming 

distance between the filters becomes the current node, and the process is repeated. If u has 

no children, u represents a sequencing experiment s′. In this case, a new union node v is 

created as a child of u’s parent. This new node has two children: u and a new node 

representing s.

Each filter consists of a bit vector of length m and a set of h hash functions h1 : U → [0, m) 

that map items to bits in the bit vector. Insertion of k ∈ U is performed by setting to 1 the 

bits specified by hi(k) for i = 1, …, h. Querying for membership of k in b(k) checks these 
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same bits; if they are all 1, the filter is reported to contain k. Because of overlapping hash 

results, bloom filters have one-sided error: they can report a kmer k is present when it is not. 

This error, and its effect on overall query accuracy of Sequence Bloom Trees, can be made 

quite small with the appropriate choice of parameters (see below). Bloom filters have been 

used in several others contexts in bioinformatics (e.g. [21, 22]). Hierarchies of Bloom filters 

have been used in other applications [23].

As s is walked down the tree, the filters at the nodes that are visited are unioned with b(s). 

This unioning process can be made fast (and trivially parallelized for large filters) since the 

union of two bloom filters can be computed by ORing together the bit vectors. This is 

particularly beneficial where GPU or vector computations can be used for these single 

instruction, multiple data (SIMD) operations. SBTs are different than cascading bloom 

filters [24, 25], which aim to reduce false positive rates of a single set query by recursively 

storing false positives in their own bloom filters. SBT works when word based indices fail 

[26, 27].

The insertion process is designed to greedily group together sequencing experiments with 

similar bloom filters. This is important for two reasons. First, it helps to mitigate the 

problem of filter saturation. If too many dissimilar experiments are present under a node u, 

then b(u) tends to have many bits set. In addition, by placing similar experiments in similar 

subtrees, more subtrees are pruned at an earlier stage of a query, reducing query time.

A primary challenge with scaling Sequence Bloom Trees to terabytes of sequence is 

saturation of the filters at levels of the tree near the root. The filter at any node v is the union 

of the filters of its children. However, this means as one moves from the leaves to the root, 

the filters will tend to contain more and more bits set to 1, increasing their false positive rate. 

This saturation can be overcome using several techniques: appropriate parameter selection 

(see Setting the bloom filter size), grouping of related experiments during insertion into the 

tree as above, and including only k-mers that have a minimum coverage count (see Building 

bloom filters). Note that filters with poor false positive rates at high levels of the tree only 

affect query time: accuracy is governed entirely by the false positive rate of the leaf filters.

Querying

Given a query sequence q and a Sequence Bloom Tree T, the sequencing experiments (at the 

leaves) that contain q can be found by breaking q into its constituent set of kmers Kq and 

then flowing these kmers over T starting from the root. At each node u, the bloom filter b(u) 

at that node is queried for each of the kmers in Kq. If more than θ|Kq| kmers are reported to 

be present in b(u), the search proceeds to all of the children of u, where θ is a cutoff between 

0 and 1 governing the stringency required of the match. The parameter θ governs a query’s 

tolerance to errors. Ignoring the effects of sequence boundaries, a general SBT query with N 
kmers and kmer size k tolerates at least N (1 − θ)/k kmer mismatches, between the query 

and the stored data.

If fewer than that number of kmers are present, the subtree rooted at u is not searched further 

(it is pruned). It has been shown that kmer similarity is highly correlated to the quality of the 
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alignments between sequences [28, 29, 30, 31], and SBT guarantees that if the query 

sequence is present (at sufficient coverage), it will be found.

When a search proceeds to the children, the children are added to a queue for eventual 

processing. Even though there may be a large frontier of nodes that are currently active, the 

memory usage for querying is the trivial amount of memory needed to store the tree 

topology plus the memory needed to store the single current filter. The Sequence Bloom 

Tree timings reported here are all for single-threaded operation.

If several queries are to be made, they can be batched together so that a collection C = {Kq1, 

…, Kqt } of queries starts at the root, and only queries for which |b(u) ∩ Kqi| > θ|Kqi| are 

propagated to the children. When C becomes empty at a node, the subtree rooted at that 

node is pruned and not searched further. The main advantage of batching queries in this way 

is locality of memory references. If b(u) must be loaded from disk, it need be loaded only 

once per batch C rather than once per query. Batch queries can be parallelized in the same 

way as non-batched queries by storing with the nodes on the queue the indices of query sets 

that remain active at that node. Additionally, batch queries offer an alternative means of 

parallelization where the query collection C is split evenly among active threads that merge 

results for the final query results.

Our implementation of SBT allows a user to specify a weight wa between 0 and 1 for each 

kmer a in their query Kq. When these weights are specified, a subtree rooted at u is searched 

if ∑a∈Kq∩b(u) wa ≥ θ ∑a∈Kq wa. That is, a subtree is searched if greater than θ fraction of the 

possible total kmer weights are observed. Kmers that the user considers essential to their 

query (e.g. those spanning an exon junction) can be given higher weight than others. For all 

experiments here, we use unweighted kmers (wa = 1 for all a).

Setting the bloom filter size

There are two important parameters that need to be set when constructing the bloom filters 

contained in a Sequence Bloom Tree. These are the bloom filter length (m) and the number 

of hash functions (h) used in the filter. We also must choose the kmer threshold θ for our 

queries. We explore below the relationship between m, h, θ, and the resulting false positive 

rate ξ of the filters.

Let S be a collection of r sequencing experiments with the property that each s ∈ S contains 

n distinct kmers. We analyze the behavior of a union of filters under the simplifying 

assumption that the kmer overlap between all pairs of experiments in S is uniform. 

Specifically, assume that the probability that two different experiments si and sj in S share 

any given kmer is p. In other words, the expected number of kmers that appear in sj that do 

not appear in si is d(1 − p), where d is the number of kmers in the experiments. We can then 

estimate the expected number of unique kmers:

Lemma 1—Let U = ⋃s∈S s be the union of sequencing experiments in S as described 
above. The expected number of distinct kmers in the union is n(1 − (1 − p)r)/p.
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Proof—We have |U|] = |S1|] + |S2 \ S1|] + |S3 \ S1 \ S2|] + …. Each kmer in Si is 

absent from ⋃j<i Sj independently with probability (1 − p)i−1. Therefore |Si \ ⋃j<i Sj|] = n(1 

− p)i − 1, and we have:

(1)

The assumptions of a uniform kmer count n and uniform overlap probability p do not hold in 

practice. However, under idealized assumptions, Lemma 1 formalizes the intuition that the 

expected number of elements in the SBT is the union set of all kmers. In practice, this allows 

us to define the size of the bloom filter to be equal to an estimate of the total number of 

unique kmers. Under the theoretical assumptions, it also shows that when the overlap is large 

(p is close to 1), the number of elements of U approaches that of a single experiment. Using 

this relationship, we can select the optimal number of hash functions for such a union as in 

Theorem 1.

Theorem 1—The number of hashes that minimizes the false positive rate of a union filter 
U with the expected number of elements is

(2)

where load = n/m. Under this setting of h, the FPR of U is

(3)

which is at most 1/2 so long as h* ≥ 1.

Proof—Follows directly by treating U as a single filter containing n(1 − (1 − p)r)/p items.

In the case of Sequence Bloom Trees, we have an advantage that we are not ultimately 

interested in a single bloom filter query on a kmer, but rather a set of queries of the kmers 

contained in the longer query string q. Thus, we are concerned mostly with the FPR on 

queries rather than FPR on kmers. Theorem 2 explores the connection between the two.

Theorem 2—Let q be a query string containing ℓ distinct kmers. If we treat the kmers of q 
as being independent, the probability that > ⌊θℓ⌋ false positive kmers appear in a filter U 
with FPR ξ is

(4)

The above expression is nearly 0 when ξ ≪ θ.

Solomon and Kingsford Page 6

Nat Biotechnol. Author manuscript; available in PMC 2016 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proof—Treating each kmer in q independently allows us to model the repeated queries 

using a binomial distribution, yielding (4). A false positive in q occurs when > ⌊θℓ⌋ false 

positive kmers occur in U. Let X be the number of false positive kmers, and let Y be the 

number of correctly determined kmers. Then Pr[X > θℓ] = Pr[Y ≤ ℓ − θℓ]. When θ ≥ ξ, we 

have ℓ − θℓ ≤ ℓ(1 − ξ) = E[Y], and the following bound holds by Chernoff’s inequality:

(5)

In our search application, it is natural to require that at least 1/2 the kmers of a query are 

present; if < 1/2 are present it is fair to say that the query is not contained within the 

experiment. Therefore θ will typically be ≫ 0.5. In this case, if we choose the FPR of the 

bloom filters to be 0.5, by Theorem 2, we will be unlikely to observe > θ fraction of false 

positive kmers in the filter. A bloom filter FPR of 0.5 is much higher than typical 

applications of bloom filters, in which very low false positive rates are sought. The above 

analysis assumes independence of the kmers, which is of course unrealistic. Nevertheless, it 

formalizes the intuition that choosing a high FPR can still lead to few errors. By choosing 

such a high filter FPR, we can use smaller filters, limiting the memory footprint of the 

Sequence Bloom Tree.

To set the bloom filter size, we follow the intuition of Lemma 1, and use an estimate of the 

total number of unique kmers across as an estimate of the number of items any individual 

filter will contain. As it is computationally expensive to quantify this across all 2652 files, 

the total was estimated by counting the combined kmer content of 100 random files using 

Jellyfish 2.0, yielding an estimate of 1,902,731,933 kmers. Because we use a filter FPR of 

0.5 and h = 1, as suggested by the above theorems, a single element in the SBT has a storage 

cost of ≤ 1 bit. Therefore, we set the size m of each bloom filter (in bits) to approximately 

equal this estimate of number of kmers. This offers an approximation that, by under-

counting kmers, sacrifices some accuracy at the highest levels of the tree for a reduced 

bloom filter size. This value is also substantially higher than the number of kmers expected 

in any individual leaf filter and allows leaf filters (where accuracy is most important) to be 

less saturated and easily compressed. This leads to an uncompressed filter size of 239 MB, 

and any kmer of sufficient coverage that is shared between two files will correspond to a 

shared bit.

Experiments selected for inclusion in the SBT

A Sequence Bloom Tree was constructed from 2652 human, RNA-seq short-read sequencing 

runs from the NIH SRA. These 2652 files represented the entire set of publicly available, 

human RNA-seq runs from blood, brain, and breast tissues stored at the SRA at the time of 

download as determined by keywords in their metadata and excluding files sequenced using 

the SOLID technology. Files where the metadata was unclear about tissue type or 

experimental setup were discarded. This tree was used for all experiments described in the 

manuscript.
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Building bloom filters

The construction of the Sequence Bloom Tree involves 3 major tasks: creation of bloom 

filters for each of the experiments included at its leaves, the construction of the tree and 

internal bloom filters, and the RRR compression [15] of each of the filters. Timing for each 

stage is given in Supplementary Table 4.

In the experiments here, bloom filters were constructed using the Jellyfish kmer counting 

library [32] from short-read FASTA files downloaded from the NIH SRA by counting 

canonical kmers (the lexicographically smaller kmer between a kmer and its reverse 

complement). We choose k = 20 as these kmers are reasonably unique within the human 

genome. Jellyfish was allowed to use 20 threads — all other computation reported here was 

run with a single thread.

To select only kmers from sufficiently expressed transcripts and to avoid counting kmers 

resulting from sequencing errors, we built trees containing kmers that occur greater than a 

file-dependent threshold. This threshold count(si) was determined using the file size of 

experiment si as follows: count(si) = 1 if si is 300 MB or less, count(si) = 3 for files of size 

300–500 MB, count(si) = 10 for files of size 500 MB–1 GB, count(si) = 20 for files between 

1 GB and 3 GB, and count(si) = 50 for files > 3 GB or larger FASTA files. These cutoffs 

were determined via the analysis of a small set of 18 sequence experiments of various sizes 

and tissue types and were chosen such that at least 60% of the transcripts expressed at a non-

zero level in each of these files had an estimated uniform coverage above this number. In 

practice, we found these thresholds to outperform two naïve thresholds (count(si) = 0 and 

count(si) = 3 for all i) in speed and accuracy. We report only the results from the file-

dependent threshold for this reason.

We can use a cutoff based on file size here because all the experiments sequenced the human 

transcriptome. In a situation where experiments of mixed organism origin are included, a 

more sophisticated scheme based directly on sequencing coverage would be needed to avoid 

counting sequencing errors.

After the Sequence Bloom Tree is built, the filters (both leaf and internal) are compressed 

using the RRR [15] bit vector compression scheme as implemented in the succinct data 

structures library [33]. This permits querying a bit without decompression and incurs only a 

O(log m) factor increase in access time (where m is the size of the bloom filter).

Hardware used for computational experiments

All times in all experiments reported here were obtained on a shared computer with Intel 

Xeon 2.60GHz CPUs using a single thread (or 15 threads in the case of STAR and 20 in the 

case of Jellyfish). The SBT queries were limited to keeping a single compressed filter in 

memory at any one time, leading to memory usage of < 239 megabytes of RAM.

Representative query sets and ground truth results

To determine the accuracy of Sequence Bloom Trees, we selected a subset of 100 random 

read files and used Salmon (the latest version of Sailfish [19]; see [34]) to quantify the 

expression of all transcripts in each of these experiments. All Sequence Bloom Tree queries 
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are queried on the full set of 2652 files but the accuracy is computed based only on the 

random subset of files for which we computed expression results from Salmon.

Note that Sequence Bloom Tree returns no false negatives in the sense that if a query is 

covered by kmers in sufficient depth over θ-fraction of its length then the experiment will be 

returned. The “false negatives” in Figure 2 are those experiments where Salmon indicated 

the transcript was sufficiently expressed but SBT indicated that it was not sufficiently 

present. In this context, present and expressed are different concepts: “present” means 

sufficient coverage of the transcript at a given depth, while “expression” is estimated using 

Salmon’s expectation-maximization approach to allocate mapped reads to isoforms. These 

are related, but not identical notions. SBT has a 0% FN rate and a very low false positive 

rate identifying present transcripts (false positives identifying present transcripts are due to 

the one-sided bloom filter errors and kmer shredding of the reads). Figure 2 shows SBT’s 

false negative and false positive rates identifying expressed transcripts, which are partially 

due to the mismatch between the definitions of present and expressed.

Three collections of representative queries were constructed, denoted by High, Medium, and 

Low, that include transcripts that are likely to be expressed at a higher, medium, or low level 

in at least one experiment contained in the tree. To create these sets, Salmon was run on 100 

random sequencing experiments to estimate transcript expression. The High set was chosen 

to be 100 random transcripts of length > 1000 nt with an estimated abundance of > 1000 

transcripts per million (TPM). The Medium and Low query sets were similarly chosen 

randomly from among transcripts with > 500 and > 100 TPM, respectively. These Salmon 

estimates were taken as the ground truth of expression for the query transcripts.

SRA-BLAST

There are presently no search or alignment tools that can solve the sequence search problem 

in short-read sequencing files at the scale we attempt here. However, as alignments can be 

used to determine query coverage and thus the presence of transcripts in sequence files, we 

compare with SRA-BLAST [2]. SRA-BLAST has a limitation on the total nucleotide count 

that can be searched at once and requires specifying SRX (experiment) files rather then SRR 

(run) files. Because it is impractical to use SRA-BLAST at the SBT scale, we estimated an 

average SRA-BLAST query time from 100 random queries of a transcript against a single 

SRX experiment set using the SRA-BLAST webtool [2]. Specifically, we randomly selected 

a short read file from the total 2652 set and a query from the Low representative query set 

and recorded the time it took SRA-BLAST to return an alignment. Some publicly available 

SRR files cannot be searched using this webtool and random queries containing these files 

were discarded. The extrapolated time to process one > 1000 nt query against one megabase 

of sequence read file was recorded at 0.0696 seconds per-megabase-per-query.

The comparison with SRA-BLAST is not meant to indicate that SBT can provide the same 

information as SRA-BLAST. In fact, the tools provide complementary information: a list of 

experiments identified with SBT can be searched for individual read alignments with SRA-

BLAST, thereby partially overcoming SRA-BLAST’s limitation on the number of 

experiments that can be searched.
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STAR

We also compare our search times with an alignment-based approach using a read mapping 

algorithm, STAR [20]. To do this, we built a separate STAR index for each of the 100 

sequence queries in the Low query set using a size-6 pre-index string. Reads from the 100 

files analyzed by Salmon (our ground truth set) were mapped to these indices, allowing zero 

mismatches during the alignment and a single thread. After 5 days of 15-threaded 

continuous run-time, only 4 STAR queries had completed, and from these an average STAR 

query time of 4.9 seconds per-megabase-per-query was calculated by normalizing the time it 

takes to perform a STAR alignment against the total size of each sequence file and number 

of queries. While these single-query indices are more representative of the standard search 

use case, they represent an index size smaller than is typically used with STAR. To estimate 

batched times, a single STAR index was built from all 100 sequences queries in the Low 
query set using a size-11 pre-index string. In this case, an average STAR query time of 

0.0093 seconds per-megabase-per-query was calculated. Note in either case, the time per-

megabase-per-query does not include the time to build the STAR index. Although STAR was 

designed to perform efficient alignments, it represents one of the most competitive existing 

tools that could be adapted to the general search problem we solve. The comparison with 

STAR is not intended to indicate that SBT provides the same information as STAR, but 

rather to show that even a very fast aligner such as STAR cannot identify experiments that 

contain a query sequence as quickly as SBT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Estimated running times of search tools for one transcript. The SBT per-query time was 

recorded using a maximum of a single filter in active memory and one thread. The other bars 

show the estimated time to achieve the same query results using SRA-BLAST and STAR 

(see Online Methods).
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Figure 2. 
ROC curve averaged over 100 queries with estimated expression > 100, > 500 and > 1000 

TPM and variable θ (see Online Methods). Solid lines represent mean TP and FP rates, 

dashed lines represent the median rates on the same experiments. Relaxing θ leads to a 

higher sensitivity at the cost of specificity. In more than half of all queries, 100% of true 

positive hits can be found with θ as high as 0.8.
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