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Abstract 

This study was based on the contemporary proposal that distinct states of consciousness are quantifiable by neural complexity and 
critical dynamics. To test this hypothesis, it was aimed at comparing the electrophysiological correlates of three meditation conditions 
using nonlinear techniques from the complexity and criticality framework as well as power spectral density. Thirty participants highly 
proficient in meditation were measured with 64-channel electroencephalography (EEG) during one session consisting of a task-free 
baseline resting (eyes closed and eyes open), a reading condition, and three meditation conditions (thoughtless emptiness, presence 
monitoring, and focused attention). The data were analyzed applying analytical tools from criticality theory (detrended fluctuation anal-
ysis, neuronal avalanche analysis), complexity measures (multiscale entropy, Higuchi’s fractal dimension), and power spectral density. 
Task conditions were contrasted, and effect sizes were compared. Partial least square regression and receiver operating characteristics 
analysis were applied to determine the discrimination accuracy of each measure. Compared to resting with eyes closed, the meditation 
categories emptiness and focused attention showed higher values of entropy and fractal dimension. Long-range temporal correlations 
were declined in all meditation conditions. The critical exponent yielded the lowest values for focused attention and reading. The high-
est discrimination accuracy was found for the gamma band (0.83–0.98), the global power spectral density (0.78–0.96), and the sample 
entropy (0.86–0.90). Electrophysiological correlates of distinct meditation states were identified and the relationship between nonlinear 
complexity, critical brain dynamics, and spectral features was determined. The meditation states could be discriminated with nonlin-
ear measures and quantified by the degree of neuronal complexity, long-range temporal correlations, and power law distributions in 
neuronal avalanches. 
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Introduction 
Consciousness has fascinated humankind since its very beginning 
and still is a challenge for many researchers all over the world 
(Seth 2010). Regarding the quest for specifying processes that 
underpin normal human consciousness, the nonlinear dynamical 
system approach has brought forward a variety of hypotheses on 
the relation between dynamics of neural activity and conscious-
ness experiences. Hereby, a contemporary proposal is that states 
of consciousness are quantifiable by the degree of neural com-
plexity, i.e. the degree to which neurons interact across multiple 
scales in a neural system (Tononi and Edelman 1998; Sporns et al. 
2000; Arsiwalla and Verschure 2018). Multiple new nonlinear time 
series methods and metrics for capturing the complexity of brain 
activity arose (Stam 2005). Some of these are applied to multi-
ple time series and aim at capturing simultaneous segregation 

and integration between the time series (Rosenblum et al. 1996). 

Others, however, are applicable to single time series such as 

entropy or fractal dimension measures to quantify statistical sim-

ilarity at different time scales, the amount of fluctuations and 

randomness in the signal, as well as fractal properties (Stam 2005; 

Kesi c and Spasic 2016).́ ́
In recent years, special attention has been given to the hypoth-

esis that neural dynamics might be governed by the phenomenon 

of self-organized criticality (SOC). This premise is based on theo-

retical and experimental work in physics, which has shown that 

the multiscale dynamics of a complex system can be character-

ized by the spatial and temporal statistics of avalanches branching 
through the system. These statistics reveal whether the system 
is in a fully random or a fully ordered state, or whether it is 
in a critical state, i.e. in a complex state at the edge between 
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order and disorder (Bak et al. 1987; Cocchi et al. 2017). Critical 
state dynamics are especially appealing as these were associ-
ated with optimized network functions of information processing 
such as input susceptibility, maximized dynamic range, storage 
capacity as well as computational power (Shew et al. 2011; Shew 
and Plenz 2013). Despite substantial critique and controversies 
against the SOC theory, concerning issues such as unprecise ter-
minology, the lack of evidence for a genuine control parameter, 
and the overall significance of power laws (Beggs and Timme 2012; 
Wilting and Priesemann 2019; Destexhe and Touboul 2021), a fair 
amount of research pointed out signatures of criticality such as a 
scale-free distribution of neuronal avalanches and the presence 
of long-range temporal correlations (LRTC) in neuronal oscilla-
tions in human EEG, MEG and fMRI data (Linkenkaer-Hansen et al. 
2001; Tagliazucchi et al. 2012; Shriki et al. 2013). Thus, critical 
dynamics were proposed as general gauges of information pro-
cessing and features of healthy brain dynamics (Massobrio et al. 
2015; Zimmern 2020; Fekete et al. 2021). Also, longstanding theo-
ries of consciousness such as the Integrated Information Theory 
developed by Giulio Tononi were associated with criticality (Tononi 
2004; Popiel et al. 2020). A few studies demonstrated an explicit 
relationship between criticality and the amount of integrated 
information (Φ) (Kim and Lee 2019; Popiel et al. 2020). Interestingly, 
it was suggested that critical dynamics maximize Φ (Tagliazucchi 
2017). 

Thus, the framework of criticality and complexity seems 
promising for capturing signatures of distinct states of con-
sciousness based on electrophysiological data. Interestingly, such 
metrices could be suitable to characterize the optimal brain 
state in terms of maximized information processing functions, 
which might correspond to altered states of consciousness as 
described in the field of transpersonal psychology (Vaitl et al. 2005; 
Garcia-Romeu and Tart 2013). Here, among others, one specific 
induction method depicts the practice of meditation, which has 
been shown to increase the depth of information processing and 
enhance allocation of attentional resources (Slagter et al. 2007; 
van Leeuwen et al. 2012). 

Whereas some studies provided first insights regarding neu-
ronal complexity during meditation (Deolindo et al. 2020), findings 
on the relation between critical dynamics and meditation are 
scarce (Irrmischer et al. 2018; Dürschmid et al. 2020). So far only 
the meditation category ‘focused attention’ was considered (Travis 
and Shear 2010). In addition, the spectrum of measures pro-
posed as consciousness indices is broad and multiple nonlinear 
approaches exist to extract complexity features from neurophysi-
ological signals (Stam 2005; Arsiwalla and Verschure 2018; Sarasso 
et al. 2021). Further, even though the importance of applying a 
combination of nonlinear methods was highlighted, most of the 
studies investigating states of consciousness as a function of neu-
ral complexity only considered one or two measures (Burns and 
Rajan 2015). 

Therefore, the aim of this study was 2-fold: (i) to character-
ize the electrophysiological correlates related to altered states 
of consciousness using different nonlinear techniques based on 
the criticality and complexity framework, respectively and (ii) to 
compare the discriminability of conditions using nonlinear meth-
ods to the standard method using spectral decomposition. For 
this purpose, highly experienced participants engaged in three 
meditation practices, namely ‘presence monitoring’, ‘thoughtless 
emptiness’, and ‘focused attention’ according to classification cat-
egories established by Travis and Shear (Travis and Shear 2010). A 
task-free resting state with opened and closed eyes as well as a 

reading condition served as control. To reveal differences between 
the states, the EEG data were analyzed by applying analytical 
tools from criticality theory [detrended fluctuation analysis (DFA), 
neuronal avalanche analysis], complexity measures [multiscale 
entropy (MSE) and Higuchi’s fractal dimension (HFD)] as well as 
power spectral density (PSD). 

Materials and methods 
Data acquisition and participants 
An EEG data set has been collected from 30 participants (mean 
age 47 years, 11 females/19 males) with a meditation experience 
of at least 5 years of practice or more than 1000 h of total med-
itation time. On average, participants had meditated for 20 years 
and 6498 h (Hinterberger et al. 2014). The session consisted of three 
different tasks. It started with an initial baseline recording com-
prising a resting state with eyes open (5 min), a resting state with 
eyes closed (5 min), and reading a neutral text (5 min). This was 
followed by three specific meditative tasks for a duration of 2 min 
each during which participants kept their eyes closed: 

(i) Presence monitoring (instruction: ‘Try to be in a state of high 
presence at the place you are in this room at each moment 
of time.’) 

(ii) Thoughtless emptiness (instruction: ‘Try to maintain the 
state of emptiness from all thought as well as possible.’) 

(iii) Focused attention (instruction: ‘Direct your attention on a 
spot in the middle of the forehead above your eyes.’) 

Events, feelings, emotions, thoughts, and properties of the 
session were summarized in a written report after the sessions 
(Hinterberger et al. 2014). 

Data processing 
Matlab (MathWorks, Natrick, USA) was used for data processing. A 
schematic overview of the analysis process is given in Fig. 1. Data 
was sampled at 250 samples/sec in a range from DC to 70 Hz with 
a notch filter at 50 Hz. After detrending the 64 EEG channels a 
correction for eye movement was done using a linear correction 
algorithm (Hinterberger et al. 2003). 

Power spectral density (PSD) 
A power spectrum time series was calculated using the Fast 
Fourier Transform (FFT) for the following frequency bands: Delta: 
1–3.5 Hz, theta: 4–7.5 Hz, alpha 1: 8–10 Hz, alpha 2: 10.5–12 Hz, 
beta 1: 12.5–15 Hz, beta 2: 15.5–25 Hz, gamma: 25.5–45 Hz, global: 
1–45 Hz. To obtain a measure of the PSD FFT values were squared 
and all FFT bins within a frequency band range were averaged. 
EEG PSD was calculated for each participant, condition, electrode, 
and frequency band. 

Fractal dimension (HFD) 
Fractal dimension was calculated using Higuchi’s algorithm 
(Higuchi 1988). The algorithm constructs 𝑘 new time series for 𝑚 = 
1,2,…,𝑘 from a starting time series of 𝑛 samples (𝑦(1) ,𝑦(2) , …𝑦(𝑛)): 

where 𝑚 indicates the initial time sample and 𝑘 denotes the time 
interval. The average length 𝑁𝑚 (𝑘) of each of the time series 𝑦𝑘

𝑚 is 



Figure 1. Scheme of the analysis workflow. SE = sample entropy, sf = 
scale factor 

computed as follows: 

 

 

where 𝑛 indicates the total length of the original data series. 
𝑛−1 

)𝑘  is a normalization factor. 𝑖𝑛𝑡( 𝑛−𝑚 
𝑘 

The calculation is repeated for 𝑘 ranging from 1 to 𝑘𝑚𝑎𝑥., 
resulting in a sum of average lengths 𝑁(𝑘): 

 

A fractal curve follows the relationship: 

Hence, when plotting log(𝑁 (𝑘)) against log( 𝑘
1 ), HFD can be 

estimated as the slope using a least squares linear best-fitting 
procedure: 

  

 

  

where 𝑧 depicts the number of 𝑘 values and 𝑦𝑘 = log(𝑁(𝑘)) ,𝑥𝑘 = 
log ( 𝑘

1 ),𝑘 = 𝑘1,𝑘2,…𝑘𝑚𝑎𝑥. 
Numerical values of HFD have the lower and upper limits of 1 

and 2, respectively. Considering a curve that represents the ampli-
tude of a given time series signal as a function of time on a 2D 
plane, a simple curve has a dimension equal to 1 and a plane 

has a dimension equal to 2. HFD can be imaged as a measure of 
the ‘degree of filling out’ the plane by the curve and hence, its 
complexity (Klonowski 2007). Accordingly, HFD close to one would 
represent a smooth curve with low complexity, whereas HFD = 2 
would correspond to a complex curve, such as white noise prac-
tically filling 100% of the plane. Important to note, HFD gives no 
information of the system’s nature generating the signal, e.g. it 
is not determinable whether the system behaves deterministic, 
chaotic, or stochastic. Instead, HFD depicts a tool to demonstrate 
relative changes in the signals’ complexity, for instance, before 
and after an intervention (Klonowski 2007). The value of 𝑘𝑚𝑎𝑥, the 
maximum number of subseries composed from the original, was 
determined by examining the data and plotting the fractal dimen-
sion over a range of k. For k greater than 𝑘𝑚𝑎𝑥 the fractal dimension 
reaches a saturation point (Kesi ́ ́c and Spasi c 2016). In this work 
that was the case for 𝑘𝑚𝑎𝑥= 5. 

Neuronal avalanches 
For the neuronal avalanche analysis, the Neural Complexity and 
Criticality (NCC) toolbox was used (Marshall et al. 2016). First, the 
signal from each electrode was z-scored. A threshold of ±1.5 SD 
was applied (Shriki et al. 2013). Negative and positive excursions 
beyond the threshold were identified as concrete events. The time 
series obtained from each electrode was discretized with time bins 
of the duration Δt = 5s. Neuronal avalanches were defined as a 
contiguous sequence of time bins of activity preceded, ending with 
at least one time bin of quiescence. Avalanche properties such as 
duration 𝑇 (number of active time bins), the size 𝑆 (total number of 
events), and the shape (number of events at each time at each time 
bin) were determined using the build-in function sizegivdurwls.m. 
A hallmark that a neural network operates near a critical point is 
given by a power law scaling of avalanche size distribution (𝑓𝑠(𝑆 ), 
duration distribution (𝑓𝑑(𝑇 ), and average size conditioned on given 
duration data (⟨𝑆⟩ (𝑇)) (Friedman et al. 2012; Timme et al. 2016): 

 

 

The scaling parameter 𝑆𝑁𝑍 and its standard deviation were 
calculated using the weighted least squares method. 

Multiscale entropy (MSE) 
For the computation of the MSE analysis, the algorithm described 
by Costa and colleagues (2005) was used (Costa et al. 2005). Given 
a one-dimensional discrete time series {𝑥1,…,𝑥𝑖, …, 𝑥𝑁} of length, 
the analysis is based on the construction of a coarse-grained time 
series {𝛾(𝑠𝑓)}, determined by the scale factor 𝑠𝑓, which specifies the 
number of data points averaged within nonoverlapping windows 
of length 𝑛 = 5s. 

 Thus, for sf = 1, the time series {𝛾(1)} is the original time series. 
The length of each coarse-grained time series is equal to the 



 original time series divided by the scale factor 𝑠𝑓 (Costa et al. 
2005). 

Subsequently, the sample entropy for each coarse-grained time 
series is calculated according to equation 10: 

𝑆𝐸 (𝑚,𝑟,𝑁) = −𝑙𝑛 
𝐵𝑚+1 (𝑟) 

(10)
𝐵𝑚 (𝑟) 

 
 

  
 

 

where 𝑁= data points of the time series {𝑥(𝑖) |1 ≤ 𝑖 ≤ 𝑁}, 
and 𝑚= length of the vector sequences 𝑋𝑚 (𝑖) = 
[𝑥(𝑖) ,𝑥(𝑖 + 1),…,𝑥(𝑖 + 𝑚 − 1)] ,1 ≤ 𝑖 ≤ 𝑁 − 𝑚 + 1. depicts the toler-
ated distance level, a percentage of the standard deviation serving 
as a similarity criterion. 𝐵𝑚 (𝑟)defines the probability that other 
vectors are similar to vector 𝑋𝑚 (𝑖) matching for 𝑚 points, i.e. the 
number of vectors satisfying 𝑑[𝑋𝑚 (𝑖) ,𝑑[𝑋𝑚 (𝑗) ,≤ 𝑟, where 𝑑 is the 
Euclidean distance and thus, that any two vectors are within 𝑟 of 
each other: 

 
 

 

  
 

 

 

For the template length 𝑚 a value of 2 was chosen and the sim-
ilarity criteria 𝑟 was set to 0.2. MSE was calculated for six different 
time scales (1, 3, 5, 7, 10, and 20) over 5-s time windows. Thus, this 
analysis resulted in six parameters termed SE sf = 1, SE sf = 3, SE 
sf = 5, SE sf = 7, SE sf = 10, and SE sf = 20. 

Detrended fluctuation analysis (DFA) 
For the computation of the DFA an algorithm described by 
Colombo and colleagues (2016) was used (Colombo et al. 2016). 
The parameter α represents fluctuations of the signal at differ-
ent time scales determining the statistical self-affinity of a signal 
(Hardstone et al. 2012): 

where 𝑌(𝐿𝑡) and 𝑌 (𝑡) are values of a 1-dimensional process at time 
windows of length 𝐿𝑡 and t, respectively. L depicts the window 
length factor and H denotes the Hurst parameter, a dimension-
less estimator of self-affinity. First, the cumulative sum of the time 
series 𝑦(𝑡) was calculated: 

where ⟨𝑦⟩ is the mean of the time series. Then, the signal 
profile was divided into a set of nonoverlapping separate time 
boxes of length Δ𝑛. Subsequently, in each segmentation the 
data was locally fit to a polynomial 𝑦Δ𝑛 (𝑘). The local poly-
nomial trends fit within each box were subtracted and the 
root-mean-square of the residuals 𝐹(Δ𝑛) (‘fluctuations’) was 
calculated: 

 
 

 
 

 
 

The detrend order, specifying the degree of polynomials was 
set to 2. The local detrending was repeated for 50 automati-
cally determined box sizes. The mean fluctuation per window 
size was plotted against the window size on a logarithmic scale. 
The scaling exponent 𝛼 was estimated as the slope of the least 
squares fit line The resulting DFA exponent 𝛼 can be inter-
preted as an estimation of the Hurst parameter. If 0< 𝛼< 0.5, 

the process is of stationary nature, exhibits anticorrelations and 
has a memory. In the case of 0.5< 𝛼< 1, the process is sta-
tionary, exhibits positive correlations and has a memory. A ran-
dom process with no memory is governed by 𝛼= 0.5, whereas 
when 1< 𝛼< 2, then the process is nonstationary, meaning 
that the signal’s statistical characteristics change with time. 
Stationary processes can be modeled as fractional Gaussian 
noise with H = 𝛼 and nonstationary processes can be modeled 
as fractional Brownian motion with H= 𝛼 −1 (Hardstone et al. 
2012). 

Comparison between conditions 
The following eight comparisons were calculated. First, the base-
line conditions were compared. Second, the three different med-
itation states were contrasted against resting with eyes closed. 
Third, the meditation conditions were compared against each 
other. 

1. Eyes open vs. eyes closed 
2. Reading vs. eyes open 
3. Presence vs. eyes closed 
4. Emptiness vs. eyes closed 
5. Focused attention vs. eyes closed 
6. Emptiness vs. presence 
7. Emptiness vs. focused attention 
8. Focused attention vs. presence 

Statistics 
First, to determine whether the resulting features are significantly 
influenced by the task conditions, a Kruskal–Wallis test was calcu-
lated for the temporal means of each feature averaged over elec-
trodes, participants, and conditions. For a comparison between 
states, effect sizes of the temporal mean of each feature for the 
respective condition were calculated for each electrode defined as 
standardized mean differences (Cohen’s d) (Cohen 2013). Effect 
sizes of all participants were submitted to a paired two-tailed 
t-test calculated across participants and features. Considering 17 
extracted EEG features and 8 comparisons, this results in 153 
variables (Fig. 1). These were corrected for multiple comparisons 
using false discovery rate (FDR) adjustment, which gives the pro-
portion of false discoveries among all discoveries (Benjamini and 
Hochberg 1995). FDR was applied across conditions and features. 
Significance was set at P < 0.05. 

To calculate correlations between the features, Spearman’s 
rank correlation was applied after determining that the distribu-
tion was not appropriate for parametric testing by the Shapiro– 
Wilk test. Correlations were calculated from the median of the 
time series across participants after averaging over channels for 
each condition, respectively. 

To analyze the discrimination performance, partial least 
squares regression (PLS) was performed for each feature, com-
parisons, and participant. PLS regression allows modeling and 
predicting multiple response variables Y (mean-centered 𝑛𝑥𝑚 
matrix) from explanatory variables (mean-centered 𝑛𝑥𝑝 matrix). 
The concept is similar to the Principal Component Analysis (PCA). 
However, instead of choosing components with a maximum vari-
ance of X, PLS creates components (orthogonal score vectors) 
by maximizing the covariance between different sets of vari-
ables (Rosipal and Kr ämer 2006). Hence, PLS components describe 
maximum correlations between predictor and response variables. 
Several variants of PLS exist such as the nonlinear iterative partial 



 
  

  

 

 

 

  

 

 

 

 

Table 1. Chi-square values for each measures resulting from the 
Kruskal–Wallis test calculated over all conditions 

Chi-square P-value 

Delta 39.017** <0.001 
Theta 10.218 0.069 
Alpha 1 21.866** <0.001 
Alpha 2 17.015* 0.005 
Beta 1 1.279 0.937 
Beta 2 1.928 0.858 
Gamma 18.318* 0.003 
Global 5.888 0.217 
SE sf = 1 56.819** <0.001 
SE sf = 3 18.414* 0.003 
SE sf = 5 7.160 0.209 
SE sf = 7 42.887** <0.001 
SE sf = 10 64.481** <0.001 
SE sf = 20 24.057** <0.001 
HFD 20.132* 0.001 
𝛼 (DFA) 43.170** <0.001 
SNZ 53.423** <0.001 

**P < 0.001., 
*P < 0.01. 

least squares (NIPALS) approach, PLS1, PLS2, and the Kernel Algo-
rithm (H öskuldsson 1988; Alin 2009). Here, the straightforward 
implementation of a statistically inspired modification of the PLS 
method (SIMPLS) algorithm was used. This approach was intro-
duced by De Jong (1993) to avoid deflation of the centered matrices 
and Y, and instead, execute deflation in a covariance matrix. To 
note, SIMPLS is equal to the PLS1 but has been shown to differ 
from PLS2 when applied to the multidimensional matrix Y (de Jong 
1993). 

Here, the (𝑛𝑥𝑝) matrix of zero-mean predictor variables X and 
the (𝑛𝑥𝑚) matrix zero-mean response variables Y are decomposed 
into: 

where 𝑇 = (𝑡1,𝑡2,𝑡3 … 𝑡𝑘) and 𝑈 = (𝑢1,𝑢2,𝑢3 …𝑢𝑘) are matrices of the 
extracted score vectors (components), P and Q are orthogonal 
loading matrices and E, F represent matrices of residuals, e.g. error 
terms, for X and Y, respectively (Rosipal and Kr amer 2006). The ̈
SIMPLS approach allows directly finding the weight vectors {𝑤}̃ 𝑖=1

𝑝 , 
such that the sample covariance between the vector scores 𝑇 and 

𝑡𝑇𝑢𝑈, 𝑐𝑜𝑣 (𝑡, 𝑢) = (𝑛−1)  is maximized (Zahariah et al. 2021): 

For the solution, the orthogonal constraints of ‖𝑢‖ = 𝑌𝑐 = 1 and 
‖𝑡‖ = 𝑋𝑤 = 1 are required (Zahariah et al. 2021). 

PLS regression was calculated using the Matlab build-in func-
tion plsregress.m. The algorithm centers X and Y by subtracting 
the column means and subsequently, computes the singular value 
decomposition (SVD). PLS regression was performed with 10 com-
ponents of the responses in Y on the predictors in X. The predictor 
scores were then submitted to a receiver operating characteristics 
(ROC) analysis and the area under the curve (AUC) was determined 
to estimate the accuracy of the predictors (Hanley and McNeil 
1982). Significance was set at P < 0.05. 

Results 
Global comparisons 
To test whether features of neuronal complexity and power spec-
tra are significantly influenced by the conditions, a Kruskal–Wallis 
test was performed. The analysis revealed a significant main effect 
for state on a P < 0.001 level concerning SE sf = 1, SE sf = 7, SE 
sf = 10, SE sf = 20, DFA and SNZ. For the PSD, significant effects 
were found for delta and alpha 1 (Table 1). 

For state comparisons, effect sizes were estimated for each 
complexity feature and frequency band. Significant differences 
were determined by a two-tailed t-test corrected for multiple com-
parisons by the false discovery rate. The resulting t-values are 
shown in Supplementary Fig. 1. The resting state with eyes open 
was associated with higher complexity in comparison to resting 
with eyes closed. Here, largest effect size was found for SE sf = 1 
(d = 1.47) and SE sf = 10 (d = 0.93), whereby the HFD yielded a low 
effect size (d = 0.33). The DFA as an index of long-range tempo-
ral correlations (LRTC) was significantly higher in the eyes open 
resting condition with moderate effect size (d = 0.73), whereas the 
critical scaling exponent was reduced compared to eyes closed 
with a large effect size (d = −0.96). Further, alpha 1 and alpha 2 
decreased during eyes open compared to eyes closed with small 
to moderate effect sizes (d = −0.58 and d = −0.37). 

For the presence meditation condition, the increase of SE sf = 1 
and HFD did not reach statistical significance. However, LRTC were 
decreased shown by the DFA exponent yielding a medium effect 
size (d = −0.49, P < 0.001) in comparison to resting with eyes closed. 
Delta and theta band PSD were significantly reduced with a small 
effect size (d = −0.33; d = −0.22). In contrast, comparing emptiness 
with the eyes closed resting state resulted in slightly higher com-
plexity with a small effect size as shown by the HFD (d = 0.23), 
whereby less LRTC were measured with the DFA, also with a small 
effect size (d = −0.37). Delta (d = −0.38), theta (d = −0.25) and beta 1 
band PSD (d = −0.12) were reduced. A similar pattern was observed 
in the comparison focused attention vs. eyes closed. Here, the neu-
ronal complexity was higher as captured by SE sf = 1 (d = 0.61) and 
SE sf = 3 (d = 0.48) with moderate effect sizes. The DFA and the crit-
ical exponent were reduced with small effect sizes (d = −0.28 and 
d = −0.26). Further, a decrease in delta (d = −0.36) and theta band 
power (d = −0.21) was observed, whereas gamma band power was 
significantly enhanced (d = 0.32). 

Contrasting the meditation states against each other revealed 
slightly higher complexity in emptiness compared to presence, 
whereas the global PSD was lower (d = −0.28). Also, alpha 1, alpha 
2, beta 1, and beta 2 band power was reduced. However, in compar-
ison with the focused attention meditation, the state of emptiness 
was associated with reduced complexity according to SE sf = 1 
(d = −0.33) and SE sf = 3 (d = −0.24) as well as reduced gamma 
band power (d = −0.28) with small effect sizes. Moreover, focused 
attention was characterized by higher complexity compared to 
presence as captured by SE sf = 1, SE sf = 3, SE sf = 5, SE sf = 7 
and SE sf = 10, whereas alpha 1 band power was significantly 
lower during focused attention compared to presence (d = −0.27). 
Also here, the SNZ was lower during focused attention yielding 
a small effect size of d = −0.32 (Fig. 2). The critical scaling expo-
nent yielded lower values for focused attention than emptiness 
and presence. SNZ values were further reduced during the read-
ing condition compared to the meditation conditions (Fig. 3). The 
topographical plots of the condition comparisons are illustrated 
in Supplementary Fig. 2. 



Figure 2. Color-coded differences of outcome parameters shown as effect sizes (Cohen’s d) of the condition comparisons on a global level averaged 
over all electrodes. Fields marked with a white circle were significant on the 0.05 level after FDR adjustment 

Correlations between complexity, criticality, and 
spectral features 
Correlations were calculated from the median of the time series 
across participants after averaging over channels for each con-
dition, respectively. Here, it becomes evident that the SNZ was 
significantly negatively correlated with the sample entropy, the 
scaling exponent resulting from the DFA as well as the HFD 
in each condition. The scaling exponent from the DFA showed 
highest negative correlations with the alpha 1 and alpha 2 fre-
quency bands. The correlations remained robust across conditions 
(Supplementary Tables 1–6). 

Discrimination analysis 
To determine the discrimination accuracy, ROC analysis was 
applied. Regarding the frequency bands, highest accuracy was 
found for the gamma band (0.83–0.98) followed by the global PSD 
(0.78–0.96) (Table 2). The sample entropy was slightly superior 
to the HFD and DFA analysis in discriminating the meditation 
conditions (0.86–0.90 vs. 0.73–0.75 and 0.74.-0.77) (Table 3). 

Discussion 
Several theories suggest that the complexity of brain dynam-
ics is a fundamental property of consciousness (Tononi 2004; 
Oizumi et al. 2014; Carhart-Harris 2018; Sarasso et al. 2021). For 
instance, the ground-breaking work of Tononi and Edelman focus-
ing on functional integration and differentiation provided a useful 
provisionally taxonomy for empirical metrics to index conscious 
states (Tononi and Edelman 1998). Nowadays different theories 
of consciousness, even though starting from different premises, 
embraced and incorporated an explicit complexity-related frame-
work (Sarasso et al. 2021). Such empirical measures suitable to 
determine states of consciousness could be important, inter alia, 
for clinical diagnostics and therapy (Seth et al. 2006; Arsiwalla and 
Verschure 2018; Demertzi et al. 2019; Zimmern 2020). Therefore, 
this study was based on the proposal that distinct states of con-
sciousness are quantifiable by complexity and criticality measures 
serving as an index of the brain’s information processing capacity. 
Here, a task-free baseline resting, a reading condition and three 
meditation conditions were analyzed with four nonlinear meth-
ods as well as PSD. Effect sizes were compared to determine to 

what degree these measures reflect changes in the state of wakeful 
consciousness. 

Similarities between meditation states 
The results revealed significantly reduced LRTC in all three med-
itation conditions compared to the resting state. Also, Irrmischer 
et al. showed that meditation practitioners exhibit weaker LRTC 
during a focused attention meditation compared to rest by apply-
ing DFA to EEG data. The suppression of LRTCs could not be 
detected in participants without previous meditation experience. 
The authors interpreted the results as a shift toward a subcritical 
regime and argued that the reduced autocorrelation within the 
signal may be associated with fewer distractions from the task. 
Furthermore, the ability to attenuate LRTC has been associated 
with trait absorption (i.e. the individual’s capacity for engaging 
attentional resources in sensory and imaginative experiences) 
(Irrmischer et al. 2018). Considering that distinct meditation types 
share common aspects such as the refrain from mental conceptu-
alization, categorial thinking, or episodic memory, the attenuation 
of LRTC might be interpreted as a down-regulation of certain 
mental processing activities. Interestingly, one study explored the 
relationship between LRTCs and the subjective sense of self sug-
gesting that more temporal consistency is associated with better-
synthesized identity (Sugimura et al. 2021). In this view, one could 
speculate that less LRTC might correspond to a dissolution of 
the sense of self, as often experienced by mindfulness training 
practitioners (Nave et al. 2021). 

Differences between meditation states 
Among the meditation tasks, the critical scaling exponent yielded 
lowest values for focused attention. Contrasting the meditation 
states with resting further revealed that only focused attention 
was associated with significant differences among the medita-
tion tasks. Besides constant monitoring, the focused attention 
meditation, in contrast to presence and emptiness, requires exec-
utive control in terms of detecting phases of mind wandering, 
where attention is directed elsewhere. Interestingly, these find-
ings may indicate a link between focused attention and a shift to a 
subcritical regime. In line with these results, Fagerholm et al. ana-
lyzed neuronal avalanches during a visuomotor cognitive finger-
tapping task in comparison to rest associating the task state and 
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Figure 3. Mean values of the critical scaling exponent for each condition. 
The black dotted horizontal line depicts the theoretical power law slope 
of the critical point (Wilting and Priesemann 2019) 

increased attentional load with a shift toward subcritical dynam-
ics (Fagerholm et al. 2015). Further, Tomen and colleagues asso-
ciated marginally subcritical dynamics with enhanced stimulus 
discriminability under attention. In their network model, entropy 
was maximized at the subcritical border under the assumption 
of a coarse observation scale (Tomen et al. 2014). To note, also 
another MEG study carried out with novices found that avalanche 
dynamics shifted during meditation, which led the authors to con-
clude that self-regulated attention can serve as a control param-
eter of criticality in scale-free brain dynamics. In their analysis, 
the power-law exponent changed from values more negative than 
−1.5 to values close to −1.5, and thus, from a supercritical to crit-
ical dynamics (Dürschmid et al. 2020). The difference might be 
explainable by the fact, that the presented study was conducted 
with experienced meditators, who might require less effort to 
focus their attention. 

Furthermore, higher neuronal complexity was found during 
the meditation conditions emptiness and focused attention com-
pared to resting with eyes closed as captured by the sample 
entropy and HFD values. There are some studies in the literature 
supporting our finding of higher complexity during meditative 
states compared to resting. For instance, Kakamanua et al. ana-
lyzed EEG data of participants with different proficiencies during 
a Vipassana meditation and reported increased HFD and permu-
tation entropy in teachers and novices (Kakumanu et al. 2018). 
In addition, Huang and Lo estimated a higher complexity index, 
especially at occipital, temporal and anterior areas during a Zen-
meditation in experienced practitioners compared to a control 
group resting for the same amount of time (Huang and Lo 2009). 
Further, increased fractal dimension as determined by Sevcik’s 
method was found in a calming meditation task (Vyšata et al. 
2014). Also, Vivot et al. analyzed an EEG dataset of experienced 
meditators following three different traditions. The meditation 
styles included Himalayan Yoga and Vipassana, which can be clas-
sified as focused attention, as well as Isha Yoga, classifiable as 
open monitoring. The authors reported an increase in the sample 
entropy during all practices (Martínez Vivot et al. 2020), whereas 
here, the complexity increase did not reach significance for the 
presence task. 

Relationship between criticality, complexity, and 
spectral features 
Additionally, our analysis showed significant correlations between 
the complexity, criticality, and spectral features. Here, the critical 
exponent was significantly negatively correlated with the sample 
entropy, the HFD and the scaling exponent of the DFA consis-
tently across the conditions. These finding is especially important, 
considering that the concepts of complexity and criticality are 
often used equivalently. Thus, the results show that post hoc 
interpretations of stronger LRTC as neural dynamics closer to 
the critical point (Poil et al. 2012) and subcritical dynamics as 
reduced information processing (Irrmischer et al. 2018) require 
some caution. This aspect further bears implications for con-
sciousness theories, which incorporated an complexity-related 
framework (Sarasso et al. 2021). For instance, in his entropic 
brain hypothesis Carhart-Harris proposes that the entropy of brain 
activity indexes the informational richness of conscious states 
and equates higher entropic states with more flexible cognition 
and a shift toward supercritical dynamics (Carhart-Harris et al. 
2014; Carhart-Harris 2018). In addition, the Integrated Informa-
tion Theory as well as the global workspace theory (Dehaene 2001), 
even though addressing distinct aspects of consciousness, were 
both associated with criticality (Werner 2007, 2009; Tagliazucchi 
2017; Kim and Lee 2019; Popiel et al. 2020). Therefore, meticu-
lously investigating the relationship between different complexity 
and criticality measures as a function of states of conscious-
ness enables putting the recent theories to experimental testing 
ground. 

To date, the relationship between the complexity of EEG sig-
nals and their spectral properties is not fully understood (Frohlich 
et al. 2021). The discrimination analysis revealed that the sample 
entropy, the HFD and the DFA yielded an accuracy over 70% in dis-
criminating the conditions. Also, the global PSD and the gamma 
band reached an accuracy of more than 75%. Addressing the 
question to what extent nonlinear techniques capture phenom-
ena that could not be assessed by spectral analysis, Mediano and 
colleagues performed a decomposition of spectral and phasic dif-
ferences in the Lempel–Ziv complexity of a MEG dataset between 
a task and rest condition, reporting that the effect is mostly driven 



 

Table 2. Accuracy of the frequency bands in classification determined by partial least square regression and ROC analysis 

Accuracy ‘Delta’ ‘Theta’ ‘Alpha1’ ‘Alpha2’ ‘Beta 1’ ‘Beta 2’ ‘Gamma’ ‘Global’ 

‘Eyes open vs. eyes closed’ 0.68 0.70 0.74 0.71 0.70 0.83 0.94 0.91 
‘Reading vs. eyes open’ 0.66 0.68 0.66 0.65 0.66 0.79 0.90 0.87 
‘Eyes open vs. presence’ 0.76 0.70 0.77 0.75 0.72 0.88 0.96 0.94 
‘Eyes open vs. emptiness’ 0.76 0.70 0.75 0.73 0.72 0.88 0.97 0.94 
‘Eyes open vs. focused attention’ 0.76 0.71 0.74 0.73 0.71 0.87 0.96 0.93 
‘Eyes closed vs. reading’ 0.67 0.74 0.77 0.73 0.72 0.86 0.96 0.94 
‘Presence vs. eyes closed’ 0.71 0.64 0.65 0.63 0.68 0.77 0.92 0.89 
‘Emptiness vs. eyes closed’ 0.72 0.65 0.63 0.63 0.66 0.75 0.90 0.86 
‘Focused attention vs. eyes closed’ 0.73 0.66 0.63 0.63 0.67 0.77 0.91 0.88 
‘Reading vs. presence’ 0.74 0.75 0.81 0.78 0.76 0.89 0.97 0.96 
‘Reading vs. emptiness’ 0.75 0.75 0.79 0.76 0.75 0.90 0.98 0.96 
‘Reading vs. focused attention’ 0.75 0.76 0.77 0.75 0.74 0.90 0.97 0.96 
‘Emptiness vs. presence’ 0.62 0.61 0.62 0.62 0.63 0.68 0.84 0.78 
‘Emptiness vs. focused attention’ 0.62 0.61 0.62 0.61 0.64 0.70 0.83 0.78 
‘Focused attention vs. presence’ 0.63 0.62 0.65 0.64 0.67 0.75 0.88 0.83 

Table 3. Accuracy of the complexity and criticality features in classification determined by partial least square regression and ROC 
analysis 

Accuracy SE SE sf = 3 SE sf = 5 SE sf = 7 SE sf = 10 SE sf = 20 HFD α(DFA) 

‘Eyes open vs. eyes closed’ 0.94 0.94 0.92 0.91 0.89 0.88 0.78 0.84 
‘Reading vs. eyes open’ 0.92 0.91 0.89 0.90 0.85 0.84 0.76 0.78 
‘Eyes open vs. presence’ 0.95 0.97 0.95 0.95 0.94 0.90 0.83 0.91 
‘Eyes open vs. emptiness’ 0.96 0.97 0.95 0.95 0.92 0.90 0.82 0.90 
Eyes open vs. focused attention’ 0.96 0.96 0.95 0.95 0.91 0.90 0.81 0.90 
‘Eyes closed vs. reading’ 0.96 0.96 0.95 0.95 0.91 0.91 0.83 0.86 
‘Presence vs. eyes closed’ 0.91 0.92 0.88 0.88 0.83 0.84 0.75 0.79 
‘Emptiness vs. eyes closed’ 0.90 0.91 0.89 0.87 0.80 0.83 0.74 0.78 
‘Focused attention vs. eyes closed’ 0.92 0.93 0.90 0.89 0.81 0.84 0.74 0.76 
‘Reading vs. presence’ 0.97 0.98 0.97 0.97 0.95 0.93 0.87 0.92 
‘Reading vs. Emptiness’ 0.98 0.98 0.97 0.97 0.95 0.94 0.86 0.92 
Reading vs ‘Focused attention’ 0.98 0.96 0.97 0.96 0.94 0.92 0.86 0.91 
‘Emptiness vs. presence’ 0.86 0.89 0.86 0.84 0.79 0.82 0.73 0.74 
‘Emptiness vs. focused attention’ 0.86 0.90 0.88 0.88 0.79 0.82 0.73 0.76 
‘Focused attention vs. presence’ 0.90 0.92 0.90 0.89 0.83 0.84 0.75 0.77 

by spectral changes (Mediano et al. 2021). Further attempts have 
been made to determine whether observed complexity changes go 
beyond what would be expected from changes in the power spec-
trum. For instance, Schartner et al. (2015) measured lower dynami-
cal complexity during non-rapid eye movement sleep compared to 
rapid eye movement sleep and wakeful rest. The differences could 
not be solely attributed to PSD changes between the conditions 
(Schartner et al. 2015). It has been emphasized that each complex-
ity measure gives additional information about the underlying 
data (Burns and Rajan 2015) and hence, the combination of EEG 
complexity and traditional measures such as PSD are deemed as 
fruitful for capturing signatures of consciousness (Frohlich et al. 
2021). 

This study has several limitations. First, previous research has 
shown that meditation expertise notably affects electrophysiolog-
ical correlates. To avoid trait effect biases, only highly experienced 
meditators with an average of 20 years and 6498 h of practice were 
included. However, the practice duration and the proficiency are 
not necessarily proportional. Whereas all participants were able to 
follow the instruction and reached the meditative states according 
to their reports, no trait effects measures were included. Also, for 
the scope of this study complexity and criticality was considered 
as a global correlate of the state of consciousness, even though 
theoretical frameworks suggest a multidimensionality including 

behavioral and cognitive aspects for the conceptualization of 
global states of consciousness (Bayne et al. 2016). 

In conclusion, electrophysiological differences of distinct med-
itation states were identified and the relationship between non-
linear complexity, critical brain dynamics, and spectral features 
was determined. The meditation states could be discriminated 
with nonlinear measures and quantified by the degree of neu-
ronal complexity, LRTC, and power law distributions in neuronal 
avalanches. 
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