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1  | INTRODUC TION

Systematic deviations from random mating have major ecological 
and evolutionary implications for example, sexual selection (Jiang, 
Bolnick, & Kirkpatrick, 2013), reinforcement (Kirkpatrick, 2000; 
Servedio & Noor, 2003) and inbreeding (Epinat & Lenormand, 2009). 
A specific type of deviation from random mating is assortative 

mating where the probability of mating is influenced by phenotype. 
In large well-mixed populations in mutation-drift balance, assorta-
tive mating can occur without necessarily elevating the relatedness 
of mating pairs at all (Templeton, 2006). However, in spatially struc-
tured populations, individuals that possess identical alleles at loci 
that determine assortativeness may often do so because of genetic 
relatedness. Matings between phenotypically similar individuals may 
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Abstract
Assortative mating is a deviation from random mating based on phenotypic similarity. 
As it is much better studied in animals than in plants, we investigate for trees whether 
kinship of realized mating pairs deviates from what is expected from the set of po-
tential mates and use this information to infer mating biases that may result from kin 
recognition and/or assortative mating. Our analysis covers 20 species of trees for 
which microsatellite data is available for adult populations (potential mates) as well 
as seed arrays. We test whether mean relatedness of observed mating pairs deviates 
from null expectations that only take pollen dispersal distances into account (esti-
mated from the same data set). This allows the identification of elevated as well as 
reduced kinship among realized mating pairs, indicative of positive and negative as-
sortative mating, respectively. The test is also able to distinguish elevated biparental 
inbreeding that occurs solely as a result of related pairs growing closer to each other 
from further assortativeness. Assortative mating in trees appears potentially com-
mon but not ubiquitous: nine data sets show mating bias with elevated inbreeding, 
nine do not deviate significantly from the null expectation, and two show mating bias 
with reduced inbreeding. While our data sets lack direct information on phenology, 
our investigation of the phenological literature for each species identifies flowering 
phenology as a potential driver of positive assortative mating (leading to elevated 
inbreeding) in trees. Since active kin recognition provides an alternative hypothesis 
for these patterns, we encourage further investigations on the processes and traits 
that influence mating patterns in trees.
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in these cases imply elevated biparental inbreeding (in which case 
the trait similarity is caused by alleles identical by descent). Positive 
assortative mating increases homozygosity, linkage disequilibrium 
and the variance of quantitative traits (Weis, 2005; Wright, 1921). 
It can also contribute to reproductive isolation between diverging 
populations (Bolnick & Kirkpatrick, 2012; Gavrilets, 2003; Howard, 
1999). Negative assortative mating has the potential to perform the 
opposite, that is, to decrease homozygosity and inbreeding depres-
sion (Pusey & Wolf, 1996; Waser, 1993).

Assortative mating is well investigated across a wide array of ani-
mal taxa, where positive assortment has been shown to predominate 
(Jiang et al., 2013). Plants appear less well studied in this respect, 
although spatial assortment patterns that are produced by sessile 
life (impacting “who mates with whom” via biotic or abiotic pollen 
transfer) may combine with traits such as inbreeding avoidance and 
self-incompatibility mechanisms (Bedinger, Broz, Tovar-Mendez, & 
McClure, 2017; de Nettancourt, 2001; Takayama & Isogai, 2005) to 
produce a variety of potential negative assortment patterns. Several 
additional mechanisms have been suggested to promote positive as-
sortative mating, including assortative pollination between synchro-
nously flowering plants, repeatable pollinator behaviour favouring 
mating among plants of similar size or flower traits, as well as assor-
tative fertilization after successful pollen transfer (Waser, 1993). A 
recent simulation study shows that synchrony of flowering time is 
capable of structuring populations in a manner that is identifiable at 
neutral loci; these show much stronger differentiation when, in ad-
dition to the commonly assumed isolation-by-distance, matings are 
nonrandom due to flowering phenology having to match between 
the pollen donor and the pollen recipient (Peters & Weis, 2019).

After pollen has reached the stigma, the sequence from pollen 
adhesion, pollen germination and pollen tube growth to fertiliza-
tion features complex cellular interactions (Hiscock & Allen, 2008). 
Pollen that do not adhere to the stigma and fall off cannot reach the 
germination state. Pollen adherence as a first stage of pollen sorting 
is relevant at least in plants with dry stigmas (Hiscock & Allen, 2008; 
Luu, Heizmann, & Dumas, 1997). Timing is important in this context: 
plants need to have similar phenologies for fertilization to be possi-
ble at all, and the importance of timing extends to finer scales. Prior 
to pollen germination, delayed stigma receptivity can synchronize 
the fertilization chances of early and late arriving pollen (Herrero 
& Hormaza, 1996). Timing of stigma receptivity is thought to be a 
female strategy to increase the number of pollen donors and male-
male competition (Herrero & Hormaza, 1996; Madjidian, Hydbom, & 
Lankinen, 2012).

Polyandry is considered to be beneficial to female fitness by pro-
moting pollen competition and alleviating pollen limitation (Pannell 
& Labouche, 2013). Competition among pollen is largely mediated 
via speed of pollen tube growth (Skogsmyr & Lankinen, 1999; Snow 
& Spira, 1991; Swanson, Hammond, Carlson, Gong, & Donovan, 
2016), and it has been argued to mitigate effects of inbreeding, 
should related pollen land on a stigma (see Armbruster & Rogers, 
2004 for a selfing context). Pollen competition is strongly influenced 
by female functional traits, such as the length of the pistil (Lankinen 

& Skogsmyr, 2001; Ramesha et al., 2011), the provisioning of lim-
ited nutrients for heterotrophic pollen germination and pollen tube 
growth (Herrero & Hormaza, 1996) as well as guidance of pollen tube 
growth with chemical cues (Hiscock & Allen, 2008). Studies of pol-
len competition typically apply different mixtures of self and out-
cross pollen (e.g., Lankinen, Smith, Andersson, & Madjidian, 2016). 
Although varying siring rates among mating pairs in pollen mixtures 
have been detected in an outcrossing context (Marshall, 1998; Snow 
& Spira, 1996), the effects of potential relatedness between mates 
in the absence of selfing appear understudied. Given what is known 
about the complex pollen-pistil interactions, it seems likely that the 
lack of a pistil in gymnosperms reduces the effectivity of pollen sort-
ing or pollen competition.

Even if a plant is an obligate outcrosser (self-incompatible), one 
can expect relatedness to play a role in fertilization. Pollen and seed 
dispersal often show moderate to strong spatial restriction, which 
results in spatial genetic structuring (SGS) of the adult population 
and more frequent mating among nearby relatives (Ghazoul, 2005; 
Vekemans & Hardy, 2004). As mentioned above (Peters & Weis, 
2019), temporal variation can be equally important in structuring 
populations. If variation in flowering time is heritable, it can increase 
mating among related individuals (Daïnou et al., 2012; Ennos & 
Dodson, 1987; Suni & Whiteley, 2015), forming a clear causal route 
from assortativeness (with respect to timing traits) to relatedness 
among mating pairs—a route that is absent in the simplest models 
(e.g., Templeton, 2006) that, for conceptual clarity, assume that pop-
ulations are so large and well mixed that assortativeness can operate 
without making relatives meet. Yet another real-life complication 
is that SGS and variability in flowering time are interrelated; while 
flowering synchrony and spatial proximity both increase mating fre-
quency (Ison, Wagenius, Reitz, & Ashley, 2014), variation in flower-
ing time increases pollen dispersal and reduces SGS (Kitamoto et al., 
2006).

Interestingly, studies on the effect of distance between mates 
on siring success and offspring vigor frequently have found there to 
be an optimal outcrossing distance (Schierup & Christiansen, 1996; 
Souto, Aizen, & Premoli, 2002; Waser & Price, 1991; Waser, Price, 
& Shaw, 2000). Together with the evidence presented above that 
mating is not necessarily random because of phenological aspects 
as well as competition among pollen that have landed on a stigma, 
these patterns raise the question of relatedness levels that plants 
“choose” in terms of realized fertilizations, relative to what is avail-
able to them in terms of pollen dispersal distances. As the spatial 
arrangement of adults and the pollen dispersal distances are ac-
counted for, “choice” (or more generally, mating bias, Kokko, Brooks, 
Jennions, & Morley, 2003) has to be driven by traits of the mating 
pairs. These can be based on some form of “active” choice that is 
visible in pollen-pistil interactions or early abortion of seeds; or they 
may be more classifiable as mating bias, reflecting similar phenolo-
gies of related individuals or any floral trait that pollinators make a 
positive association with.

Here we perform an analysis of mating biases utilizing published 
data on trees. We do not seek to distinguish between active choice 
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(based on some form of kin recognition) and more general mating bi-
ases; instead, we ask whether the realized mating pattern gives over-
all evidence for kin-based choices, assortative mating with respect 
to a trait shared by both the pollen donor and the pollen recipient, or 
both processes acting together.

Although the tree growth habit does not represent a mono-
phyletic group, it is an interesting growth form with implications 
for reproductive strategies. Trees are known to show high genetic 
diversity, maintained in populations that feature strong inbreeding 
depression, extremely high recruit mortality and high pollen flow 
which reduces local adaptation while strong selection can promote 
local adaptation (Petit & Hampe, 2006). In trees such local adapta-
tion by strong selection is most common at scales of tens to hun-
dreds of kilometers (Savolainen, Pyhäjärvi, & Knürr, 2007). While 
pollen-pistil interactions in trees are understudied, it appears likely 
that trees share the pollen precedence patterns that are commonly 
observed in various angiosperms. Post-fertilization processes, im-
portant in shaping the realized mating patterns, seem better studied. 
In particular, in a combination of controlled and open pollination ex-
periments, trees have shown high post-zygotic abortion rates of pre-
mature seed (Bawa & Webb, 1984), which is thought to reflect either 
early acting inbreeding depression or maternal selection (Seavey & 
Bawa, 1986).

2  | MATERIAL S AND METHODS

Our analysis is inspired by an approach recently published by 
Monthé, Hardy, Doucet, Loo, and Duminil (2017), who designed a 
method to test whether mating events between related individu-
als occurred more or less often than would be expected by chance, 
where “chance” is estimated against the background of the spatial 
extent of pollen dispersal. This extent of pollen dispersal is esti-
mated based on a sample of realized mating events irrespective of 
relatedness. One can then ask if there is an elevated or depressed 
probability for a fertilization to happen, for a given distance, if the 
parents are related. Effectively, this is achieved by resampling a dis-
tribution of matings assuming that relatedness has no effect (while 
distance between potential mates retains its observed effect) and 
creating a distribution of pairwise kinship coefficient (Fij; Loiselle, 
Sork, Nason, & Graham, 1995) values based on this set of assump-
tions. Each resampling procedure creates a sample of Fij values for 
which the mean is recorded; repeating the procedure a large number 
of times creates the distribution for mean Fij that can be expected 
under the null hypothesis that distance matters while relatedness 
does not. The observed mean Fij in the real data set can be compared 
to this expectation (see below for statistical details), to see if real-
ized offspring are a result of more, or less, related mating pairs than 
expected by chance. Deviations of the observed from the expected 
mean Fij are then discussed in terms of mating biases that may result 
from assortative mating and/or kin recognition.

We compiled microsatellite genotype data of adult trees with 
physical coordinates and of seed arrays from published studies. We 

used 20 published data sets for which paternity analysis of seed ar-
rays was available; our data sets were found with the following proce-
dure. We searched once for “pollen dispersal” and once for “paternity 
analysis” on Dryad Digital Repository (http://datad ryad.org), which 
returned 96 and 147 results, respectively (retrieved on 8 December 
2017). These results were screened for genotype data which included 
at least six nuclear microsatellite loci from seed arrays of putative or 
known mothers, with the additional criterion that the coordinates for 
adult trees had to be known (note that in five out of the 20 data sets 
the seed were collected from the ground and were tested for geno-
type matching with the putative mother). Data sets with <50 adult 
trees, <5 seed arrays, or <200 seed genotypes were excluded. In a 
further stage of analysis, we excluded data sets for which paternity 
analysis (see below) resulted in <20 outcrossing events.

We also included a study on Jacaranda copaia despite it narrowly 
missing one of our criteria (being genotyped only at five loci), be-
cause we considered a total of 98 alleles in the adult population to 
contain sufficient information content. We found two additional 
suitable data sets in the Supporting Information from articles pub-
lished in PLoS One, and upon request, we received additional six 
data sets directly from authors (see Table 2 and Acknowledgements).

If a study contained data on multiple populations that met our 
data requirements, we included only the population for which we 
achieved the highest assignment rate in the paternity analysis. This 
resulted in a total of 19 data sets of angiosperm and of one gym-
nosperm tree species (12 from Dryad, two from PLoS One and six 
directly from authors).

Common among the selected studies is the general aim to char-
acterise pollen dispersal and the aim to sample at least in a core area 
exhaustively all adult individuals. In 14 of the studies the motiva-
tion is to investigate mating patterns such as levels of inbreeding 
in small isolated, fragmented or selectively logged populations. The 
remaining six studies were conducted in long-term undisturbed nat-
ural populations. See Table S1 for a species-specific classification of 
the disturbance.

For all data sets we calculated pairwise kinship coefficients (Fij, 
Loiselle et al., 1995) and pairwise geographic distances for all adult 
trees, using software SPAGeDi 1–5a (Hardy & Vekemans, 2002). 
SPAGeDi software has been designed to characterize the associa-
tion between genetic and spatial distances based on genotype data 
of mapped individuals. The most widely used metric of individual 
genetic distance implemented in SPAGeDi is Loiselle's kinship coef-
ficients (Fij) which quantifies the correlation in the frequencies of ho-
mologous alleles, pi and pj, in pairs of individuals i and j. This kinship 
coefficient is estimated as

where the first term denotes the expected value of Fij, with k = n(n–
1)/2 being the number of possible pairwise distances between n indi-
viduals. The second term corrects for bias due to limited sample size 
and ensures that Fij has an expected value of zero for a population in 

Fij=
∑

ij

(

pi−p
) (

pj−p
)

kp
(

1−p
) +

2
(

8k+1
)0.5

−1
(i< j) ,

http://datadryad.org
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Hardy–Weinberg equilibrium. This kinship coefficient is relative to an 
arbitrary sample which implies that negative kinship coefficients natu-
rally occur between some individuals that are less related than random 
individuals. In addition, we computed with SPAGeDi the mean regres-
sion slope of the kinship coefficient over the natural logarithm of the 
distance (b̂F) and the mean kinship of the adult pairs within the first 
distance class ( ̂F(1)). From that, we calculated the Sp-statistic which is 
a comparable measure of SGS intensity defined as Sp=−b̂F∕(1−

̂F(1)) 
(Vekemans & Hardy, 2004).

Thereafter we applied a likelihood approach for paternity as-
signments with cervus 3.0.7 (Kalinowski, Taper, & Marshall, 2007; 
Marshall, Slate, Kruuk, & Pemberton, 1998). The definition of the 
95% confidence level of the DELTA score, that is, the difference 
between logarithm of odds (LOD) score of the most likely par-
ent and the second most likely parent, was based on a simulation 
of paternity using the following settings: 10,000 offspring were 
simulated, based on adult allele frequencies, with all adult trees 
serving as candidate fathers (allowing for selfing). The proportion 
of sampled fathers was set to 0.95, the proportion of loci typed 
was based on the observed value of the adult genotypes, the pro-
portion of mistyped loci was set to 0.01, the minimum number 
of loci genotyped was set to six (except for Quercus robur gen-
otyped at six loci for most but not all individuals, and Jacaranda 
copaia genotyped at five loci, we set this value to five). Unassigned 
seed are assumed to represent pollen dispersal from unsampled 
pollen sources outside the study areas. For one species (Shorea 
xanthophylla) we received only the cervus output and not the raw 
offspring genotype table.

From the SPAGeDi output we then extracted the pairwise dis-
tances and kinship coefficients (Fij) between the known mothers 
and the assigned fathers (excluding selfing events). Based on the 
pairwise distances of these observed mating events, we created 
a histogram of effective pollen dispersal distances (separately for 
each species under its own study-specific spatial arrangement of 
adults) with a target value of 12 breaks. This was done in r 3.4.1 
(R Core Team, 2017); note that the r algorithm can result in differ-
ent numbers of break points. Setting the number of breaks higher 
than 12 did not lead to a qualitative change of the results (data 
not shown) while it increased the instances of distance classes to 
not contain any adults, especially if the species in question had a 
fragmented distribution.

The density distribution of the histogram was then used as the 
study-specific probability distribution for pollen dispersal distances. 
Using this distribution, we sampled adults as potential mating pairs 
at similar distances as the observed mating pairs for each study-spe-
cific spatial genetic structure and arrangement of adult trees in a 
given area. This sampling procedure makes pairs form at equiva-
lent distances as in real life, but irrespective of any information on 
relatedness. Using a discrete probability distribution of pollen dis-
persal instead of a continuous distribution ensures the existence 
of alternative potential mating pairs within a specific distance class 
of an observed mating event (a precondition for the resampling to 
work). We then calculated the mean Fij for these distance-predicted 

mating pairs. For obtaining the possible range of predicted mean Fij, 
we repeated the sampling 10,000 times. The observed mean Fij was 
considered to deviate significantly from the null hypothesis when 
it was above the 97.5 percentile or below the 2.5 percentile of the 
predicted mean Fij values.

It was also possible that the observed Fij value is within the 
2.5–97.5 percentile range with a largely positive distribution of 
predicted values for Fij. If this occurred, with the “largely positive” 
quantified with the criterion that the value of Fij = 0 lies below the 
fifth percentile of the predicted mean Fij values (i.e., at least 95% 
of the predicted Fij values were positive), then we considered this 
to constitute evidence for elevated biparental inbreeding caused 
simply by the SGS of the population together with the pollen dis-
persal patterns.

We also considered that matings may not be independent within 
one fruit, and repeated the sampling considering only unique mating 
events.

Compared to the original approach described by Monthé et al. 
(2017), our procedure samples potential mating pairs across the 
whole population, without a focus on specific focal mother trees for 
which one is deriving potential mates. Accordingly, we also deviate 
from their approach in which they sampled potential fathers at a dis-
tance from the mother 0.9 and 1.1 times the observed pollen disper-
sal distance; we considered all observed distances to be possible in 
principle for any focal individual.

Although the observed pairwise Fij values show a continuous dis-
tribution around a peak often close to zero, they are not necessarily 
normally distributed (see Supplementary Information for an over-
view of the pairwise Fij values of all observed mating pairs, Figure 
S1, and for the unique mating pairs, Figure S2, for each species). 
However, for all species, the mean of this distribution is close to the 
modal value, that is, the most frequent kinship, of realized mating 
pairs.

3  | RESULTS

The paternity assignment rate ranged from 18.6% to 90.3% while 
the selfing rate ranged from zero to 24.6% (assuming that the un-
assigned seed are from outcrossing events). The lowest exclusion 
probability of parent pairs was 0.998 for the species B. toxisperma. 
Excluding the selfing events, this resulted in 50–603 mating pairs 
of which between 16 and 410 were unique mating events. Because 
it is common to include multiple matings for direct estimates of 
pollen dispersal distances (Austerlitz et al., 2004), our presenta-
tion focuses on the results on all mating pairs, but we provide the 
results for both approaches in the Supporting Information (Table 
S1). The results based on unique mating pairs are qualitatively 
similar; note that the majority of species are one seeded or only 
one seed per fruit was genotyped, which increases independence 
of the mating events.

The detected mating patterns can be classified according to the 
observed mean Fij relative to the distribution of the predicted mean 
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Fij values into three cases (Table 1, Columns A, B and C): (a) Observed 
mean Fij is high relative to the predicted values; (b) no deviations of 
the observed mean Fij from the predicted values; and (c) observed 
mean Fij is low relative to the predicted values.

Additionally, we classify whether the predicted mean Fij is largely 
positive or not (Table 1, Rows a and b): (a) Predicted mean Fij is largely 
positive (high relative to zero Fij) and (b) predicted mean Fij does not 
deviate from zero.

Species classified under Case A exhibit more frequent mating 
among related individuals than predicted by the observed pollen dis-
persal pattern. Although this can result from either kin preferences or 
actual assortative mating, we call this “positive assortative mating” for 
simplicity (see Section 4 for our views of the biological plausibility of 
assortativeness vs. kin recognition). Under Case B the observed Fij fol-
lows what is expected under the observed pollen dispersal, with no 
additional information about assortativeness and/or kin recognition. 
Species meeting the condition of Case C have less frequent mating 
among relatives than predicted by the observed pollen dispersal pat-
tern, implying negative assortative mating and/or active inbreeding 
avoidance (again, we use “negative assortative mating” below for sim-
plicity). The cases a and b indicate whether the observed pollen dis-
persal distances, together with the spatial arrangement of adult trees, 
predict biparental inbreeding to occur in the first place.

Nine species have an observed mean Fij among mating pairs above 
the 97.5 percentile of the distance-predicted mean Fij values, where 
elevated inbreeding suggests some form of positive assortative mat-
ing (Table 1 Column A). Of these nine species, six have an observed 
mean Fij value which is above the entire range of the predicted values. 
Furthermore, in four out of these nine species, the Fij of zero is below 
the fifth percentile of the predicted values (Table 1, Column A, Row a). 
These four cases exhibit in addition to a pollen dispersal independent 
effect also a component of biparental inbreeding driven by pollen 
dispersal distance and adult SGS. Four species only show a deviation 
of the predicted mean Fij values from zero but without any substan-
tial deviation from the observed mean Fij (Table 1, Column B, Row 
a). These four species experience biparental inbreeding determined 
by pollen dispersal distance and adult SGS but with no genome-wide 
effect of potential positive assortative mating. Five species show no 
deviations of the observed mean Fij from the predicted values and the 
predicted values do not deviate from zero Fij (Table 1, Column B, Row 
b). In two species the observed mean Fij lies below the 2.5 percentile 
of the predicted values which do not deviate from zero Fij (Table 1 
Column C, Row b). These two species indicate that outbreeding that 
associates with negative assortative mating can also occur. No species 
was detected to have negative assortative mating together with ele-
vated biparental inbreeding (Table 1, Column C, Row a).

The Sp-statistic revealed that all except three species show signif-
icant SGS (Table S1). These are the two species which show reduced 
kinship driven by negative assortative mating (Table 1 Column C, Row 
b) and one species (Abies pinsapo) which shows no inbreeding caused 
by pollen dispersal patterns but a tendency for negative assortative 
mating with 91% of the predicted mean kinship coefficients higher 
than the observed mean kinship. It is noteworthy that the observed 

and expected Fij values correlate (R = .482, p = .0316, two-sided test). 
This correlation is reassuring, as it indicates that spatial arrangement of 
the adult trees and the pollen dispersal pattern (factors used to derive 
the expected Fij) appear to have effects in real life (the observed Fij).

Table 2 provides a species-specific overview of the results of the 
paternity analysis, of the assessment of assortative mating and of 
the biparental inbreeding. Figure 1 provides a graphical illustration 
of the observed mean Fij in relation to the predicted mean Fij condi-
tional of the pollen dispersal distance.

4  | DISCUSSION

Our investigation demonstrates that, in trees, mating among related 
individuals is commonly more frequent than what would be ex-
pected by the observed pollen dispersal distances. There are at least 
two, nonmutually exclusive, reasons why this might be the case. 
First, it could be that trees actively favour related pollen to fertilize 
their ovules, either prior to fertilization (in the pollen-pistil interac-
tions) or afterwards (via abortion of seeds). We cannot exclude this 
option for any of the cases we have labelled as “positive assorta-
tive mating” (see Fisher, 1941; Kokko & Ots, 2006 for why it may 
even be adaptive to favour related mates despite some inbreeding 
depression). Simultaneously, it is worth reflecting whether apparent 
positive assortative mating is indicative of actual positive assortative 
mating, a form of nonrandom mating where some phenotypic trait 
covaries with genome-wide genetic similarity and simultaneously 
impacts the likelihood that a mating pair forms. While our method 
does not directly comment on which phenotypic trait(s) might be re-
sponsible, it allows us to distinguish whether biparental inbreeding 
simply occurs at the rate predicted by the observed pollen dispersal 
distances (related trees are more likely to mate due to spatial genetic 
structure), or if an additional mechanism of positive assortative mat-
ing is at work.

The most widely investigated heritable trait capable of driv-
ing assortative mating in plants is variation in flowering phenology 
(Ennos & Dodson, 1987; Fox, 2003; Weis, Nardone, & Fox, 2014). 
While our data set does not include information on phenology, it 
appears useful to list what is known about phenological variation 
for each of the species we consider. For seven out of the nine spe-
cies which show pairwise Fij elevated beyond distance-based pre-
dictions (Table 1, Column A) we found direct or indirect evidence 
for variation in flowering time within populations with the poten-
tial to contribute to the observed assortative mating, assuming 
that timing has a heritable component (leading to an expectation 
of similar phenology in related individuals). In particular Quercus 
robur (Moracho, Moreno, Hampe, & Jordano, 2016), Dysoxylum 
malabaricum (S. A. Ismail, unpublished data), Oenocarpus bataua 
(Ottewell, Grey, Castillo, & Karubian, 2012) and Quercus petraea 
(Bacilieri, Ducousso, & Kremer, 1995) have pronounced temporal 
flowering variation within populations. For three species the evi-
dence for within population flowering variation is more indirect: 
Populations of Erythrophleum suaveolens have a flowering season 
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of around 4 months which clearly exceeds individual flowering 
period of around 2 months (Duminil et al., 2015). In this species 
elevated inbreeding due to positive assortative mating has re-
cently been confirmed in a population from Cameroon (Hardy et 
al., 2019). Glionettia sericea and Cariniana legalis have a very long 
flowering season with a predominant flowering over 7 months 
(Finger, Kaiser-Bunbury, Kettle, Valentin, & Ghazoul, 2014), or 
asynchronous supra annual flowering with a flowering season 
of around 4 months respectively (Engel & Martins, 2005); while 
the evidence is indirect, this is in line with the assumption that 
there may be heritable variation in flowering phenology. Currently 
available information on flowering phenology of Entandrophragma 
cylindricum is ambiguous: monthly observations over 3 years sug-
gest that the species flowers largely synchronously (Fétéké et al., 
2016), but flowering among individuals and years has also been 
stated as irregular (Lourmas, Kjellberg, Dessard, Joly, & Chevallier, 
2007). The possibly most synchronously flowering species for 

which we detected positive assortative mating is Vateria indica. In 
this biannually flowering species all individuals within a popula-
tion start flowering within 1 week for around 2 months, while over 
large scales even the flowering years can alternate (S. A. Ismail, 
personal observation 2009 to 2012).

Nine species show no deviation of mating pair relatedness 
from distance-predicted expectations (Table 1, Column B). Four of 
these species show asynchronous flowering, while the remaining 
five flower rather synchronously. Variable flowering phenology has 
been reported for Acer pictum (Shang, Luo, & Bai, 2012), Sorbus do-
mestica (Kamm et al., 2009) and Phoenix canariensis (Saro, Robledo-
Arnuncio, González-Pérez, & Sosa, 2014). For Baillonella toxisperma 
we infer variation in flowering time because the flowering season 
of 2 months clearly exceeds the individual flowering time of around 
1 month (Duminil et al., 2016). Synchronous flowering has been re-
ported for Castanopsis sieboldii (Yumoto, 1987), Shorea xanthophylla 
(Sakai et al., 2005), Jacaranda copaia (Vinson, Kanashiro, Harris, & 

TA B L E  2   Overview of investigated tree species, data used and assessment of assortative mating in trees. Fij: Kinship coefficient  
(Loiselle et al., 1995). The column “Location within Table 1” indicates potentially positive assortative mating (Table 1, Column A),  
no indication of assortative mating (Table 1, Column B) and potentially negative assortative mating (Table 1, Column C) as well as  
biparental inbreeding (Table 1, Row a) and no biparental inbreeding (Table 1, Row b)

Species Family Breeding system
No. of 
trees

No. of 
seed

No. of assigned 
outcrossing 
events

Selfing 
rate (%)

Observed 
mean Fij

Predicted 
mean Fij

Percentile observed mean Fij 
of predicted mean Fij

Percentile zero Fij of 
predicted mean Fij

Location within 
Table 1

Reference Data source Data-Subset usedColumn Row

Glionnetia sericea Rubiaceae Monoecious 210 622 122 8 0.1836 0.0252 Above 100% 1% A a Finger et al. (2014) Dryad  

Quercus robur Fagaceae Monoecious 135 684 603 7 0.1286 0.0615 Above 100% Below 0% A a Moracho et al. (2016) Dryad  

Dysoxylum 
malabaricum

Meliaceae Monoecious 235 566 508 1 0.0743 0.0257 Above 100% Below 0% A a Ismail et al. (2012) Dryad  

Vateria indica Dipterocarpaceae Monoecious 85 259 132 13 0.0633 0.0208 Above 100% 2% A a Ismail et al. (2014) Authors  

Cariniana legalis Lecythidaceae Monoecious 65 600 481 8 0.1346 0.0044 Above 100% 18% A b Tambarussi, Boshier, 
Vencovsky, Freitas, and 
Sebbenn (2015)

Authors  

Entandrophragma 
cylindricum

Meliaceae Monoecious 239 484 303 10 0.0586 0.0062 Above 100% 17% A b Monthé et al. (2017) Dryad  

Erythrophleum 
suaveolens

Fabaceae Monoecious 88 239 82 9 0.0317 0.0000 99% 50% A b Duminil et al. (2015) Dryad DRC

Quercus petraea Fagaceae Monoecious 162 545 352 2 0.0170 0.0046 100% 14% A b Gerber et al. (2014) PlosOne France

Oenocarpus bataua Arecaceae Monoecious 185 318 256 1 0.0120 0.0004 98% 48% A b Ottewell et al. (2012) Dryad  

Fraxinus excelsior Oleaceae Heterodichogamous 219 500 304 0 0.0162 0.0193 30% 0% B a Semizer-Cuming, Kjær, and 
Finkeldey, (2017)

PlosOne  

Acer pictum Aceraceae Heterodichogamous 97 1,041 593 8 0.0088 0.0045 84% 2% B a Shang et al. (2012) Dryad  

Castanopsis sieboldii Fagaceae Monoecious 145 486 355 2 0.0251 0.0186 93% Below 0% B a Nakanishi et al. (2012) Dryad  

Sorbus domestica Rosaceae Monoecious 164 1,101 325 13 0.0360 0.0260 92% Below 0% B a Kamm et al. (2009) Authors  

Baillonella toxisperma Sapotaceae Monoecious 87 230 50 8 0.0357 0.0126 88% 27% B b Duminil et al. (2016) Authors  

Phoenix canariensis Arecaceae Dioecious 103 616 173 0 0.0028 0.0018 58% 35% B b Saro et al. (2014) Dryad  

Shorea xanthophylla Dipterocarpaceae Monoecious 170 456 86 2 0.0011 0.0278 9% 8% B b Kettle et al. (2011) Authors  

Jacaranda copaia Bignoniaceae Monoecious 207 285 161 1 0.0009 0.0025 41% 36% B b Vinson et al. (2015) Dryad  

Abies pinsapo Pinaceae Monoecious 162 598 262 29 0.0006 0.0002 9% 47% B b Sánchez-Robles et al. 
(2014)

Dryad  

Prunus lannesiana Rosaceae Monoecious 78 221 121 0 −0.0201 0.0052 2% 33% C b Shuri et al. (2012) Dryad B

Bertholletia excelsa Lecythidaceae Monoecious 134 338 63 0 −0.0326 0.0146 0% 18% C b Baldoni et al. (2017) Authors  
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Boshier, 2015) and Fraxinus excelsior (Gérard, Fernandez-Manjarres, 
& Frascaria-Lacoste, 2006). In these four species, the available infor-
mation on “flowering synchrony” is a generic qualitative statement 
and the temporal resolution of this classification remains vague. A 
special case is Abies pinsapo where fertilization is synchronized by 
delaying pollen germination up to more than a month after pollina-
tion (Arista & Talavera, 1994) which we interpret as functional flow-
ering synchrony. Although much of the information above remains 
qualitative, it fits the general expectation provided by the model 
of Peters and Weis (2019): temporal structuring of populations can 
leave signatures even at neutral loci. To see if a more specific predic-
tion is true – differences between loci in Fij depending on whether 
they are linked to the locus causing the phenotype that underlies 
assortativeness (Peters & Weis, 2019) – would be interesting to test, 
however, none of the cases above yield direct information on the 
loci that impact flowering phenology (which may also be a polygenic 
trait).

Both species, Prunus lannesiana and Bertholletia excelsa, which 
show negative assortative mating (Table 1, Column D) have been 
reported to exhibit variation in flowering phenology: In P. lannesi-
ana synchrony in flowering among mating pairs was found to be a 
significant factor for predicting mating pair fecundity (Shuri et al., 
2012). In Bertholletia excelsa the main flowering occurs over a period 
of 4 months while the individual flowering period is only three to 
eight weeks (Maués, 2002).

Interestingly P. lannesiana and B. excelsa, which show elevated 
outbreeding, potentially indicative of negative assortative mating, 
are self-incompatible (Maués, 2002; Shuri et al., 2012). Given that 
both species show variation in flowering time within populations, 
one might have predicted the opposite (positive assortativeness). 
Negative assortative mating might indicate a combination of weak 
heritability in phenological traits, making it easier for any a priori 
positive assortativeness expectation to be overridden by self-in-
compatibility mechanisms that also reduce mating among close 

TA B L E  2   Overview of investigated tree species, data used and assessment of assortative mating in trees. Fij: Kinship coefficient  
(Loiselle et al., 1995). The column “Location within Table 1” indicates potentially positive assortative mating (Table 1, Column A),  
no indication of assortative mating (Table 1, Column B) and potentially negative assortative mating (Table 1, Column C) as well as  
biparental inbreeding (Table 1, Row a) and no biparental inbreeding (Table 1, Row b)
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outcrossing 
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of predicted mean Fij

Percentile zero Fij of 
predicted mean Fij
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relatives (de Nettancourt, 2001), or by other inbreeding avoidance 
mechanisms such as strong post-zygotic selection against inbred 
offspring (Ghazoul & Satake, 2009). Negative assortative mating 
may also be adaptive under stabilizing selection because it re-
duces the production of less fit phenotypic extremes (Kondrashov 
& Shpak, 1998). Whether populations with elevated outbreeding 
due to negative assortative mating indicate effective inbreeding 
avoidance and/or stabilizing selection remains to be studied in 
more detail.

Finally, there are two special cases, the heterodichogamous 
species A. pictum and F. excelsior, where some individuals pro-
duce first either male or female gametes and then switch their 
sexual function in the course of the flowering season. The re-
sulting more frequent mating among reciprocal sexual morphs is 

commonly presented as a case of disassortative mating mediated 
by phenotypic dissimilarity (Bai, Zeng, & Zhang, 2007; Gleiser, 
Chybicki, González-Martínez, & Aizen, 2018; Gleiser, Verdú, 
Segarra-Moragues, González-Martínez, & Pannell, 2008; Shang et 
al., 2012). When considering genetic similarity of mating pairs at 
neutral loci, we find no indication of either negative or positive as-
sortative mating for these two species, while both show spatially 
determined biparental inbreeding. This indicates that in these two 
species the loci determining the dichotomous sexual morphs do 
not reflect the genetic dissimilarity at the neutral loci investigated 
in this study.

As a whole, our results support the view that asynchronous 
flowering within populations, or any other similarly functioning 
trait, can yield positively assortative realized mating patterns, 

F I G U R E  1   Boxplots of predicted 
values of mean Fij with median, upper 
and lower quartiles and observed mean 
Fij indicated as diamond or triangle icons. 
The whiskers represent the full range of 
the predicted mean Fij values. The vertical 
dashed line at zero indicates the expected 
mean Fij under random mating. Reverse 
triangles indicate significantly elevated 
observed mean Fij relative to the predicted 
mean Fij values indicating positive 
assortative mating (Table 1, Column A). 
Diamonds indicate no significant deviation 
of the observed mean Fij relative to the 
predicted mean Fij values (Table 1, Column 
B). Upward triangles indicate significantly 
lower observed mean Fij relative to the 
predicted values indicating negative 
assortative mating (Table 1, Column C). 
Black icons indicate biparental inbreeding 
determined by pollen dispersal distances 
with significantly elevated predicted 
mean Fij relative to zero Fij (Table 1, Row 
a). Grey icons indicate no significant 
deviation of the predicted mean Fij values 
from zero and consequently no biparental 
inbreeding induced by pollen dispersal 
pattern (Table 1, Row b)
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which in turn can increase levels of inbreeding detectable at neu-
tral loci. This is in line with theoretical expectations showing that 
variation in reproductive phenology causes isolation by time with 
qualitatively similar effects as isolation by distance (Hendry & Day, 
2005; Peters & Weis, 2019). Such temporal structure at neutral loci 
has been detected in natural populations (Daïnou et al., 2012; Suni 
& Whiteley, 2015). If spatial genetic structure combines with spa-
tially structured phenotypic similarity, and the phenotypes impact 
“who mates with whom” (mating biases), trait similarity of mating 
pairs will yield matings between related individuals. As suggested 
for the herbaceous Brassica rapa, spatial clustering of flowering 
phenology can amplify the spatial aggregation of genetic similarity 
(Ison & Weis, 2017), and together with restricted pollen dispersal, 
elevates biparental inbreeding.

However, out of the nine species with no elevated inbreeding 
beyond expected values (Table 1, Column B), six show variation in 
flowering time, which indicates that variable flowering phenology 
does not inevitably result in more frequent mating of more related 
individuals. In addition, even if the population appears to flower 
asynchronously, there may be no phenologically induced assortative 
mating because the flowering schedule is determined by an array of 
components such as flowering date, peak flowering and duration of 
flowering which do not straightforwardly combine to reflect pair-
wise mating chances (Weis et al., 2014).

In future studies of plant mating patterns, it would be highly in-
formative to have more detailed records on flowering phenology 
(including assessment of heritability of this trait). This would allow 
evaluating the extent to which flowering time and pollen dispersal 
distances predict the observed pairwise mating success. If predictions 
match the observed patterns, then active forms of kin recognition or 
other “choices” acting prior or after fertilization are not needed to ex-
plain the mating system. If phenology does not succeed in explaining 
observed matings, one can turn to further processes or traits influ-
encing the mating probability of specific pairs. Examples of such po-
tential factors are size, flower morphology or selective pollen sorting 
of the pistil (Waser, 1993), but empirical evidence remains scarce. In 
this respect intraspecific variation of floral traits seem to be the best 
investigated potential alternative driver of positive assortative mat-
ing, because floral display size and nectar reward have been shown 
to influence pollinator preferences (e.g., Dudash, Hassler, Stevens, 
& Fenster, 2011; Fenster, Cheely, Dudash, & Reynolds, 2006) and 
can increase efficiency of pollen transfer (Armbruster, Antonsen, & 
Pélabon, 2005; Campbell, Waser, & Price, 1996). However, increased 
floral attractiveness does not necessarily result in enhanced out-
crossing, insofar as it instead promotes spatial fidelity of pollinators, 
enhancing pollination between flowers on the same plant which is 
problematic for self-incompatible species (Brys & Jacquemyn, 2010; 
Harder & Barrett, 1995; Klinkhamer & de Jong, 1993).

We now turn to the limitations of our approach.
A constraint of our study and one that it shares with the study 

by Monthé et al. (2017) is that the estimation of pollen dispersal has 
to be based on realized mating events. In other words, to enter the 

data set, pollen must not only travel a specific distance and land on 
the stigma but also pass all the hurdles, from appropriate phenology 
(Fox, 2003; Weis, 2005) through pollen-pistil interactions (Herrero 
& Hormaza, 1996) to post-zygotic selection (Seavey & Bawa, 1986). 
When observed pollen dispersal distances are assessed based on 
mature seeds, they will reflect distances where pollen succeeded in 
completing all the steps. Our resampling procedure of the mating 
pairs might then not fully represent all potential mating pairs, which 
introduces a bias if pollen that have travelled specific (particularly 
short or particularly long) distances are at a relative disadvantage. As 
the very question we are addressing relates to processes that could 
cause such disadvantages, it is therefore important to evaluate the 
potential direction of any error caused by this bias.

In plant populations, biparental inbreeding is more pronounced 
among short distance pollination events because of common SGS 
(Vekemans & Hardy, 2004). At the same time, post-zygotic selection 
is generally thought to select against inbred offspring (Ghazoul & 
Satake, 2009; Seavey & Bawa, 1986). If spatially restricted pollen 
dispersal combines with inbreeding avoidance, this would reduce 
the frequency of short distance matings and increase realized pol-
len dispersal distances relative to primary pollen dispersal. If we as-
sume that post-zygotic selection acts against related pollen, then our 
ability to detect positive assortativeness would be lowered by this 
bias. At the same time, it has to be acknowledged that inbreeding 
avoidance cannot be presumed; some of our results appear to sug-
gest the opposite, as our analysis cannot exclude that trees favour 
relatives as pollen donors. Selection for avoidance might not occur 
if inbreeding depression is not strong enough to override the sig-
nificant inclusive fitness benefit of inbreeding (Kokko & Ots, 2006). 
This benefit can also be phrased as increased transmission of genes 
identical by descent (Fisher, 1941) and is well recognized in studies of 
evolutionary transitions from self-incompatibility to self-compatibil-
ity (e.g., Charlesworth, 2006; Cheptou & Mathias, 2001; Holsinger, 
2000). All this means that it is not easy, in the absence of information 
on loci impacting kin recognition and/or phenology (or other traits 
involved in assortativeness), to estimate which part of the mating 
bias resulted from inbreeding avoidance or preference, and which 
part reflects assortativeness based on “other' traits”. Should kin rec-
ognition be based on specific alleles at a particular locus (as opposed 
to organisms being able to assess genome-wide relatedness), the 
genetic consequences of these two processes become essentially 
indistinguishable—to the extent that “kin recognition” could now 
equally well be interpreted as a special case of assortative mating.

Another limitation of our study is that the estimated pollen 
dispersal distances do not fully represent the entire pollen disper-
sal kernel. This bias occurs because the seed not assigned to any 
candidate father are likely to reflect pollen inflow from outside 
the study area, where the candidate fathers have not been sam-
pled, and these unsampled fathers predominantly reflect distant 
locations. For all but three species, these fathers can be expected 
to be less related than the sampled fathers as reassured by the 
Sp-statistic. This should, however, not introduce a serious bias to 
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our analysis due to two reasons: First, being able to sample these 
fathers would reduce the expected mean Fij under random mating 
relative to the mean Fij of the observed matings. Second, system-
atic reversals of our findings (from positive to negative assortative 
mating or vice versa) would require that patterns that occur from 
fathers beyond the boundaries of the study areas deviate strongly 
from how sampled (unrelated or related) fathers' pollen behaves 
on stigmas. A father from outside a study area remains unassigned 
regardless of his relatedness to trees that grow within an area. 
There may be some bias if only those fathers succeed from far 
away that they are, for their distance, unusually capable to be ac-
cepted by the stigma, but the net effect of such a bias is difficult 
to ascertain. As study areas and number of observed mating pairs 
appeared large enough to contain potential mating pairs of varying 
relatedness, we consider it unlikely that they were too small to 
yield qualitatively robust results. Nevertheless, it has to be kept 
in mind that we cannot capture potential siring advantages of ge-
netically very similar or dissimilar pollen sources outside of the 
study area. Consequently, the findings for the seven species with 
assignment rates below 50% (Table S1) are only valid at the inves-
tigated scales.

In conclusion, pollen dispersal patterns and spatial genetic 
structuring of adult plants are influenced by the spatial arrange-
ment of adults (Vekemans & Hardy, 2004). Our results suggest 
that finding elevated inbreeding in populations of conservation 
concern should be interpreted against the possibility that inbreed-
ing reflects positive assortative mating with respect to phenology 
(or other traits). Although this does not prove the absence of neg-
ative fitness consequences of inbreeding at the population level, 
it at least shows that extant populations have been able to persist 
with their current mating system. If assortativeness and/or kin 
preferences routinely give rise to inbreeding, the consequent level 
of inbreeding depression might have been reduced by purging of 
the mutational load (Keller & Waller, 2002). Complacency may be 
ill advised; however, new, elevated levels of inbreeding can result 
if habitat fragmentation alters an established balance. Logging or 
habitat fragmentation can alter realized pollen dispersal distances 
and impact levels of inbreeding, which can then be an important 
concern for managing forest genetic resources (Ismail et al., 2012; 
Robledo-Arnuncio, Alia, & Gil, 2004; Vinson et al., 2015). Further, 
fragmented small populations' problems with pollen limitation and 
consequent reproduction can be aggravated by variation in flow-
ering time (Ison & Wagenius, 2014).

Our study quantifies a mating pattern where genetic similarity can 
be above, similar or below of what would be predicted based on pollen 
dispersal distances. While the timing of flowering is a strong contender 
for the most likely candidate trait for driving the detected instances of 
positive assortativeness, future studies could usefully investigate the 
effect of this trait relative to other potential candidate traits for mating 
patterns. A detailed look on phenology can help studies go beyond any 
dichotomous view of selfing and outcrossing, and we thus encourage 
further studies looking at patterns of positive assortative mating as a 
potential factor influencing the levels of biparental inbreeding in trees.
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