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Predicting mammalian hosts in which novel
coronaviruses can be generated
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Novel pathogenic coronaviruses - such as SARS-CoV and probably SARS-CoV-2 - arise by
homologous recombination between co-infecting viruses in a single cell. Identifying possible
sources of novel coronaviruses therefore requires identifying hosts of multiple coronaviruses;
however, most coronavirus-host interactions remain unknown. Here, by deploying a meta-
ensemble of similarity learners from three complementary perspectives (viral, mammalian
and network), we predict which mammals are hosts of multiple coronaviruses. We predict
that there are 11.5-fold more coronavirus-host associations, over 30-fold more potential
SARS-CoV-2 recombination hosts, and over 40-fold more host species with four or more
different subgenera of coronaviruses than have been observed to date at >0.5 mean prob-
ability cut-off (2.4-, 4.25- and 9-fold, respectively, at >0.9821). Our results demonstrate the
large underappreciation of the potential scale of novel coronavirus generation in wild and
domesticated animals. We identify high-risk species for coronavirus surveillance.
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ARTICLE

he generation and emergence of three novel respiratory

coronaviruses from mammalian reservoirs into human

populations in the last 20 years, including one which has
achieved pandemic status, suggests that one of the most pressing
current research questions is: in which reservoirs could the next
novel coronaviruses be generated and emerge from in future?
Armed with this knowledge, we may be able to reduce the chance
of emergence into human populations, such as by the strict
monitoring and enforced separation of the identified hosts, in live
animal markets, farms, and other close-quarters environments; or
we may be able to develop potential mitigations in advance.

Coronaviridae are a family of positive sense RNA viruses,
which can cause an array of diseases. In humans, these range
from mild cold-like illnesses to lethal respiratory tract infections.
Seven coronaviruses are known to infect humans!, SARS-CoV,
MERS-CoV and SARS-CoV-2 causing severe disease, while
HKU1, NL63, OC43 and 229E tend towards milder symptoms in
most patients?.

Coronaviruses undergo frequent host-shifting events between
non-human animal species, or non-human animals and
humans3-5, a process that may involve changes to the cells or
tissues that the viruses infect (virus tropism). Such shifts have
resulted in new animal diseases (such as bovine coronavirus
disease® and canine coronavirus disease’), and human diseases
(such as OC438 and 229E°). The aetiological agent of COVID-19,
SARS-CoV-2, is proposed to have originated in bats!® and shifted
to humans via an intermediate reservoir host, likely a species of
pangolin!l.

Comparison of the genetic sequences of bat and human cor-
onaviruses has revealed five potentially important genetic regions
involved in host specificity and shifting, with the Spike receptor
binding domain believed to be the most important>!2. Homo-
logous recombination is a natural process, which brings together
new combinations of genetic material, and hence new viral
strains, from two similar non-identical parent strains of virus.
This recombination occurs when different strains co-infect an
individual animal, with sequences from each parent strain in the
genetic make-up of progeny virus. Homologous recombination
has previously been demonstrated in many important viruses
such as human immunodeficiency virus (HIV)!3, classical swine
fever virus'# and throughout the Coronaviridae!21°, Homologous
recombination in Spike has been implicated in the generation of
SARS-CoV-21°, although investigations are still ongoing.

As well as instigating host-shifting, homologous recombination
in other regions of the virus genome could also introduce novel
phenotypes to coronavirus strains already infectious to humans.
There are at least seven potential regions for homologous
recombination in the replicase and Spike regions of the SARS-
CoV genome alone, with possible recombination partner viruses
from a range of other mammalian and human coronaviruses!®.
Recombination events between two compatible partner strains in
a shared host could thus lead to future novel coronaviruses, either
by enabling pre-existing mammalian strains to infect humans, or
by adding new phenotypes arising from different alleles to pre-
existing human-affecting strains.

The most fundamental requirement for homologous recom-
bination to take place is the co-infection of a single host with
multiple coronaviruses. However, our understanding of which
hosts are permissive to which coronaviruses, the prerequisite to
identifying which hosts are potential sites for this recombination
(henceforth termed ‘recombination hosts’), remains extremely
limited. Here, we utilise a similarity-based machine-learning
pipeline to address this significant knowledge gap. Our approach
predicts associations between coronaviruses and their potential
mammalian hosts by integrating three perspectives or points of
view encompassing: (1) genomic features depicting different

aspects of coronaviruses (e.g., secondary structure, codon usage
bias) extracted from complete genomes (sequences = 3271, virus
strains = 411); (2) ecological, phylogenetic and geospatial traits of
potential mammalian hosts (n = 876); and (3) characteristics of
the network that describes the linkage of coronaviruses to their
observed hosts, which expresses our current knowledge of sharing
of coronaviruses between various hosts and host groups.

Topological features of ecological networks have been suc-
cessfully utilised to enhance our understanding of pathogen
sharing!”18, disease emergence and spill-over events!®, and as
means to predict missing links in host-pathogen networks20-22,
Here, we capture this topology, and relations between cor-
onaviruses and hosts in our network, by means of node (cor-
onaviruses and hosts) embeddings using DeepWalk?3—a deep
learning method that has been successfully used to predict drug-
target?* and IncRNA-disease associations®°.

Our pipeline transforms the above features into similarities
(between viruses and between hosts) and uses them to give scores
to virus-mammal associations indicating how likely they are to
occur. Our framework then ensembles its constituent learners to
produce testable predictions of mammalian hosts of multiple
coronaviruses, in order to answer the following questions: (1)
which species may be unidentified mammalian reservoirs of
coronaviruses? (2) What are the most probable mammalian host
species in which coronavirus homologous recombination could
occur? And (3) which coronaviruses are most likely to co-infect
hosts, and thus act as sources for future novel viruses?

In the following work, we deploy a meta-ensemble of similarity
learners from the three complementary perspectives (viral,
mammalian and network) and use it to predict which mammals
are hosts of multiple coronaviruses. Using this pipeline, we
demonstrate that there is currently a large underappreciation of
the potential scale of novel coronavirus generation in wild and
domesticated animals. Specifically, we predict there are 11.5-fold
more coronavirus-host associations, over 30-fold more potential
SARS-CoV-2 recombination hosts, and over 40-fold more host
species with four or more different subgenera of coronaviruses
than have been observed to date at >0.5 mean probability cut-off
(2.4-, 4.25- and 9-fold, respectively, at >0.9821). We use these
data to identify potential high-risk species, which we recommend
for coronavirus surveillance.

Results

Predicted recombination hosts of SARS-CoV-2. Our pipeline to
predict associations between coronaviruses and their mammalian
hosts indicated a total of 126 non-human species in which SARS-
CoV-2 could be found, mean probability cut-off >0.5, when
subtracting (adding) standard deviation (SD) from the mean the
number of predicted hosts is 85 (169). For simplicity, we report
SD hereafter as —/+ from predicted values at reported probability
cut-offs, here: SD = —41/443. The number of predicted SARS-
CoV-2 associations at cut-offs >0.75 and >0.9821 was: 103 (—40/
+141) and 17 (—8/4126), respectively. The breakdown of these
hosts by order is shown in Table 1. Figure 1 illustrates these
predicted hosts, the probability of their association with SARS-
COV-2, as well as numbers of known and unobserved (predicted)
coronaviruses that could be found in each potential reservoir of
SARS-CoV-2 (Supplementary Data 1 lists full predictions).

Summary of predictions for all coronaviruses. Overall, our
pipeline predicted 4438 (SD = —1903/+2256, cut-off > 0.5) pre-
viously unobserved associations that potentially exist between 300
(SD = 0/+3) mammals and 204 coronaviruses (species or strains,
SD = —60/+13). The number of unobserved associations at
probability cut-offs >0.75 and >0.9821 was: 3087 (—1747/+2391)
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Mammalian order

Table 1 Observed and predicted number of hosts of SARS-CoV-2 (by mammalian order), and observed and predicted number of
hosts with ten or more coronaviruses (from our set of 411 species or strains).

Observed and predicted hosts of SARS-CoV-2

Observed and predicted hosts with ten or more
coronaviruses

species)

Cut-off >0.5 Cut-off > 0.75 Cut-off > 0.9821 Cut-off > 0.5 Cut-off > 0.75 Cut-off > 0.9821

Artiodactyla 18 (—8/+0) 15 (—=11/+3) 0 (0/+18) 20 (-2/+0) 20 (—13/+0) 3(=2/+17)
Carnivora 37 (0/+40) 37 (—14/+0) 12 (=5/+25) 35 (=22/+2) 20 (=14/+417) 3 (—=2/430)
Chiroptera 25 (=19/+0) 13 (=12/+12) 1(=1/+24) 129 (—87/+53) 56 (—38/+105) 7 (=3/+102)
Eulipotyphla 5 (—4/+0) 3 (=3/+2) 0 (0/+5) 5 (0/+0) 5 (-4/+0) 0 (0/+2)
Lagomorpha 2 (=1/+0) 2 (=2/+0) 0 (0/+2) 2 (0/+0) 2 (=1/+0) 0 (0/+1)
Perissodactyla 2 (0/+0) 2 (=2/+0) 0 (0/+2) 2 (0/+0) 2 (=2/+0) 0 (0/+2)
Pholidota 1(0/+40) 1(=1/+0) 0 (0/+1) 1(0/+0) 1(=1/+0) 0 (0/4+1)
Primates (non-human) 4 (0/40) 4 (=1/4+0) 0 (0/+4) 4 (0/40) 4 (—4/+0) 0 (0/+3)
Rodentia (excluding laboratory 32 (=9/+0) 26 (—17/+6) 4 (=3/+28) 33 (—4/+3) 30 (=27/+6) 0 (0/+4)

(100 runs) and generating predictions at the listed cut-offs.

Numbers are presented at three probability cut-offs: >0.5, >0/75 and >0.9. Values in brackets are generated by subtracting/adding standard deviation (SD) from the mean probability of the ensemble

between 300 (—16/40) mammals and 181 (—127/4+26) cor-
onaviruses and 601 (—412/+3723) between 224 (—91/476)
mammals and 31 (—7/4171) coronaviruses, respectively. Our
model predicts there are 115 (0/+3) [115 (—4/40), 96 (—31/
+19), at cut-offs > 0.75 and >0.9821] mammalian species with no
previously observed associations with the 411 input viruses
(hereafter we display results derived from >0.5 cut-off; results
obtained at >0.75 and 20.9821 cut-offs are presented in square
brackets).

On average, each coronavirus (species or strain, complete
genome available, n=411) is predicted to have 12.56 (—4.92/
+5.83) mammalian hosts [9.06 (—4.51/+6.18); 2.64 (—1.06/
+9.62)]. Similarly, each mammalian species (n =876, known
hosts = 185, predicted hosts =300 (—0/43) [300 (—4/4-0); 281
(—0/+19)]) is host to, on average, 5.55 (—2.17/+2.58) corona-
viruses [9.06 (—4.51/4-6.18); 1.17 (—0.47/+4.25)]. Supplementary
Data 2 and 3 provide results for coronaviruses and mammalian
hosts, respectively.

Figure 2 presents 50 potential mammalian recombination hosts
of coronaviruses. Our model predicts 231 (—115/+58) [140
(—104/4128); 13 (—7/4217)] mammalian species (excluding
humans and lab rodents) that could host 10 or more of the 411
coronavirus species or strains for which complete genome
sequences were available. The breakdowns of these hosts by
order are shown in Table 1.

Coronavirus-mammalian networks. The addition of predicted
associations increased the diversity (mean phylogenetic distance)
of mammalian hosts per coronavirus, as well as the diversity
(mean genetic distance) of coronaviruses per mammalian host
(Table 2 lists these changes). Furthermore, we captured the
changes in structure of the bipartite network linking cor-
onaviruses with their mammalian hosts (Fig. 3). On the one hand,
the nestedness of the network increased (ranging from: 4.06-fold
at 0.9821 to 10.17-fold at 0.50 cut-off, Table 2). On the other
hand, the non-independence (checkerboard score (C-score)) of
coronaviruses and mammalian hosts decreased with the addition
of new links. Larger values of C-score suggest viral and host
communities have little or no overlap in host or virus preferences
(e.g., tendencies of coronavirus types to be clustered amongst
certain host communities), as visualised in Fig. 3.

Validation. We validated our analytical pipeline externally
against 20 held-out test sets (as described in method section
below). On average, our GBM ensemble achieved AUC = 0.948

(£0.029 SD), 0.944 (+£0.024), 0.843 (£0.045); true skill statistics
(TSS) = 0.832 (+0.057), 0.887 (£0.048), 0.687 (+0.091); and
F-score =0.102 (+0.049), 0.141 (+0.055), 0.283 (+0.062), at
probability cut-offs: >0.5, >0.75 and 20.9821, respectively
(Supplementary Figs. 7-12).

Discussion

In this study, we deployed a meta-ensemble of similarity learners
from three complementary perspectives (viral, mammalian and
network), to predict the occurrence of associations between 411
known coronaviruses and 876 mammal species. We predict
11.54-fold increase—prediction cut-off > 0.5 [8.33-fold, 2.43-fold,
cut-offs >0.75, 20.9821, respectively, cut-offs presented in this
format hereafter], leading to the prediction that there are many
more mammalian species than are currently known in which
more than one coronavirus can occur. These hosts of multiple
coronaviruses are potential sources of new coronavirus strains by
homologous recombination. Here, we discuss the large number of
candidate hosts in which homologous recombination of cor-
onaviruses could result in the generation of novel pathogenic
strains, as well as the substantial underestimation of the range of
viruses which could recombine based on observed data. Our
results are also discussed in terms of which host species are high
priority targets for surveillance, both short and long term.

Give that coronaviruses frequently undergo homologous
recombination when they co-infect a host, and that SARS-CoV-2
is highly infectious to humans, the most immediate threat to
public health is recombination of other coronaviruses with SARS-
CoV-2. Such recombination could readily produce further novel
viruses with both the infectivity of SARS-CoV-2 and additional
pathogenicity or viral tropism from elsewhere in the Coronavir-
idae. (See Supplementary Data 1 and 3 for comprehensive list of
mammals predicted to be hosts of SARS-CoV-2 as well as several
other coronaviruses).

Taking only observed data, there are four non-human mam-
malian hosts known to associate with SARS-CoV-2 and at least
one other coronavirus, and a total of 504 different unique
interactions between SARS-CoV-2 and other coronaviruses
(counting all combinations of virus and host individually). Any of
these SARS-CoV-2 hosts that are also hosts of other cor-
onaviruses are potential recombination hosts in which novel
coronaviruses derived from SARS-CoV-2 could be generated in
the future. However, when we add in our model’s predicted
interactions this becomes 126 SARS-CoV-2 hosts and 2544 total
unique interactions [103 hosts and 1898 unique interactions; 17
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Fig. 1 Model predictions for potential hosts of SARS-Cov-2. Predicted hosts are grouped by order (inner circle). Middle circle presents probability of
association between host and SARS-CoV-2 (grey scale indicates predicted associations with probability in range > 0.5 to <0.75. Red scale indicates
predicted associations with probability in range > 0.75 to <0.9821. Blue to purple scale present indicates associations with probability > 0.9821). Yellow
bars represent number of coronaviruses (species or strains) observed to be found in each host. Blue stacked bars represent other coronaviruses predicted
to be found in each host by our model. Predicted coronaviruses per host are grouped by prediction probability into three categories (from inside to
outside): >0.9821, >0.75 to <0.9821 and >0.5 to <0.75. Results for humans and lab rodents are not shown to prevent the scale from contracting and
making other comparisons difficult. Supplementary Fig. 14 illustrates full results including these hosts. Full results are listed in Supplementary Data 1.

hosts and 563 interactions]; indicating that observed data are
missing 31.5-fold of the total number of predicted recombination
hosts [25.75-fold; 4.25-fold], and 5.05-fold increase [3.77-fold;
1.12-fold] of the predicted unique associations. These large-fold
increases in the number of predicted hosts and associations
demonstrate that the potential for homologous recombination
between SARS-CoV-2 and other coronaviruses, which could lead
to new pathogenic strains, is highly underestimated, both in terms

of the range of hosts as well as the number of interactions within
known hosts.

Our model has successfully highlighted known important
recombination hosts of coronaviruses, adding confidence to our
methodology. The Asian palm civet (Paradoxurus hermaphrodi-
tus), a viverrid native to south and southeast Asia, was predicted
by our model as a potential host of 32 [26; 10] different cor-
onaviruses (in addition to SARS-CoV-2) (vs. 6 observed). Genetic
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Fig. 2 Observed and predicted mammalian hosts for coronaviruses. Columns present mammalian hosts in four categories: Artiodactyla and
Perissodactyla (top 10 hosts by number of predicted coronaviruses that could be found in each host), Carnivora (top 15 hosts), Chiroptera (top 15 hosts),
Rodentia (top 5 hosts) and others (top 5 hosts). Rows present viruses ordered into five taxonomic groups: alphacoronaviruses, betacoronaviruses,
deltacoronaviruses, gammacoronaviruses and unclassified Coronavirinae. Yellow cells represent observed associations between the host and the
coronavirus. Grey/red/blue cells indicate the probability of predicted associations in three increasing probability ranges. White cells indicate no known or
predicted association between host and virus (beneath cut-off probability of 0.5). Supplementary Data 4 lists full results. These results exclude humans
and lab rodents. Supplementary Data 5 lists predictions for humans. Supplementary Fig. 15 illustrates full results including these hosts.

evolution analysis has shown that SARS-CoV-2 is closely related
to coronaviruses derived from P. hermaphroditus®® and has also
highlighted its role as a reservoir for SARS-CoV?7, strongly
supporting our findings that it is an important host in cor-
onavirus recombination. This, together with the close association
of P. hermaphroditus®® with humans, for example, via bushmeat
and the pet trade?8 and in ‘battery cages’ for the production of
Kopi luwak coffee, highlights both the ability and opportunity of
this species to act as a recombination host, with significantly more
coronaviruses than have been observed. Furthermore, our model
highlights both the greater horseshoe bat (Rhinolophus ferrume-
quinum), which is a known recombination host of
SARS-CoV2%30, as well as the intermediate horseshoe bat
(Rhinolophus affinis), which is believed to be recombination host
of SARS-CoV-21031. Our model predicts R. ferrumequinum to be
a host to 68 [47; 19] different coronaviruses (including SARS-
CoV-2) (vs. 13 observed); and for R. affinis to host 45 [32; 14] (vs.
9 observed). Our model also highlights the pangolin (Manis
javanica), a suspected intermediate host for SARS-CoV-2!1 as a
predicted host of an additional 14 [11; 2] different coronaviruses
(vs. 1 observed).

The successful highlighting of speculated hosts for SARS-CoV
and SARS-CoV-2 homologous recombination adds substantial

confidence that our model is identifying the most important
potential recombination hosts. Furthermore, our results suggest
that the number of viruses that could potentially recombine even
within these known hosts has been significantly under-ascer-
tained, indicating that there still remains significant potential for
further novel coronavirus generation in future from current
known recombination hosts.

Our pipeline also identifies a diverse range of species not yet
associated with SARS-CoV-2 recombination, but which are both
predicted to host SARS-CoV-2 and other coronaviruses. These
hosts represent new targets for surveillance of novel human
pathogenic coronaviruses. Amongst the highest priority is the
lesser Asiatic yellow bat (Scotophilus kuhlii), a known coronavirus
host32, common in east Asia but not well studied, and which
features prominently with a large number of predicted interac-
tions (48 [29; 12]). Our results also implicate the common
hedgehog (Erinaceus europaeus), the European rabbit (Oryctola-
gus cuniculus) and the domestic cat (Felis catus) as predicted
hosts for SARS-CoV-2 (confirmed for the cat’®) and large
numbers of other coronaviruses (20, 23, 65 [19, 18, 48; 7, 9, 24],
for the hedgehog, rabbit and cat, respectively). The hedgehog and
rabbit have previously been confirmed as hosts for other
betacoronaviruses343>, which have no appreciable significance to
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>0.9821, >0.75, and >0.50.

Table 2 Bipartite network metrics calculated for original and predicted networks at three probability cut-offs:

Cut-off > 0.5

Cut-off > 0.75

Original network Cut-off > 0.9821

Metric

0.519 (0.331-0.595)/9.11-fold (5.81-10.44)
0.73 (0.73-0.72)/3.03-fold (3.03-2.99)

0.543 (0.131-0.548)/9.526-fold (2.298-9.614)

0.093 (0.085-0.510)/1.632-fold (1.491-8.947)

0.057
0.241

Mammalian diversity per virus
Viral diversity per mammal
Nestedness (NODF)

C-score (CoVs)

0.731 (0.666-0.729)/3.033-fold (2.763-3.025)

0.501 (0.270-0.730)/2.079-fold (1.120-3.029)

24.599 (12.979-61.513)/4.056-fold (2.14-10.142) 56.856 (38.165-65.653)/9.374-fold (6.293-10.825) 61.705 (51.99-68.843)/10.17-fold (8.57-11.35)

0.56 (0.666-0.125)/0.69-fold (0.821-0.154)

6.065
0.81
0.931

0.124 (0.213-0.104)/0.15-fold (0.26-0.13)

0.165 (0.381-0.117)/0.203-fold (0.47-0.144)

0.531 (0.689-0.378)/0.57-fold (0.74-0.41)

0.61 (0.81-0.437)/0.655-fold (0.87-0.469)

0.877 (0.92-0.53)/0.942-fold (0.988-0.569)

C-score (mammals)

human health. Our prediction of these species’ potential inter-
action with SARS-CoV-2 and considerable numbers of other
coronaviruses, as well as the latter three species’ close association
to humans, identify them as high priority underestimated risks. In
addition to these human-associated species, both the chimpanzee
(Pan troglodytes) and African green monkey (Chlorocebus
aethiops) have large numbers of predicted associations (51, 46
[47, 22; 3, 4]), and given their relatedness to humans and their
importance in the emergence of viruses such as DENV3¢ and
HIV?7, also serve as other high priority species for surveillance.

The most prominent result for a SARS-CoV-2 recombination
host is the domestic pig (Sus scrofa), having the most predicted
associations of all included non-human mammals (121 [95; 38]
additional coronaviruses). The pig is a major known mammalian
coronavirus host, harbouring both a large number (26) of
observed coronaviruses, as well as a wide diversity (listed in
Supplementary Data 4). Given the large number of predicted viral
associations presented here, the pig’s close association to humans,
its known reservoir status for many other zoonotic viruses, and its
involvement in genetic recombination of some of these viruses3$,
the pig is predicted to be one of the foremost candidates an
important recombination host.

As an example of the utilisation of our model from the per-
spective of likely future viral homologous recombination events,
Banerjee et al.3® bioinformatically identified potential genomic
regions of homologous recombination between MERS-CoV and
SARS-CoV-2. They highlighted a significant risk of the highly
human-to-human transmissible SARS-CoV-2 acquiring the con-
siderably more pathogenic (ie., in terms of case-fatality rate)
phenotypes of MERS-CoV. The work presented here identifies
102 [75; 4] potential recombination hosts (excluding humans and
laboratory rodents) of the two viruses. Together, our work and
Banerjee et al.3%, we provide evidence for both the possible pro-
duction of a potentially severe future recombinant coronavirus
and identify the hosts in which this threat is most likely to be
generated (see Supplementary Data 6). We recommend mon-
itoring for this event.

Alongside the more immediate threat of homologous recom-
bination directly with SARS-CoV-2, we also present our predicted
associations between all mammals and all coronaviruses. These
associations represent the longer-term potential for background
viral evolution via homologous recombination in all species.
These data also indicate that there is a 11.54-fold underestimation
in the number of associations, with 421 observed associations and
4438 predicted [3087 (8.33-fold); 601 (2.43-fold)]. This is visually
represented in Fig. 3, which illustrates the bipartite network of
virus and host for observed associations (A), and predicted
associations (B-D); with a marked increase in connectivity
between our mammalian hosts and coronaviruses, even at the
most stringent probability cut-off. This indicates that the poten-
tial for homologous recombination between coronaviruses is
substantially underestimated using just observed data.

Furthermore, our model predicts that the associations between
more diverse coronaviruses is also underestimated, for example,
the number of included host species with four or more different
subgenera of coronaviruses increases by 41.57-fold from 7
observed to 291 predicted [39.57-fold, 277; 9.00-fold, 63] (Table 2
shows the degree of diversity of coronaviruses in mammalian host
species highlighted in Fig. 2). The high degree of potential co-
infections including different subgenera and genera seen in our
results emphasises the level of new genetic diversity possible via
homologous recombination in these host species. A similar
array of host species is highlighted for total associations as was
seen for SARS-CoV-2 potential recombination hosts, including
the common pig, the lesser Asiatic yellow bat, and both the
greater and intermediate horseshoe bats, whilst notable additions
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Fig. 3 Bipartite networks linking coronaviruses with mammalian hosts. Panel (A): original bipartite network based on known/observed virus-host
associations extracted from meta-data accompanying genomic sequences and supplemented with publications data from the ENHanCEd Infectious
Diseases Database (EID2). Panels (B-D) show predicted bipartite networks using our predicted virus-host associations at different cut-offs: >0.9821,

>0.75 and >0.5, respectively, for mean probability of associations.

include the dromedary camel (Camelus dromedaries). The camel
is a known host of multiple coronaviruses and the primary route
of transmission of MERS-CoV to humans??. Our results suggest
that monitoring for background viral evolution via homologous
recombination would focus on a similar array of hosts, with a few
additions, as monitoring for SARS-CoV-2 recombination. Again,
our results strongly suggest that the potential array of viruses
which could recombine in hosts is substantially underestimated,
reinforcing the message that continued monitoring is essential.
Methodologically, the novelty of our approach lies in inte-
grating three points of view: that of the coronaviruses, that of
their potential mammalian hosts and that of the network sum-
marising our knowledge to date of sharing of coronaviruses in
their hosts. Additionally, the incorporation of similarity-based
learners in our three-perspective approach enabled us to capture
new hosts (i.e., with no known association with coronaviruses),
thus avoiding a main limitation of approaches, which rely only on
networks and their topology. By constructing a comprehensive set
of similarity learners in each point of view and combining these
learners non-linearly (via GBM meta-ensemble), a strength of our
analytical pipeline is that it is able to predict potential recombi-
nation hosts of coronaviruses without any prerequisite knowledge
or assumptions. Our method does not make assumptions about
which parts of the coronavirus or host genomes are important, or
integration of receptor (e.g., ACE2) information, or focusing on
certain groups of hosts (e.g., bats or primates). This ‘no-pre-
conceptions’ approach enables us to analyse without being

restricted by our current incomplete knowledge of the specific
biological and molecular mechanisms, which govern host-virus
permissibility. Current restrictions include lack of sequencing,
annotation and expression analysis of receptor (e.g., ACE2) in the
vast majority of hosts, uncertainty over the receptor(s) utilised by
many coronaviruses and knowledge of other factors leading to
successful replication once the virus has entered the host cell.
Whilst some of these details are known for a very limited number
of well-studied hosts and coronaviruses, they are not for the vast
majority, consequently, a study aiming for breadth of under-
standing across all mammalian hosts and coronaviruses is unable
to utilise these limited data. Despite our ‘no-preconceptions’
approach having this distinct advantage, it is also a limitation of
the predictions. As discussed in the next section, our predictions
are consequently reliant upon a more limited set of information
due to the breadth of the work. Where some data are available for
a small subset of coronaviruses or their hosts (e.g., pathogenicity,
virus titre), these data are not useable in this study as they do not
exist for the vast majority of hosts/viruses.

We acknowledge certain limitations in our methodology, pri-
marily pertaining to current incomplete data sets in the rapidly
developing but still understudied field:

(1) The inclusion only of coronaviruses for which complete
genomes could be found limited the number of corona-
viruses (species or strain) for which we could compute

meaningful similarities, and therefore predict potential
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hosts. The same applies for our mammalian species—we
only included mammalian hosts for which phylogenetic,
ecological and geospatial data were available. As more data
on sequenced coronaviruses or mammals become available
in future, our model can be re-run to further improve
predictions, and to validate predictions from earlier
iterations.

(2) Virological knowledge of understudied coronaviruses and
their host interactions. For the vast majority of observed
virus-host associations it is unknown if these hosts are
natural, intermediate or ‘dead-end’ hosts. Also unknown
are more clinical traits of the infections in the over-
whelming majority of associations, such as: pathogenicity,
likelihood of infection, virus titre during infection, duration
of infection, etc. knowledge of all of these factors could
greatly add to our ability to assess ‘likeliness’ of homologous
recombination, however, the available data are too limited
for a study with the breadth of interactions we characterise
here, and hence were unable to be included.

(3) Research effort, centring mainly on coronaviruses found in
humans and their domesticated animals, can lead to
overestimation of the potential of coronaviruses to
recombine in frequently studied mammals, such as lab
rodents that were excluded from the results reported here
(similar to previous work!”), and significantly, domesti-
cated pigs and cats that we have found to be important
recombination host species of coronaviruses. We believe
that this limitation is partially mitigated; first, methodolo-
gically, the effect of research effort has been limited by
capturing similarities from our three points of view (virus,
host and network) and multiple characteristics therein. And
second, this mitigation shows that in our results as other
‘overstudied” mammals, such as cows and sheep, were not
highlight by our model, which is consistent with them being
considered less important hosts of coronaviruses, and
certain understudied bats were highlighted as major
potential hosts; together, these indicate that research effort
is not a substantial driver of our results.

Recent testing of potential mammalian hosts for their sus-
ceptibility to SARS-CoV-2 has confirmed a number of our pre-
dictions, for example: Nyctereutes procyonoides*'*2; Bovines (e.g.,
Bison bonasus, Bos taurus, Bos indicus, Bubalus bubalis), Capra
hircus, Equus caballus, Lama (Vicugna) pacos, Manis javanica,
Oryctolagus cuniculus, Panthera leo, Rousettus leschenaultii,
Sus scrofa and Vulpes vulpes*?; Chlorocebus aethiops, Neovison
vison, Macaca mulatta and Rousettus aegyptiacus*3. While limited
in number, these post hoc confirmations add confidence to our
framework and its predictions. As more host screening is per-
formed in future, it will enable further evaluation of our
predictions.

To follow-on from this work, we are investigating
coronavirus-host interactions in two separate directions. The first
is to expand our host range to include avian species, therefore,
including the full range of important coronavirus hosts, and to
inform our model with a species-level contact network for all
hosts (indicating likeliness of a direct interaction). This will give a
broader overview of potential coronavirus associations. Second,
we are focusing our predictions on studying a subset of clinically
important associations in more depth. This will allow us to utilise
more specific information such as receptor and clinical data on
the viraemia, which are only currently available for well-studied
interactions.

In this study, we provide evidence that the potential for
homologous recombination in mammalian hosts of coronaviruses
is highly underestimated. The potential ability of the large

numbers of hosts presented here to be hosts of multiple cor-
onaviruses, including SARS-CoV-2, could provide the capacity
for homologous recombination and hence potential production of
further novel coronaviruses. Our methods deployed a meta-
ensemble of similarity learners from three complementary per-
spectives (viral, mammalian and network), to predict each
potential coronavirus—-mammal association.

The current consensus is that SARS-CoV-2 was generated by
homologous recombination; originally derived from cor-
onaviruses in bats!® and then shifted to humans via an inter-
mediate reservoir host, likely a species of pangolin!!. Importantly,
the lineage of SARS-CoV-2 was deduced only after the outbreak
in humans. With the greater understanding of the extent of
mammalian host reservoirs and the potential recombination hosts
we identify here, a targeted surveillance programme is now pos-
sible which would allow for this generation to be observed as it is
happening and before a major outbreak. Such information could
help inform prevention and mitigation strategies and provide a
vital early warning system for future novel coronaviruses.

Methods

Viruses and mammalian data

Viral genomic data. Complete sequences of coronaviruses were downloaded from
Genbank#4, Sequences labelled with the terms: ‘vaccine’, ‘construct’, ‘vector’,
‘recombinant’ were removed from the analyses. In addition, we removed those
associated with experimental infections where possible. This resulted in a total of
3264 sequences for 411 coronavirus species or strains (i.e., viruses below species
level on NCBI taxonomy tree). Of those, 88 were sequences of coronavirus species,
and 307 sequences of strains (in 25 coronavirus species, with total number of
species included = 92). Of our included species, six in total were unclassified
Coronavirinae (unclassified coronaviruses).

Selection of potential mammalian hosts of coronaviruses. We processed meta-data
accompanying all sequences (including partial sequences but excluding vaccination
and experimental infections) of coronaviruses uploaded to GenBank to extract
information on hosts (to species level) of these coronaviruses. We supplemented
these data with species-level hosts of coronaviruses extracted from scientific pub-
lications via the ENHanCEd Infectious Diseases Database (EID2)%3. This resulted
in identification of 313 known terrestrial mammalian hosts of coronaviruses
(regardless of whether a complete genome was available or not, n = 185 mam-
malian species for which an association with a coronavirus with complete genome
was identified). We expanded this set of potential hosts by including terrestrial
mammalian species in genera containing at least one known host of coronavirus,
and which are known to host one or more other virus species (excluding cor-
onaviruses, information of whether the host is associated with a virus were
obtained from EID2). This results in total of 876 mammalian species which were
selected.

Quantification of viral similarities. We computed three types of similarities
between each two viral genomes as summarised below.

Biases and codon usage. We calculated proportion of each nucleotide of the total
coding sequence length. We computed dinucleotide and codon biases#¢ and codon-
pair bias, measured as the codon-pair score?®4” in each of the above sequences.
This enabled us to produce for each genome sequence (n = 3264) the following
feature vectors: nucleotide bias, dinucleotide bias, codon biased and codon-

pair bias.

Secondary structure. Following alignment of sequences (using AlignSegs function
in R package Decipher®®), we predicted the secondary structure for each sequence
using PredictHEC function in the R package Decipher®. We obtained both states
(final prediction), and probability of secondary structures for each sequence. We
then computed for each 1% of the genome length both the coverage (number of
times a structure was predicted) and mean probability of the structure (in the per
cent of the genome considered). This enabled us to generate six vectors (length =
100) for each genome representing: mean probability and coverage for each of
three possible structures—Helix (H), Beta-Sheet (E) or Coil (C).

Genome dissimilarity (distance). We calculated pairwise dissimilarity (in effect a
hamming distance) between each two sequences in our set using the function
DistanceMatrix in the R package Decipher®S. We set this function to penalise gap-
to-gap and gap-to-letter mismatches.

8 | (2021)12:780 | https://doi.org/10.1038/541467-021-21034-5 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Table 3 Mammalian phylogenetic, ecological and geospatial similarities.

Category  Similarities Calculation Reason for inclusion
Phylogeny  Phylogenetic 1-normalised phylogenetic distance Linked to sharing of viruses between mammals.
Ecology Life-history and Gower's distance matrices®® Life-history traits are a key feature in terms of
reproductive traits metabolism and adaption to environment. Reproductive
traits are potentially relevant in terms of within-host
dynamics of viruses.
Habitat utilisation Similar habitat utilisation might correlate with contact
with similar viruses.
Diet (proportional use of Similar dietary habit might associate with similar viral
ten categories) assemblage.
Geospatial Overlap (yes/no) Intersection of species presence maps Geographically overlapping host species tend to share

(Supplementary Note 1 and Supplementary Fig. 2)

Climate SNF (Similarity network fusion) of simplified
climate similarity matrices (temperature and
precipitation similarities)

Geospatial SNF of natural land cover, agriculture and farming,

urbanisation and human population and
mammalian diversity similarity matrices

viruses more often than geographically distant species.
Climate has been shown to influence a number of
human and domestic mammal pathogens (including
viruses).

Geospatial factors have been found to influence certain
categories of host-pathogen associations
(Supplementary Note 1).

Pairwise similarities were calculated for our mammalian species (n = 876). Full details of these similarities, their sources and full justification are listed in Supplementary Note 1.

Similarity quantification. We transformed the feature (traits) vectors described
above into similarities matrices between coronaviruses (species or strains). This
was achieved by computing cosine similarity between these vectors in each category
(e.g., codon-pair usage, H coverage, E probability). Formally, for each genomic
feature (n = 10) presented by vector as described above, this similarity was cal-
culated as follows:

S (Vi Vi)
VL VAP /S ViR

V{ln’v'gx) =

Slmgenomicl (va Sn) = S1m,

genomic; (

where s, and s,, are two sequences presented by two feature vectors V, and Vi
from the genomic feature space f; (e.g., codon-pair bias) of the dimension d
(e.g., d=100 for H coverage).

We then calculated similarity between each pair of virus strains or species (in
each category) as the mean of similarities between genomic sequences of the two
virus strains or species (e.g., mean nucleotide bias similarity between all sequences
of SARS-CoV-2 and all sequences of MERS-CoV presented the final nucleotide bias
similarity between SARS-CoV-2 and MERS-CoV). This enabled us to generate 11
genomic features similarity matrices (the above 10 features represented by vectors
and genomic similarity matrix) between our input coronaviruses. Supplementary
Fig. 1 illustrates the process.

Similarity network fusion (SNF). We applied SNF#° to integrate the following
similarities in order to reduce our viral genomic feature space: (1) nucleotide,
dinucleotide, codon and codon-pair usage biases were combined into one similarity
matrix—genome bias similarity. And (2) Helix (H), Beta-Sheet (E) or Coil (C)
mean probability and coverage similarities (six in total) were combined into one
similarity matrix—secondary structure similarity.

SNF applies an iterative nonlinear method that updates every similarity matrix
according to the other matrices via nearest neighbour approach and is scalable and
is robust to noise and data heterogeneity. The integrated matrix captures both
shared and complementary information from multiple similarities.

Quantification of mammalian similarities. We calculated a comprehensive set of
mammalian similarities. Table 3 summarises these similarities and provides justi-
fication for inclusion. Supplementary Note 1 provides full details.

Quantification of network similarities

Network construction. We processed meta-data accompanying all sequences
(including partial genome but excluding vaccination and experimental infections)
of coronaviruses uploaded to Genbank#* (accessed 4 May 2020) to extract infor-
mation on hosts (to species level) of these coronaviruses. We supplemented these
data with virus-host associations extracted from publications via the EID2 Data-
base. This resulted in 1669 associations between 1108 coronaviruses and 545
hosts (including non-mammalian hosts). We transformed these associations into a
bipartite network linking species and strains of coronaviruses with their hosts.

Quantification of topological features. The above constructed network summarises
our knowledge to date of associations between coronaviruses and their hosts, and

its topology expresses patterns of sharing these viruses between various hosts and
host groups. Our analytical pipeline captures this topology, and relations between
nodes in our network, by means of node embeddings. This approach encodes each
node (here either a coronavirus or a host) with its own vector representation in a
continuous vector space, which, in turn, enables us to calculate similarities between
two nodes based on this representation.

We adopted DeepWalk?? to compute vectorised representations for our
coronaviruses and hosts from the network connecting them. DeepWalk?? uses
truncated random walks to get latent topological information of the network and
obtains the vector representation of its nodes (in our case coronaviruses and their
hosts) by maximising the probability of reaching a next node (i.e., probability of a
virus-host association) given the previous nodes in these walks (Supplementary
Note 2 lists further details).

Similarity calculations. Following the application of DeepWalk to compute the
latent topological representation of our nodes, we calculated the similarity between
two nodes in our network—n (vectorised as N) and m (vectorised as M), by using
cosine similarity as follows242>;

Simns[work(n7 m) = Simnc(work(M’ N) = 4 = .d (2>

where d is the dimension of the vectorised representation of our nodes: M, N; and
m; and n; are the components of vectors M and N, respectively.

Similarity learning meta-ensemble—a multi-perspective approach. Our ana-
lytical pipeline stacks 12 similarity learners into testable meta-ensembles. The
constituent learners can be categorised by the following three ‘points of view’ (see
also Supplementary Fig. 4 for a visual description):

Coronaviruses—the virus point of view. We assembled three models derived from
(a) genome similarity, (b) genome biases and (c) genome secondary structure. Each
of these learners gave each coronavirus-mammalian association (v; — m;) a score,
termed confidence, based on how similar the coronavirus v; is to known cor-
onaviruses of mammalian species 71;, compared to how similar v; is to all included
coronaviruses. In other words, if v; is more similar (e.g., based on genome sec-
ondary structure) to coronaviruses observed in host m; than it is similar to all
coronaviruses (both observed in m; and not), then the association v; — m; is given
a higher confidence score. Conversely, if v; is somewhat similar to coronaviruses
observed in m;, and also somewhat similar to viruses not known to infect this
particular mammal, then the association v; — m; is given a medium confidence
score. The association v; — m; is given a lower confidence score if v; is more
similar to coronaviruses not known to infect m; than it is similar to coronaviruses
observed in this host.

Formally, given an adjacency matrix A of dimensions |V|x M| where |V] is
number of coronaviruses included in this study (for which a complete genome
could be found), and |[M| is number of included mammals, such that for each
v; € Vand m; € M, a;;= 1 if an association is known to exist between the virus and
the mammal, and 0 otherwise. Then for a similarity matrix simy;, corresponding
to each of the similarity matrices calculated above, a learner from the viral point of
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view is defined as follows?42%:
‘11‘1,#1‘ (Simviral(vi7 VI) X al])
v ;
I=1,1#i SImviral(Viv Vl)
Mammals—the host point of view. We constructed seven learners from the simi-
larities summarised in Table 3. Each of these learners calculated for every
coronavirus-mammalian association (v; — m;) a confidence score based on how
similar the mammalian species m; is to known hosts of the coronavirus v;, com-
pared to how similar m; is to mammals not associated with v;. For instance, if m; is
phylogenetically close to known hosts of v;, and also phylogenetically distant to
mammalian species not known to be associated with this coronavirus, then the
phylogenetic similarly learner will assign v; — m; a higher confidence score.
However, if m; does not overlap geographically with known hosts of v;, then the
geographical overlap learner will assign it a low (in effect 0) confidence score.
Formally, given the above-defined adjacency matrix A, and a similarity matrix
SiMypammatian cOrresponding to each of the similarity matrices summarised in
Table 3, a learner from the mammalian point of view is defined as follows2425:

confidencey, (v; — m;) =

®3)

M .
Z‘l:l‘.l#j (Slmmammalian(mj7 ml) X ail)
v, = m;) = (4)

i ™M

ZZ:L I#j SIMyammalian (mj7 ml)
Network—the network point of view. We integrated two learners based on network
similarities—one for mammals and one for coronaviruses. Formally, given the
adjacency matrix A, our two learners from the network point of view as defined as
follows?4:

confidence,

mammmalian

I\ ;
v, —m) = 21:1,#1‘ (SIM peqyvonk (Vs 1) % “zj) )

confidence,
! > M ., sim (v;, v)
1=1, =i network \ Vis V]

networky (

M .
Z‘l:l‘,l#j (SImnetwnrk(mj’ ml) x ail)

Z?—Al‘l -sim (m;, my)
=1, 1% network \""%j» "TH]
Ensemble construction. We combined the learners described above by stacking
them into ensembles (meta-ensembles) using Stochastic Gradient Boosting (GBM).
The purpose of this combination is to incorporate the three points of views, as well
as varied aspects of the coronaviruses and their mammalian potential hosts, into a
generalisable, robust model*’. We selected GBM as our stacking algorithm fol-
lowing an assessment of seven machine-learning algorithms using held-out test sets
(20% of known associations randomly selected, N = 5—Supplementary Fig. 14). In
addition, GBM is known for its ability to handle non-linearity and high-order
interactions between constituent learners®!, and have been used to predict reser-
voirs of viruses?® and zoonotic hot-spots®.We performed the training and opti-
misation (tuning) of these ensembles using the caret R Package®2.

confidence,

(6)

v, — m;) =

networky, ( 'j

Sampling. Our GBM ensembles comprised 100 replicate models. Each model was
trained with balanced random samples using tenfold cross-validation (Supple-
mentary Fig. 4). Final ensembles were generated by taking mean predictions
(probability) of constituent models. Predictions were calculated form the mean
probability at three cut-offs: >0.5 (standard), >0.75 and >0.9821. SD from mean
probability was also generated and its values subtracted/added to predictions, to
illustrate variation in the underlying replicate models.

Validation and performance estimation. We validated the performance of our
analytical pipeline externally against 20 held-out test sets. Each test set was gen-
erated by splitting the set of observed associations between coronaviruses and
their hosts into two random sets: a training set comprising 85% of all known
associations and a test set comprising 15% of known associations. These test sets
were held-out throughout the processes of generating similarity matrices; simi-
larity learning, and assembling our learners, and were only used for the purposes
of estimating performance metrics of our analytical pipeline. This resulted in 20
runs in which our ensemble learnt using only 85% of observed associations
between our coronaviruses and their mammalian hosts. For each run, we calcu-
lated three performance metrics based on the mean probability across each set of
100 replicate models of the GBM meta-ensembles: AUC, true skill statistics (TSS)
and F-score.

AUC is a threshold-independent measure of model predictive performance that
is commonly used as a validation metric for host-pathogen predictive models?!46.
Use of AUC has been criticised for its insensitivity to absolute predicted probability
and its inclusion of a priori untenable prediction®!>3, and so we also calculated the
TSS (TSS = sensitivity + specificity — 1)°*. F-score captures the harmonic mean of
the precision and recall and is often used with uneven class distribution. Our
approach is relaxed with respect to false positives (unobserved associations), hence
the low F-score recorded overall.

We selected three probability cut-offs for our meta-ensemble: 0.50, 0.75 and
0.9821. One extreme of our cut-off range (0.5) maximises the ability of our
ensemble to detect known associations (higher AUC, lower F-score). The other
(0.9821) is calculated so that 90% of known positives are captured by our ensemble,
while reducing the number of additional associations predicted (higher F-score,
lower AUC).

Changes in network structure. We quantified the diversity of the mammalian hosts
of each coronavirus in our input by computing mean phylogenetic distance
between these hosts. Similarly, we captured the diversity of coronaviruses asso-
ciated with each mammalian species by calculating mean (hamming) distance
between the genomes of these coronaviruses. We termed these two metrics:
mammalian diversity per virus and viral diversity per mammal, respectively. We
aggregated both metrics at the network level by means of simple average. This
enabled us to quantify changes in these diversity metrics, at the level of network,
with addition of predicted links at three probability cut-offs: >0.5, >0.75 and
>0.9821.

In addition, we captured changes in the structure of the bipartite network
linking CoVs with their mammalian hosts, with the addition of predicted
associations, by computing a comprehensive set of structural properties
(Supplementary Note 3) at the probability cut-offs mentioned above, and
comparing the results with our original network. Here we ignore properties that
deterministically change with the addition of links (e.g., degree centrality,
connectance; Supplementary Table 2 lists all computed metrics and changes in
their values). Instead, we focus on non-trivial structural properties. Specifically, we
capture changes in network stability, by measuring its nestedness>>—’; and we
quantify non-independence in interaction patterns by means of C-score®s.
Supplementary Note 3 provides full definition of these concepts as well as other
metrics we computed for our networks.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Genomic sequences of coronaviruses were obtained from NCBI GenBank, accession
codes are listed in Supplementary Data 7. Coronaviruses—hosts associations were
obtained from the ENHanCEd Infectious Diseases Database (EID2: https://eid2.liverpool.
ac.uk/). Mammalian and geospatial data were obtained from open-access data sources.
These sources are listed in detail, and their DOIs are provided in the Supplementary
Information file. Data used can be found here: https://doi.org/10.6084/m9.
figshare.13110896, with the exception of mammalian presence shapefiles and raw climate
data (due to their large size)—these data can be obtained from the authors or directly
from the sources listed in the Supplementary Information file.

Code availability
All codes used in our analyses are made available via figshare (https://doi.org/10.6084/
m9.figshare.13110896).
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