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Abstract: Genomic selection with genome-wide distributed molecular markers has evolved into a
well-implemented tool in many breeding programs during the last decade. The resistance against
Fusarium head blight (FHB) in wheat is probably one of the most thoroughly studied systems within
this framework. Aside from the genome, other biological strata like the transcriptome have likewise
shown some potential in predictive breeding strategies but have not yet been investigated for the
FHB-wheat pathosystem. The aims of this study were thus to compare the potential of genomic
with transcriptomic prediction, and to assess the merit of blending incomplete transcriptomic with
complete genomic data by the single-step method. A substantial advantage of gene expression data
over molecular markers has been observed for the prediction of FHB resistance in the studied diversity
panel of breeding lines and released cultivars. An increase in prediction ability was likewise found
for the single-step predictions, although this can mostly be attributed to an increased accuracy among
the RNA-sequenced genotypes. The usage of transcriptomics can thus be seen as a complement to
already established predictive breeding pipelines with pedigree and genomic data, particularly when
more cost-efficient multiplexing techniques for RNA-sequencing will become more accessible in the
future.

Keywords: wheat; Fusarium head blight; genomic prediction; omics-based prediction; transcrip-
tomics

1. Introduction

The interest in the implementation of predictive breeding for variety development has
strongly increased in the plant breeding community during the last decade, and genomic
selection with genome-wide distributed molecular markers has become a well implemented
tool in many breeding programs [1]. One major target of genomic selection is the genetic
improvement of resistance against fungal diseases [2]. Within this framework the resis-
tance of wheat against Fusarium head blight (FHB) is probably one of the most thoroughly
studied pathosystems [3]. FHB of wheat is induced by several species among which Fusar-
ium graminearum, Fusarium culmorum, and Fusarium sporotrichioides are the most prominent
and agronomically important causal agents conferring large losses in grain yield and con-
tamination of harvested grain with mycotoxins [4]. Since genetic resistance is considered
the most environmentally friendly and effective strategy to control diseases, several studies
have aimed to increase the achievable gain of predictive breeding for FHB resistance in
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cereals [5–7]. Prediction model improvements range from up-weighting markers linked
to major QTL like Fhb1 [8] to the usage of pre-existing information [9] or traits that are
correlated with FHB resistance [10,11]. Anther retention is one promising choice for the
latter strategy, since an open-flowering behavior increases plant resistance to initial infection
by Fusarium spp. [12,13].

Besides the genome, other biological strata like the transcriptome and metabolome
can serve as an alternative or complement to genomic data in predictive breeding [14,15].
However, the latter two “omics”-methods have not been assessed for predicting FHB
resistance in wheat until now [3]. Albeit metabolites can be considered closest to the actual
phenotype, and in theory unite the previous biological strata, on the other hand they are
also subject to practical constrains like fast turn-over rates. An application of metabolic-
based predictions revealed a lower accuracy than predictions based on single nucleotide
polymorphism (SNP) markers for yield-associated traits in maize [16,17] and barley [18]. In
contrast, transcriptomic-based predictions have been reported to perform at least as good
or better than genomic prediction in panels of inbred lines and hybrids in maize [19,20].
Metabolic prediction of hybrid performance in rice was on the other hand competitive
to both genomic and transcriptomic prediction [21,22], highlighting the potential of the
different biological strata as inputs in a predictive breeding framework.

Usage of RNA-sequencing data for making predictions has furthermore been hypoth-
esized to tackle biological epistasis [23], which is difficult to address by current statistical
models with genome-wide distributed SNP markers [24]. RNA-sequencing is furthermore
representative of the expression of actual genes instead of linked loci, and has the potential
to serve as an alternative to current genotyping technologies as the underlying data can
likewise be used to derive SNP markers and presence/absence variations [25]. Nevertheless,
obtaining RNA-sequencing data is currently more costly than obtaining DNA fingerprints
with a couple of thousand molecular markers, which renders the merging of incomplete
transcriptomic and complete genomic data an interesting option [26]. An analogous problem
can be found in animal breeding, where genotyping of hundreds of thousands of animals
can be likewise cost restrictive. Blending of incomplete genomic with complete pedigree
information in a common relationship matrix by the single-step method is therefore a
well-established method in livestock improvement programs [27]. The goals of this study
were thus (i) to compare the potential of genomic with transcriptomic prediction using
different combinations of gene expressions matrices, and (ii) to assess the merit of blending
incomplete transcriptomic with complete genomic data for predicting FHB resistance in
winter wheat.

2. Materials and Methods
2.1. Plant Material

A diverse winter wheat (Triticum aestivum L.) panel consisting of 96 genotypes including
inbred experimental lines from the Department of Agrobiotechnology IFA-Tulln, advanced
generation breeding lines developed in the programs of Florimond Desprez and RAGT as
well as further registered cultivars from Austria, Germany, and France was analyzed in this
study. Based on SNP Array data (see below) the degree of heterozygosity was in the range
of 0.2–7.8% with a median of 1%. The panel was grown in an unbalanced series of field
trials at the experimental station of IFA-Tulln (48.31 N, 16.07 E, 180 m elevation, chernozem
soil type) in double rows of 90 cm length with a row spacing of 33 cm. The experimental
field was separated into distinct trials within each year to facilitate an inoculation with the
three different Fusarium species: F. graminearum, F. culmorum, and F. sporotrichioides, which
vary both in their aggressiveness and mycotoxin spectrum. Each trial was laid out as a
randomized complete block design with 2–4 replicates during the years 2011–2015 (Table 1),
resulting in an average number of twelve replications of each genotype.
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Table 1. Replicates (in brackets) and number of lines tested from the complete set of 96 lines within
each trial inoculated with F. sporotrichioides (FS), F. culmorum (FC), or F. graminearum (FG) between
2011 and 2015. The smaller subset of lines tested in 2011 was extended by adding another set of
32 lines in 2012, which was finally extended by further 38 lines in 2013–2015.

Trial

Year FS FC FG

2011 26 (2) 26 (4)
2012 58 (2) 58 (2)
2013 96 (2) 96 (2)
2014 96 (2)
2015 96 (2) 96 (2)

The inoculum was produced as described in [28]. The inoculation started when 50%
of the wheat heads in the first plots began to flower (BBCH 65)—this process was repeated
every two days until all plots had passed the anthesis stage. All plots were spray-inoculated
using a battery-driven backpack sprayer in the late afternoon, and a mist irrigation system
provided a high level of humidity to ensure an optimal fungal growth. The FHB severity
was scored at 10, 14, 18, 22, and 26 days after anthesis as the percentage of Fusarium-infected
spikelets per plot, and finally expressed as the Area Under the Disease Progress Curve
(AUDPC). Aside from FHB severity, anthesis date was recorded as days after May 1 when
50% of the heads within a plot reached the flowering stage (BBCH 65). In addition, anther
retention was assessed by manually opening 20 florets of five randomly chosen heads and
expressed as the percentage of florets with at least one retained anther within each double
row. The average plant height within each double row was measured in centimeters in all
trials at the end of the cropping season (BBCH 89–92).

2.2. Statistical Analysis of the Phenotypic Data

Best linear unbiased predictions (BLUP) were derived for each line and trait by
analyzing the collected phenotypic data with a linear mixed model of the form:

yijkl = µ+ gi + yj + ytjk + ytbjkl + gyij + gytijk + eijkl (1)

where yijkl is the phenotypic observation for each trait, µ is the grand mean, and gi is the
random effect of the ith line. The effect of the jth year (yj) was fixed, while the effect of the
kth trial within the jth year (ytjk), and the lth block within the kth trial and jth year (ytbjkl)
were modeled as random. The genotype-by-year interaction (gyij) and genotype- by-year-
by-trial interaction (gytijk) were modeled as random. The residuals followed ek ∼ N(0,σ2

ek
)

with a different variance for each of the trials. The same model (1) was used to derive BLUPs
for anther retention from all trial-by-year combinations inoculated with two of the three
isolates in order to avoid an upward bias of the prediction accuracy when using this trait
for indirect phenotypic or trait-assisted omics-based prediction for the individual Fusarium
species [29]. Specific trial series inoculated with one of the individual isolates were analyzed
with the mixed model:

yijl = µ+ gi + yj + ybjl + gyij + eijl (2)

to derive BLUPs for each genotype with respect to their FHB resistance against F. gramin-
earum, F. culmorum, and F. sporotrichioides. The trial effect was dropped in comparison to
the previous model (1) as each isolate was only tested in one trial in per year. Hence, yikl
designates the phenotypic observations for FHB severity, µ is the grand mean, and gi the
random effect of the ith line, yj the effect of the jth year, and ybjl the effect of the lth block
within the jth year. Heterogeneous residual variances were again modeled in (2), although
in the case of the trial series with individual isolates each year received its own residual
variance. The entry-mean heritability for each trait was determined by
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h2 = 1 − vdBLUP

2σ2
g

(3)

where σ2
g is the genetic variance and vdBLUP the mean variance of a difference of two

genotypic BLUPs [30]. All phenotypic analyses were conducted with the mixed model
package sommer [31] for R [32].

2.3. Genotypic Data and Transcriptome Profiling

All winter wheat lines were genotyped with the TaBW280K SNP array [33], where
markers were coded as +1 or −1 for homozygous or 0 for heterozygous allele calls. Markers
that were monomorphic or had a missing rate of more than 10% were discarded, while
the other missing marker scores were chromosome-wise imputed using the missForest
algorithm [34]. This resulted in a final set of 10,084 SNP markers, which were subsequently
utilized to conduct a principal component analysis for the investigated panel of 96 genotypes
(Supplementary Figure S1).

For the purpose of RNA-sequencing, all genotypes were grown under controlled
greenhouse conditions as described by [35]. One water-inoculated i.e., mock-treated and
two Fusarium-inoculated replicates were planted in the greenhouse in a randomized com-
plete block design with 10 plants per pot. Six individual heads per pot were inoculated
at mid-anthesis (BBCH 65); the basal florets of their central spikelets were point inocu-
lated by pipetting 10 µL of either a F. graminearum spore suspension (strain IFA65/66;
50,000 spores mL−1) or distilled water between palea and lemma. The wheat heads were
subsequently covered with plastic bags for 24 hours to ensure a high humidity for an
optimal fungal growth. The inoculations were repeated in the morning of consecutive days
to minimize possible confounding effects of daytime dependencies i.e., circadian gene
expressions. The six treated heads per pot were harvested 48 h after inoculation, and the
treated spikelet separated into lemma, palea, and rachis on one side and the reproductive
tissues on the other side. After excluding awns, the sampled lemma, palea, and rachis
tissue was immediately shock-frozen in liquid nitrogen and stored at −80 ◦C for RNA
extraction. RNA was extracted from 100 mg of pooled plant material from five to six heads
harvested from each individual pot using the RNeasy Plant Mini Kit from Qiagen (Hilden,
Germany) following the manufacturer’s instructions.

RNA-sequencing was done by GATC Biotech (Konstanz, Germany) using Illumina
HiSeq 2500 strand-specific sequencing technology with the 125 bp paired-end mode for the
288 libraries that corresponded to the individual samples from the 96 genotypes harvested
from the two times replicated Fusarium-treatment and the mock-treatment respectively.
Adapters and low-quality reads were trimmed using Trimmomatic v.0.35 [36], while the
relative content of Fusarium and wheat reads in each RNA-sequencing library was estimated
by FastQ Screen [37]. The processed RNA-sequencing data were aligned to the T. aestivum
L. IWGSC v1.0 reference genome sequence [38] using Hisat2 v. 2.1.0 [39], and reads that
aligned genes to a single locus were counted with the featureCounts software [40]. A feature
matrix of variance stabilized counts adjusted for the library size was subsequently obtained
by using the R package DESeq2 [41]. A set of 90,093 expressed genes represented by at least
10 normalized counts in at least five RNA-seq libraries was used as an input for fitting
transcriptomic-based prediction models.

2.4. Single-Trait Omics-Based Prediction

The potential to predict FHB resistance, anther retention, plant height, and anthesis
date across all isolates using genomic and transcriptomic predictor variables was assessed
by conducting a leave-one-out cross-validation and fitting single-trait best linear unbiased
prediction (BLUP) models for each of these traits:

yi = µ+ gi + ei (4)
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where µ is the grand mean, yi is the BLUP of the ith genotype obtained in the phenotypic
data analysis, and ei the residual effect with e ∼ N

(
0, Iσ2

e
)
. The effect gi of the ith genotype

was modelled as random to derive additive genotypic effects with g ∼ N
(

0, Gσ2
g

)
by

genomic best linear unbiased prediction (GBLUP), where the genomic relationship matrix
G was computed following [42]:

G = WWT/2Σ(1 − pl)pl (5)

where W is a centred marker matrix of the j lines with Wjl = Zjl + 1 − 2pl and pl is the allele
frequency of the +1 allele at the lth locus. Transcriptomic best linear unbiased predictions
(TBLUP) were analogously derived by modelling g ∼ N

(
0, Tσ2

g

)
, where the transcriptomic

kernel matrix T was obtained from:

T = MMT/f (6)

with M being the centred and standardized matrix of expressed genes and f the number of
genes. The matrix M itself was built either with gene expression data obtained from the
mock-treated samples or one of the Fusarium-treated samples. Additionally, all pairwise
combinations among them were constructed to investigate the influence of replications in
RNA-sequencing experiments on the transcriptomic prediction ability. This combination
was achieved by summing across a pair of given gene expression matrices and dividing the
result by two before standardizing the combined matrix to derive T in Equation (6). The
method was accordingly adjusted when combining the gene expression data from all three
treatment-by-replication combinations:

Mcombi =
1
3

(
Mfhb[rep1] + Mfhb[rep2] + Mmock

)
(7)

where the combined matrix Mcombi was derived from the average of the gene expression
matrices Mfhb[rep1] and Mfhb[rep2] as well as Mmock representing the two replicates of the
Fusarium-treatment and the mock-treatment, respectively. Using simple means across the
different matrices was equivalent to obtaining best linear unbiased estimates of the transcrip-
tomic predictors as was done by [23], since the RNA-sequencing experiment was completely
balanced in the study at hand. Aside from comparing molecular markers and gene ex-
pression data obtained from different treatments, we examined the impact of the predictor
number on the prediction ability by randomly sampling sets between 500 to 80,000 genomic
and transcriptomic predictors for generating the matrices G and T. The prediction ability of
all models was assessed by correlating the predicted performance values with the observed
values derived in the phenotypic data analysis. All models for genomic and transcriptomic
prediction were fitted with sommer [31] for the R statistical environment [32].

2.5. Trait-Assisted and Single-Step Prediction Models

The above-described genomic and transcriptomic single-trait prediction models were
subsequently extended by including anther retention as a covariate to test the potential of
increasing the prediction ability for FHB resistance in a trait-assisted prediction model of
the form:

yi = µ+ γ · xi + gi + ei (8)

where µ is the grand mean, gi is the random effect of the of the ith line, and yi is the
FHB resistance against either F. sporotrichioides, F. culmorum, or F. graminearum that were
regarded separately in this case. The covariate xi (anther retention) was for the purpose of
trait-assisted prediction measured in trials that differed from the ones in which the trait of
interest was assessed to avoid an upward bias of the prediction ability [29]. The estimated
breeding value of the ith line was thus computed by also taking the regression coefficient γ
into account
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EBVi = µ+ γ̂ · xi + ĝi (9)

where γ̂ and ĝi are the estimate of the regression coefficient and the predicted genotype
performance respectively, and xi is in this case the observed phenotype for anther retention
of the ith genotype. Like for the single-trait predictions a leave-one-out cross-validation
was conducted to assess both the genomic and transcriptomic prediction ability.

This evaluation was further extended to the single-step framework to combine both
information sources when predicting the resistance against the individual FHB isolates.
Since generating transcriptomic data is currently more expensive than obtaining genomic
fingerprints, the percentage of RNA-sequenced genotypes was varied in the range of 10–90%
when fitting the single-step genomic-transcriptomic prediction (ssGTBLUP) models. The
entire panel was 100 times randomly split into sets of genotypes for which only genomic
information were available and sets with both genomic and transcriptomic information. Ad-
ditionally, a partitioning around medoids clustering [43] was conducted to more directly test
the merit of sampling a diverse set of genotypes for the more costly RNA-sequencing with
the pamk function from the fpc R package [44]. This was facilitated by varying cluster num-
ber in the range 9–86, i.e., an equivalent of approximately 10–90% of the entire panel, and
sampling the lines representing the medoid of each cluster into the set of RNA-sequenced
lines. The method aimed thus to uniformly cover the given target genetic space with these
lines in a similar way as [45].

Both models (4) and (8) were afterwards fitted with the assumption of g ∼ N
(

0, HGTσ
2
g

)
,

which was compared with predictions based solely on genomic or transcriptomic data using
g ∼ N

(
0, Gσ2

g

)
and g ∼ N

(
0, Tσ2

g

)
respectively. The hybrid relationship matrix HGT for

merging genomic and transcriptomic information was obtained by modifying the method
suggested by [46] and [47] to:

HGT =

(
G11 − G12G−1

22 (T − G22)G−1
22 G21 G12G−1

22 T
TG−1

22 G21 T

)
. (10)

where the matrix G11 contains the genomic relationship between non-RNA-sequenced geno-
types, G22 the genomic relationship between RNA-sequenced genotypes, while G12 and
G21 model the genomic relationship between RNA-sequenced and non-RNA-sequenced
genotypes. The prediction abilities of all genomic and transcriptomic models were again as-
sessed by correlating the predicted performance values with the observed values derived in
the phenotypic analysis of the data. The prediction ability for an indirect phenotypic selec-
tion for FHB resistance by anther retention was obtained by correlating the observed values
of anther retention with the observed values of FHB resistance against the individual iso-
lates. All trait-assisted and single-step prediction models were fitted with sommer [31], and
the hybrid relationship matrices HGT were generated with the R package AGHmatrix [48].

3. Results

A large variation and high entry-mean heritability was observed for all investigated
traits including FHB resistance (Table 2). The correlation between FHB resistance and anthesis
date was low (r = 0.10) (Supplementary Figure S2). However, a strong correlation between
FHB and plant height (r = −0.57) as well as between anther retention and plant height
(r = −0.55) could be observed. A high and significant correlation was furthermore seen
between FHB severity and anther retention (r = 0.69). Even when adjusting FHB severity
and anther retention by plant height using the residual method [49] a high to moderate
correlation of r = 0.55 between the two former traits was retained, underlining the potential of
anther retention as a phenotypic predictor of FHB severity without an unfavorable trade-off
with respect to the selection of comparably tall plants.
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Table 2. Mean, range, variance components, and heritability for Fusarium head blight (FHB) severity (AUDPC), anther
retention (AR) (%), plant height (PH) (cm), and anthesis date (AD) (days after May 1st) for the phenotypic analyses across
all trials, trials inoculated with one of the F. sporotrichioides, F. culmorum, and F. graminearum isolates, respectively, as well as
excluding one of these trial series at a time.

Set Trait Min Mean Max σ2
g σ2

gy σ2
gyi σ2

e H2 h2

All trials FHB 51.89 114.62 282.47 2338.49 0.00 629.45 10226.20 0.18 0.94
AR 0.00 52.96 93.13 734.03 68.81 22.42 156.29 0.75 0.97
PH 65.71 78.23 104.68 72.36 3.74 0.00 10.84 0.83 0.98
AD 20.20 24.67 30.00 5.62 0.85 0.00 1.36 0.72 0.97

Isolates † FHBFS 0.00 39.40 177.92 1308.28 335.18 831.78 0.53 0.91
FHBFC 17.04 227.36 846.55 35605.89 3776.73 6610.13 0.77 0.95
FHBFG 69.34 201.10 452.40 7572.85 1877.78 5436.90 0.51 0.87

Ind. Sel. ‡ ARwoFS 0.00 50.07 91.55 744.94 47.46 47.46 160.38 0.74 0.97
ARwoFC 0.00 50.55 84.34 568.15 68.44 24.75 174.89 0.68 0.93
ARwoFG 0.00 54.45 93.73 782.06 42.69 42.69 129.45 0.78 0.97

Genotypic variance (σ2
g), genotype-by-year interaction variance (σ2

gy), genotype-by-year-by-isolate interaction variance (σ2
gyi), aver-

aged residual variance (σ2
e), and plot-based (H2) and entry-mean heritability (h2). † FHB severity for the trial series inoculated with

F. sporotrichioides (FS), F. culmorum (FC), and F. graminearum (FG). ‡ Anther retention across trials, excluding trials inoculated either with
F. sporotrichioides (woFS), F. culmorum (woFC), or F. graminearum (woFG) to assess the merit of an indirect phenotypic and a trait-assisted
omics-based prediction.

The usage of genomic prediction likewise showed some potential for the selection of
FHB resistant genotypes with a high prediction ability of r = 0.61, which was increased up
to r = 0.76 by using transcriptomic data for fitting prediction models (Figure 1). Analogous
observations were made for the other investigated traits, while the highest merit other than
for FHB was observed for the anthesis date. The lowest merit was seen in the highly heritable
trait, plant height. A very similar prediction ability was achieved by using transcriptome
data from either the Fusarium-treated or mock-treated plants for predicting FHB resistance.
Combining different transcriptomic feature matrices from these treatments into a single
kernel was generally more advantageous than utilizing RNA-sequencing data obtained
from a single treatment-by-replicate combination.
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sets for a genomic prediction with 10,084 SNP markers (DNA) or 90,093 expressed genes (RNA). The usage of individual
feature matrices of the transcriptomic data obtained from mock-treated plants (RNAmock) or Fusarium-treated plants
(RNAfhb(1x)) was compared with a combination from both Fusarium-treated replications (RNAfhb(2x)) or from one mock-
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Mixing all three feature matrices together revealed, averaged across all traits, a marginal
benefit (r = 0.81) in comparison to the pairwise combination of feature matrices based either
on the two Fusarium-treatments (r = 0.80) or the mock-treatment and one Fusarium-treatment
at a time (r = 0.79). This observation was also made when varying the number of the
employed predictors that were used to generate these relationship matrices, where the
transcriptomic data showed a general advantage over molecular markers at same number
of predictors if at least two feature matrices were combined (Figure 2; Supplementary
Figure S3). Averaged across all traits, a number of 5000–10,000 molecular markers were
thus required to achieve the same prediction ability as with the information given by
500–1000 expressed genes.
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Figure 2. Average prediction ability using an increasing number of genomic and transcriptomic predictors. The merit of
molecular markers (DNA) for fitting prediction models was compared with utilizing the individual feature matrices of the
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time (RNAmock+fhb(1x)) as well as an integration of gene expression data from all treatment-by-replication combinations
(RNAmock+fhb(2x)). Darker coloring indicates a higher average prediction ability.

This advantage of gene expression data over SNP markers was likewise realized
in the prediction of the individual Fusarium isolates (Figure 3), while at least 50–60% of
the genotypes had to be RNA-sequenced in the single-step predictions with incomplete
transcriptomic data before performing equally well to an indirect phenotypic selection
by anther retention. Nevertheless, exploiting pre-existing information of anther retention
in trait-assisted single-step genomic-transcriptomic prediction models always resulted in
highest prediction ability irrespective of the employed transcriptomic matrices (Supple-
mentary Figure S4). The advantage of increasing the number of RNA-sequenced genotypes
was lower in these cases, while choosing a diversity set by a training population design
algorithm did not reveal a clear additional gain in prediction ability. The increase in predic-
tion ability in the single-step predictions was mostly attributed to an increased accuracy
among the RNA-sequenced genotypes, while the ranking among the non-RNA-sequenced
genotypes was similar to the ranking in a genomic prediction using only SNP markers
(Figure 4; Supplementary Figure S5). This advantage within the group of RNA-sequenced
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genotypes diminished though in the trait-assisted prediction with the secondary trait an-
ther retention, which corroborates the previously mentioned observation in the predictions
across the entire set of RNA-sequenced and non-RNA-sequenced genotypes.
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Figure 3. Prediction ability (±standard deviation) for the resistance against F. sporotrichioides (A), F. culmorum (B), and
F. graminearum (C) with an increasing number of RNA-sequenced genotypes for a single-trait single-step genomic-
transcriptomic prediction (ssGTBLUP) (blue circles) and a trait-assisted single-step genomic-transcriptomic prediction
(ta-ssGTBLUP) (green squares) that includes pre-existing information of the secondary trait anther retention. The set
of RNA-sequenced genotypes was either randomly sampled (closed symbols; solid lines) or by the partitioning around
medoids method based on SNP Array markers (DNA) (open symbols; dashed lines). Single-step predictions without
RNA-sequenced genotypes correspond to genomic prediction and models with a complete set of RNA-sequenced genotypes
to transcriptomic predictions. Prediction models were compared with the merit of an indirect phenotypic selection based
on anther retention (solid red horizontal line). All three gene expression matrices were used to fit the single-step and
transcriptomic prediction models.
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Figure 4. Prediction ability for resistance against three tested Fusarium isolates using single-step
genomic-transcriptomic prediction (ssGTBLUP) within the groups of RNA-sequenced (dark green)
and non-RNA-sequenced genotypes (light green) as well as genomic prediction (GBLUP) within
the group of RNA-sequenced (dark blue) and non-RNA-sequenced genotypes (light blue). Result
are shown for the single-trait predictions (left) and the trait-assisted prediction with exploiting pre-
existing information about anther retention (right). The presented results are based on a split with half
of the genotypes being part of RNA-sequenced and the other half of the non-RNA-sequenced group.

4. Discussion

A fundamental question when using transcription data for making predictions is
the choice of an appropriate time-point [35,50] and tissue for RNA sampling [25], since
transcriptome analyses are only reflecting snapshots of the concerted gene expression.
Nevertheless, samples for transcriptomic-based predictions were taken from seeds [19],
whole-seedlings [51,52], flag leaves of adult plants [22], or from ears/heads as in the study
at hand. The potential targets of such predictions are ranging from characteristics assessed
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in the seedling stage, e.g., juvenile growth to agronomic traits measured on mature plants
like grain yield. It might thus be hypothesized that the relative high performance of the
transcriptome for predicting FHB resistance, which is expressed in the generative phase of
plants, is partially explained by a sampling that was likewise conducted at this phase in
the greenhouse.

Transcriptomic data are often based on samples taken under controlled greenhouse
conditions; thus, transferability of such snapshots of gene expression for the purpose of
predictions made in different environments is not self-evident. Although RNA can be
regarded as being closer to the actual phenotype in comparison to DNA, the former is also
more prone to noise during sampling [17] and furthermore subject to gene-by-environment
interaction caused by varying abiotic [53] and biotic sampling conditions [35]. Despite such
interactions, very similar prediction abilities for FHB resistance (∆ = 1.4%) were found by
utilizing feature matrices based either on Fusarium-treated or mock-treated samples. Dif-
ferential gene expression analysis showed that approximately 10% of the genes were
differentially expressed between the Fusarium-treatment and mock-treatment [54]. From
this group of genes only 20% (=2% of all expressed genes) were differentially expressed
between groups of resistant, moderate resistant, and susceptible genotypes. Another 5%
among all expressed genes were on the other hand consecutively expressed between these
resistance groups. The concurrent presence of differential gene expression information for
this larger consecutively expressed gene subset in the RNA-sequencing data from Fusar-
ium-treated as well as mock-treated wheat plants might thus explain the small difference in
prediction ability of FHB resistance with the alternative feature matrices.

The average correlation among the magnitude of the expression from the individ-
ual genes between the mock-treatment and Fusarium-treatments was in the range of
r = 0.33–0.34. Although this association was slightly higher (r = 0.39) between two replicates
of the Fusarium-treatment, it suggested a low-to-moderate repeatability of RNA-sequencing
data without biological replicates. A combination of feature matrices from both biological
replicates of the Fusarium-treatment into a common matrix was promising since the average
reliability of the predictors increased from the estimate of h2

rep = 0.36 to h2
rep = 0.52. This

gain was furthermore higher than the added noise even when averaging across the mock-
and Fusarium-treatments resulting in a repeatability of h2

rep = 0.54. Increasing the number
of biological replicates has also been reported to have a larger impact than library size
on the power of differential gene expression and ontology enrichment analysis [55]. A
transcriptomic-based prediction employing unreplicated gene expression data showed
nonetheless an advantage over a genomic-based prediction in the study at hand. This
might be to some extent explained by theoretical factors like addressing biological epistasis
by RNA-sequencing data as well as a larger number of predictors in transcriptomic predic-
tions. Augmenting the transcriptomic data with a higher number of biological replicates
increased this difference further, even at the same number of predictors.

However, as costs are likewise higher for RNA-sequencing than DNA-fingerprinting,
and this cost difference increases with each additional library, a more cost-efficient option
might be given by obtaining gene expression data only from a subset of genotypes in
combination with complete SNP marker data in a given set of genotypes. Exploiting the
single-step methodology developed in animal breeding, [26] showed the potential of this
strategy for predicting major agronomic traits in hybrid maize using either pedigree or ge-
nomic in combination with the aforementioned transcriptomic data. Increasing the number
of RNA-sequenced lines in transcriptomic-based single-step prediction resulted likewise
in a higher prediction ability for FHB resistance in comparison to genomic prediction,
which was however merely marginally higher when integrating pre-existing information
of the correlated trait anther retention into the models. Regarding the small advantage
for non-RNA-sequenced genotypes in single-step genomic-transcriptomic predictions, it
might thus be argued that its merit is probably largest in scenarios where pre-existing
information for the array of agronomically relevant traits is absent. An implementation
of transcriptomics into a predictive breeding framework seems currently feasible in ap-
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plied breeding programs via sets of few pre-selected parents in order to support in an
omics-assisted planning of crosses, especially when crossing earlier and if pre-existing
agronomic information of potential parents is only partially available. Such a strategy
could, in a broader context, also increase the across-family prediction ability for the larger
population of progenies derived from these parents when performance information is not
yet available in early breeding generations, and thus extend upon existing pedigree-based
and genomic-based approaches.

5. Conclusions

Implementing transcriptomics into the predictive breeding framework has a potential
to obtain more accurate predictions. The current cost-restrictions are making this endeavor
mostly realizable in the single-step prediction framework or other methods for integrating
multiple kernels. The use of transcriptomics can thus be seen as a complement to already
established pipelines with pedigree and genomic data. This is particularly valid when
more cost-efficient multiplexing techniques for RNA-sequencing [56,57] will become more
accessible in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-442
5/12/1/114/s1, Supplementary Figure S1: Principal component analysis of the 96 genotypes from
IFA-Tulln, RAGT, Florimond Desprez as well as the set of registered varieties involved in the study
using either the SNP markers (DNA), RNA-sequencing data from the mock-treatment (RNAmock) or
the Fusarium-treated plant samples from the first (RNAfhb(rep1)) or second replicate (RNAfhb(rep2)) in
the greenhouse; Supplementary Figure S2: Phenotypic correlation between FHB severity (AUDPC),
anther retention (AR) (%), plant height (PH) (cm), and anthesis date (AD) (days after May 1–*+) for
the phenotypic analyses across all trials; Supplementary Figure S3. Prediction ability (±standard
deviation) for FHB resistance (A), anther retention (B), plant height (C), and anthesis date (D)
using an increasing number of genomic and transcriptomic predictors; Supplementary Figure S4.
Prediction ability (±standard deviation) for the resistance against F. sporotrichioides (A), F. culmorum
(B), and F. graminearum (C) with an increasing number of RNA-sequenced genotypes for a single-trait
single-step genomic-transcriptomic prediction (ssGTBLUP) (blue circles) and a trait assisted single-
step genomic-transcriptomic prediction (ta-ssGTBLUP) (green squares) that includes pre-existing
information of the secondary trait anther retention; Supplementary Figure S5. Prediction ability for
resistance against the three tested FHB isolates using single-step genomic-transcriptomic prediction
(ssGTBLUP) within the group of RNA-sequenced (dark green) or non-RNA-sequenced genotypes
(light green) as well as genomic prediction (GBLUP) within the group of RNA-sequenced (dark blue)
or non-RNA-sequenced genotypes (light blue).
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