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Pharmaceutical therapies are essential for esophageal cancer (EC). For the advanced
EC, the neoadjuvant therapy regimen, including chemotherapy plus radiotherapy and/or
immunotherapy, is effective to achieve clinical benefit, even pathological complete
response. For the unresectable, recurrent, and metastatic EC, the pharmaceutical
therapy is the limited effective regimen to alleviate the disease and prolong the
progression-free survival and overall survival. In this review, we focus on the
pharmaceutical applications in EC treatment including cytotoxic agents, molecular
targeted antibodies, and immune checkpoint inhibitors (ICIs). The chemotherapy
regimen is based on cytotoxic agents such as platinum-based complexes, fluorinated
pyrimidines and taxenes. Although the cytotoxic agents have been developed in
past decades, the standard chemotherapy regimen is still the cisplatin and 5-FU or
paclitaxel because the derived drugs have no significant advantages of overcoming
the shortcomings of side effects and drug resistance. The targeted molecular therapy
is an essential supplement for chemotherapy; however, there are only a few targeted
therapies available in clinical practice. Trastuzumab and ramucirumab are the only two
molecular therapy drugs which are approved by the US Food and Drug Administration
to treat advanced and/or metastatic EC. Although the targeted therapy usually achieves
effective benefits in the early stage therapy of EC, the patients will always develop
drug resistance during treatment. ICIs have had a significant impact on routine clinical
practice in cancer treatment. The anti-programmed cell death-1 monoclonal antibodies
pembrolizumab and nivolumab, as the ICIs, are recommended for advanced EC by
several clinical trials. However, the significant issues of pharmaceutical treatment are still
the dose-limiting side effects and primary or secondary drug resistance. These defects
of pharmaceutical therapy restrain the clinical application and diminish the effectiveness
of treatment.
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INTRODUCTION

Esophageal cancer (EC) is a global health challenge. It ranks
the seventh most common cancer incidence and the sixth most
common cause of cancer-related death worldwide (Li et al.,
2019; Zhang et al., 2020). The histologic types of EC are
mostly composed of esophageal squamous cell carcinoma (ESCC)
and esophageal adenocarcinoma (EAC), which have distinct
epidemiology and biology. ESCC are highly prevalent in the East,
East Africa and South America and account for 90% of EC. EAC
is more common in Western developed countries than that in
developing countries (Smyth et al., 2017; Chen et al., 2019).

The treatment regimen for EC is dependent on the general
status of patient and the tumor stage, mainly the TNM stage
(Lordick et al., 2016). Patients with early stage tumors should
be treated with endoscopic or surgical resection, whereas local
advanced tumors should be treated with systemic treatment
regimen. Patients that are not suitable for surgical treatment
should be treated with systemic regimens including definitive
chemoradiotherapy, targeted therapy, immunotherapy, and
palliative treatment (Smyth et al., 2017).

Most patients seek medical attention because of a period of
progressive dysphagia (Lagergren et al., 2017), therefore, radical
surgery is possible in only 15–20% of all cases (Zhao et al.,
2020). Moreover, for resectable locally advanced EC, the overall
prognosis is poor with surgery alone (Gebski et al., 2007). For
the advanced or metastasis EC, although combination therapy
has prolonged overall survival, the current median survival time
remains almost 1 year (Shah et al., 2017; Ho and Smyth, 2020).

Although the overall survival of EC has improved in
the past decades because of medicine development (Ho and
Smyth, 2020), the overall 5-year survival rate is still 20%
(Zeng et al., 2015; Njei et al., 2016). The main causes of
treatment failure are recurrence and metastasis concurrent
with treatment resistance. In this review, we focus on the
most common pharmaceutical applications for EC and its drug
resistance including chemotherapy, molecular targeted therapy,
and immunotherapy.

CHEMOTHERAPY

For EAC, the FLOT regimen including docetaxel, oxaliplatin,
leucovorin, and fluorouracil is recognized as the standard
perioperative chemotherapy regimen. The regimen including
cisplatin and fluorouracil is the alternative treatment while the
FLOT regimen should not be implemented (Shah et al., 2020).
For ESCC, the cisplatin plus fluorouracil regimen is the standard
chemotherapy (Chen et al., 2019). It can be seen that the platinum
containing cytotoxic agents are still the standard regimen of
chemotherapy for EC.

PLATINUM COMPLEXES

Cisplatin or cis-dichloro-diammine-platinum (II) is the
representative drug of platinum complex. It was first used to

a cancer patient in 1971 (Lebwohl and Canetta, 1998). Since
then, platinum-based cytotoxic agents are widely used in tumor
treatment (Shimizu et al., 2020). However, the mechanisms that
determine sensitivity and resistance to platinum drugs remain
elusive (De Vries et al., 2020).

The antitumor activities of cisplatin are associated with the
formation of certain kinetically stable cisplatin–DNA adducts
and many platinum-based drugs have been designed and
synthesized based on the classical structure-activity relationships
(Yang and Wang, 1996; Wheate et al., 2010). The general
platinum-based complexes (II) structure has been summarized
as [PtA2X2] and platinum-based complexes (IV) structure has
been summarized as [PtA2X2Y2]. In these chemical structures,
the Pt means metal platinum, the A2 mean two monodentate or
one bidentate amine ligand, the X2 mean two monodentate or
one bidentate anionic ligand and the Y means hydroxo, chloro,
or carboxylato (Galanski, 2006).

The formation of intra-strand crosslink adducts leads to an
impairment of DNA expression and stability (Yang and Wang,
1996; Heringova et al., 2009). These lesions could cause mutations
and have detrimental effects on replication and transcription,
which are thought to be the crucial antitumor activity of
platinum-based drugs and ultimately lead to cellular apoptosis
(Bai L. et al., 2017). Furthermore, cisplatin is known to interfere
with cellular RNA processing by binding to RNA and assisting the
antitumor activity of the drug (Chapman and Derose, 2010).

The platinum-based drug not only impairs cancerous cells but
also the normal cells (Kelland, 2007). The toxicity of platinum-
based drugs is directly associated with the aquated of the leaving
groups (Galluzzi et al., 2012) and nephrotoxicity, neurotoxicity,
ototoxicity, and myelosuppression are the most common side
effects (Piccart et al., 2001). In order to diminish the toxicity
and side effects of cisplatin, pharmacologists are dedicated to
discovering new leaving groups such as carboplatin, oxaliplatin,
nedaplatin, lobaplatin, and heptaplatin (Wheate et al., 2010;
Dilruba and Kalayda, 2016; Bai L. et al., 2017). However, the
toxicity and side effects are still the causes of dosage range
limiting in clinic, such as myelosuppression of carboplatin,
neurotoxicity and gastrointestinal toxicity of oxaliplatin (Hanada
et al., 2008; Zhong et al., 2020), none of the newly platinum-based
analogs have a more comprehensive effect than the cisplatin
(Najjar et al., 2017). Because these new platinum-based drugs
are derived from a basic cisplatin structure, the defects of
cisplatin are inherited. Therefore, cisplatin is still the most
widely used platinum drug in clinic, and there are only three
agents including cisplatin, carboplatin, and oxaliplatin which
have become globally used. Another three agents including
nedaplatin, lobaplatin, and heptaplatin have received approval in
regional areas (Wheate et al., 2010; Dilruba and Kalayda, 2016;
Bai L. et al., 2017).

RESISTANCE IN PLATINUM-BASED
DRUGS

Beyond the side effects of platinum-based drugs diminishing
the effectiveness of clinical practice, the resistance of them,
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including intrinsic or acquired resistance, also limits the clinical
application. Furthermore, the severe side effects of cisplatin
restrict the dosage intake and the dose delivered to patients
can be sub-lethal to tumors, which means that it could develop
resistance in further treatment.

However, the underlying mechanisms are still far from
elucidated. The main mechanisms of platinum-based drug
resistance are possibly associated with changed cellular platinum
accumulation, increased detoxification system, increased DNA
repair, decreased apoptosis, and autophagy (Figure 1) (Kehe and
Szinicz, 2005; Wheate et al., 2010; Zhou et al., 2020).

First, to accumulate the platinum antitumor agents inside
the cells is the necessary process for cytotoxicity, so platinum
resistance would generate while the platinum agent influx
decreased and/or efflux increased. The way that platinum
enters the cell is thought to be passive diffusion and through
gated channels (Gately and Howell, 1993; Puckett et al.,
2010). There are multiple transporters involved in platinum
influx/efflux (Zhou et al., 2020), such as solute carrier superfamily
(SLCs) of membrane transporters (Perland and Fredriksson,
2017), copper transporter 1/2(CTR1/2) (Holzer and Howell,
2006), copper-transporting ATPases (ATP 7A/7B) (Gupta and
Lutsenko, 2009), multidrug resistance protein subfamily (MPR)
(Yaneff et al., 2019) etc. The organic cation transporters
and copper transporter are related to the influx, while ATP
7A/7B and MPR2 are involved in the isolation and efflux of
platinum agents (Zhou et al., 2020). However, the mechanism
of uptake of platinum-based drugs is not elucidated (Hall
et al., 2008). Secondly, platinum agents can be deactivated
by binding to detoxification components such as glutathione
(GSH), methionine, metallothioneins, and other cysteine-rich
proteins. This binding depletes cytoplasmic antioxidant reserves
and results in the oxidative stress in cells. On the other
hand, while the cytoplasmic nucleophiles level is elevated,
the available reactive cisplatin would be diminished and thus
contribute to cisplatin resistance (Dilruba and Kalayda, 2016;
Zhou et al., 2020). Thirdly, the DNA repair process is significantly
increased in platinum resistance cells (Wynne et al., 2007).
Although platinum-based agents can induce cytotoxicity by
forming the platinum-DNA adducts, the DNA lesion could be
repaired by the DNA repair process (Zhou et al., 2020). One
of these DNA repair processes is nucleotide excision repair
(NER) system, which can remove most intra-strand crosslinks
through reconstituted genetic integrity by excising damaged
nucleotides and synthesizing DNA (Roos and Kaina, 2013).
The expression level of excision repair cross-complementing
(ERCC) members and breast cancer susceptibility genes (BRCAs)
also have significant influence on platinum resistance (Dann
et al., 2012; Foulkes and Shuen, 2013; Muggia and Safra, 2014).
Fourthly, the dysfunction of apoptosis may be one of the causes
of platinum drug resistance. The apoptosis would be activated
while the DNA repair fails or excessive DNA lesions occurs
after platinum agents and mitochondria will generate surplus
reactive oxygen species (ROS) to kill the cells. However, this
reaction may be neutralized by glutathione and metallothioneins.
The platinum-resistant cells usually have a higher threshold
to trigger apoptosis due to the defection of mitochondrial

signaling and the overexpression of anti-apoptotic proteins.
Many factors contribute to the regulation of apoptosis, including
the signal pathways (such as MAPK/ERK, PI3k/AKT, NF-kB,
Nrf2, p53), the tumor microenvironment (TME) (including
hypoxia-inducible factor, HIF), cancer-associated fibroblasts
(CAFs), and epigenetic regulation (Ramadoss et al., 2017; Zhou
et al., 2020). Last but not least, autophagy was observed to be
increased in platinum-resistant cells after platinum-based drug
treatment (Wang Z. et al., 2019). Autophagy is a self-digestion
process and essential for nutrient regulation, intracellular quality
control and homeostasis (Mizushima and Klionsky, 2007). If
persistent or excessive autophagy is carried out, it will trigger
cell death. When autophagy activity is inhibited by autophagy
inhibitors, interference of regulatory elements, or non-coding
RNAs, it has been proven to diminish platinum resistance
(Zhou et al., 2020).

However, the mechanisms of platinum resistance are far
from elucidated and the dose-liming side effects and cytotoxicity
still hinder clinical application. Therefore, the chemotherapy
is mostly concurrent with two to three cytotoxic agents to
reduce dose-limiting side effects and toxicity of platinum
complexes. The most common concurrent cytotoxic agents in
EC are fluorinated pyrimidines (5-fluorouracil) and taxanes
(paclitaxel or docetaxel).

FLUORINATED PYRIMIDINES

5-Fluorouracil (5-FU) is the representative drug of fluorinated
pyrimidine, the chemical formula of which is C4H3FN2O2. It was
first synthesized as the antitumor agent in 1957 by modified a
pyrimidine chemical uracil, in which the hydrogen at the carbon-
5 position of the pyrimidine ring was replaced by a fluorine atom
(Alvarez et al., 2012).

The biological activities of 5-FU including antitumor activity
and systemic toxicities remain only partly characterized.
A primary theory is the lethal synthesis in which a biological
metabolism can transform a relatively non-toxic metabolite into
a more toxic form (Weckbecker, 1991). 5-FU interferes with
DNA synthesis and mRNA translation by being misincorporated
into RNA and DNA in place of uracil or thymine, that lead
to cytotoxicity and cell death (Noordhuis et al., 2004; An
et al., 2007). While 5-FU enters the human body, most of it
is inactivated by dihydropyrimidine dehydrogenase (DPD),
and further converted to fluorodeoxyuridine monophosphate
(FdUMP). The FdUMP could form a stable complex with
thymidylate synthase (TS) in the presence of methylene
tetrahydrofolate reductase (MTHFR) and then inhibits the
production of deoxythymidine monophosphate (dTMP).
While thymidylate synthase is inhibited, the cancer cells
which reliant on the de novo thymidylate pathway undergo
thymineless death (Houghton et al., 1997). Because dTMP
is essential for DNA repair and replication, its depletion
therefore causes cytotoxicity (Zhang et al., 2008). In clinical
application, the combination of the folate analog Leucovorin
and 5-FU can promote the clinical efficacy because it can
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FIGURE 1 | Schematic representation of drug effect and resistance of cisplatin.

promote thymidylate synthase ternary complex formation
(Wolmark et al., 1999).

RESISTANCE IN FLUORINATED
PYRIMIDINES

There are many defects of 5-FU, including systemic toxicities
because of non-specific cytotoxicity for tumor cell, loss of
efficiency due to poor distribution to tumor sites, and severely
limited efficacy because of drug resistance (Alvarez et al., 2012).
The serious systemic toxicities of 5-FU are commonly seen in
gastrointestinal and hematopoietic effects (Gmeiner, 2020).

There are multiple factors that may be responsible for 5-
FU resistance (Figure 2) (Zhang et al., 2008). Antitumor drug
resistance usually concentrates on alteration of drug influx and
efflux, enhancement of drug deactivation, and mutation of the
drug target (Longley and Johnston, 2005). The factors which
affect the drug transition would affect the activation of 5-FU.
5-FU and other nucleic acid dugs present cytotoxicity only
when pass through the cell membranes. However, the water-
soluble character of 5-FU makes it so that it cannot pass
through cell membranes by diffusion. Therefore, the specific
nucleic acid membrane transporters are needed to help cells to
absorb these drugs (Kong et al., 2004). Thymidine phosphatase
(TP) is the main form of pyrimidine nucleoside phosphatase
in humans, which helps cells to survive, promotes angiogenesis
and inhibits apoptosis (Toi et al., 2005). When tumors present

FIGURE 2 | Schematic representation of drug effect and resistance of 5-FU.

high levels of TP expression, they show more sensitivity to 5-FU
(Soong et al., 2008).

Some enzymes are involved in the conversion and activation of
5-FU. DPD is an initial and rate-limiting factor in the catabolism
of uracil and thymine which mediates the conversion of 5-FU to
dihydrofluorouracil (DHFU) (Heggie et al., 1987; Zhang et al.,
2008). The 5-FU resistance will generate while DPD activity
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increases in cancer patients, because the 5-FU will be converted
to non-pharmacologically active metabolites before activation
(Lu et al., 1993; Reti et al., 2010). TS is a key enzyme that
catalyzes the conversion of dUMP to dTMP and is extremely
important for DNA synthesis and repair. The TS loss will hamper
cell proliferation and result in cell death (Costi et al., 2005).
TS is overexpressed in most tumors and its high expression is
an important factor of 5-FU resistance (Longley et al., 2003).
MTHFR participate the conversion of 5-FU to a stable ternary
complex which results in TS inhibition. The decrease in MTHFR
activity finally inhibits the formation and stabilization of the
ternary complex. Therefore, patients with a mutant genotype
associated with decreased MTHFR activity are more sensitive to
5-FU (Lurje et al., 2008).

Autophagy and many signaling pathways also affect antitumor
activity of 5-FU. Previous study has showed that inhibiting
autophagy activity could enhance antitumor activity of 5-FU in
colorectal cancers (Sasaki et al., 2012). Many signaling pathways
involved 5-FU resistance, including Hippo/YAP, Wnt/β-catenin,
Notch signaling pathway, Hedgehog, NF-kB signaling pathway,
and so on (Xie et al., 2020).

To overcome the shortcomings of 5-FU, many fluorinated
pyrimidines have been synthesized and are under biological
evaluation. However, the DPD-inhibiting oral fluoropyrimidines
such as eniluracil and 5-chloro-2,4-dihydroxypyridine (CDHP)
have failed to improve outcomes for patients with metastatic
colorectal cancer (Schmoll, 2003). The DPD inhibitors had
combined with orally bioavailable fluorinated pyrimidine such as
capecitabine or tegafur to verify the similar effect to continuous
intra-venous infusion of 5-FU and did not prove molecules
advantageous to continuous intra-venous infusion (Kobayakawa
and Kojima, 2011; Aguado et al., 2014). Furthermore, more
oral fluoropyrimidine such as S1 (tegafur/gimeracil/oteracil) are
in progress phase I clinical trials for tumors, including EC
(Ajani et al., 2020; Hosoda et al., 2020). However, up to date,
the 5-FU is still the widest used fluorinated pyrimidine for
cancer treatment. Many adjuvant drugs to promote activity of
5-FU, such as Non-steroidal anti-inflammatory drugs (NSAIDs),
chloroquine (CQ), disulfiram, vitamin D analogs (VDAs), and
Ca2+-activated G protein-coupled calcium-sensitive receptor
(CaSR) (Xie et al., 2020). However, these agents are far from
application in clinical practice.

TAXANES (PACLITAXEL OR DOCETAXEL)

Taxanes are naturally occurring compounds and belongs to genus
of Taxus. Paclitaxel (PTX) is a key member of taxane family and
is a semisynthetic plant alkaloid that restabilizes the microtubule
cytoskeleton against depolymerization (Tan et al., 2006). PTX
has been widely used to treat a number of cancers and has
been considered as a successful antitumor agent since it was first
approved for the treatment of ovarian cancer in 1992 (Zhu and
Chen, 2019). Docetaxel (DTX) is another widely used taxane
for antitumor therapy, which was first found in 1990 (Sohail
et al., 2018). PTX is a tricyclic diterpenoid compound and has
a chemical formula of C47H51NO41.

Microtubules are the key members of the cytoskeleton,
which play a notable role in various biological processes
including maintenance of cell shape, molecular signaling
pathways, conducing to the transportation of cell organelles, and
production of the mitotic spindle to ensure the progression of the
cell cycle (Jordan and Wilson, 2004; Magnani et al., 2009). PTX
has a different antitumor action compared with other common
tubulin-binding antitumor drugs which exert antitumor activity
through impeding the assembly of tubulin into microtubules.
It has a distinctive antitumor function which enhances the
assembly of tubulin into microtubules and the production of
non-functional microtubules (Weaver, 2014; Lee and Tan, 2018).
In the physiological condition, there is a balance in the process
of entering and eliminating tubulin proteins from microtubules.
Upon effects of PTX or DTX, this balance is interrupted and the
microtubules receive a stabilized form (Yvon et al., 1999). This
results in cell cycle arrest, inhibition of mitosis, inhibiting growth
and proliferation of cancer cells and apoptotic cell death (Weaver,
2014; Ashrafizadeh et al., 2020b).

RESISTANCE IN TAXANES

Although the taxanes are highly active cytotoxic antitumor
drugs, the serious adverse drug reactions and emergence of drug
resistance still affect the clinical application.

The effects of antitumor activity could enhance in relation
to drug dose increasing, however, the dose increasing not only
promotes the drug’s effectiveness but also increases cytotoxicity
(Ashrafizadeh et al., 2020a). The common toxicities of the drugs
manifests in hair loss, hypersensitivity reactions, hematological
toxicity (principally neutropenia), arthralgia, myalgias, and
peripheral neuropathy (Markman, 2003). Fortunately, with
appropriate management, both PTX and DTX generate easily
treatable side effects and it would be a rare patient who is unable
to proceed with taxane treatment due to unacceptable toxicity
(Markman, 2003; Ashrafizadeh et al., 2020b).

A lot of molecular pathways and mechanisms are involved
in the taxane resistance of cancer cells. Among the molecular
mechanisms, autophagy is the most widely known mechanism
related to PTX resistance. A study showed that the inhibition
of autophagy can enhance antitumor activity of PTX. The self-
digestion mechanism can stimulate cancer cells resistance into
PTX chemotherapy. In this progress, non-coding RNAs is the
most common molecular pathway that dually mediate or inhibit
PTX resistance (Datta et al., 2019; Yang et al., 2020). Integrin
subunit α2 (ITGA2) is an oncogene factor which promotes
metastasis and growth ability of cancer cells and it is thought
to reduce sensitivity of cancer cells of PTX through activation of
Akt/FoxO1 signaling pathway (Ma et al., 2020; Qin et al., 2020).
Furthermore, high mobility group box 1 (HMGB1) can activate
c-Myc oncogene to induce PTX resistance (Jung et al., 2020;
Lei et al., 2020).

To overcome the drug resistance and dose-limiting side
effects, many studies have been proceeding. Many plant derived
natural compound such as nobiletin (Feng et al., 2020), quercetin
(Li et al., 2018), and resveratrol (Ozturk et al., 2019) have been
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used to inhibit PTX resistance and increase its antitumor activity
in cancer cells. Irinotecan is a topoisomerase I inhibitor and
proven to have benefits of survival and quality of life in 5-FU
refractory colorectal cancer (Liu et al., 2020). Previous studies
also considered it as a second- or third-line chemotherapy for
EC which were refractory to platinum plus fluoropyrimidine
chemotherapy (Wang et al., 2016).

For both EAC and ESCC, either adjuvant or neoadjuvant
chemotherapy was proven to be superior to surgery alone in
overall survival (Ando et al., 2003; Ychou et al., 2011). For
the pathological node positive EC which received neoadjuvant
chemotherapy or chemoradiotherapy, adjuvant chemotherapy
showed a survival benefit compared to those that did not
receive chemotherapy after esophagectomy (Samson et al., 2018).
Platinum plus fluoropyrimidines (FP) or taxanes are an essential
chemotherapy regimen for EC. Moreover, radiotherapy with
FP regiment followed by surgery also showed superior overall
survival compared with surgery alone (Tepper et al., 2008).
Taxanes are also frequently used in chemotherapy for EC
as a second-line chemotherapy for recurrent and metastasis
EC. Many clinical trials indicate that paclitaxel and docetaxel
are effective for both ESCC and EAC in extending median
survival time (Muro et al., 2004; Ford et al., 2014). However,
chemotherapy agents are exhibiting considerable cytotoxic effects
including normal cells and the dose-limiting side effects restrict
the chemotherapy’s effectiveness. Furthermore, the emergence
of drug resistance is still the challenge for clinicians and drug
developers and the effective approach to eliminate drug resistance
and side effects has not been proven (Xie et al., 2020).

To overcome these limited therapeutic options and promote
overall survival and quality of life, the personalized targeted
therapies are designed based on the molecular characterization
of EC (Maeda and Ando, 2019).

MOLECULAR TARGETED THERAPY

Despite the EC being mostly categorized into ESCC and EAC,
the treatment options are largely similar both in the different
histological types (Lagergren et al., 2017). However, the cellular
and molecular data suggest that different histological types
represent different genomic characterization. ESCCs closely
resemble head and neck cancers while EACs more resemble
gastric cancers (Cancer Genome Atlas Research Network,
Analysis Working Group, Asan University, BC Cancer Agency,
Brigham and Women’s Hospital, Broad Institute, et al., 2017).

The molecular characterization of EAC is divided into four
etiological/genetic subtypes based on gastric adenocarcinoma
molecular characterization classification (Cancer Genome Atlas
Research Network, 2014): (1) EBV-associated tumors; (2)
Microsatellite instability (MSI) tumors commonly with PIK3CA,
EGFR and human epidermal growth factor receptor 2 (HER2)
mutations; (3) Genomically stable tumors, (4) Chromosomally
instability (CIN) tumors with TP53 mutations as well as
RTK/RAS, VEGFR, and p110 amplifications (Barsouk et al.,
2019). In these genomic subtypes, the MSI-high and EBV
subtypes have shown great responsiveness to immune checkpoint

inhibitors (ICIs), such as pembrolizumab (Kim et al., 2018; Le
et al., 2018; Shitara et al., 2018). Only the transtuzumab have
positive treatment responses in the CIN subtype and the other
targeted therapies such as the cMET inhibitor, FGFR inhibitor,
PARP inhibitor have failed (Shah et al., 2016; Bang et al., 2017;
Van Cutsem et al., 2017). Although the EGFR tyrosine
kinase inhibitors gefitinib did not meet significant overall
survival benefits compared with a placebo in unselected EC
patients, partial patients achieved disease control and benefits in
progression-free survival (Dutton et al., 2014; Petty et al., 2017).

Despite the ESCC and EAC being similar to the responsiveness
of chemotherapeutic agents, ESCC is significantly distinct from
EAC at the genomic level (Ilson and Van Hillegersberg, 2018).
However, the differentiated epigenetic alterations of growth
advantage in ESCC are still not elucidated (Kang et al., 2015). The
ESCC genomic characterization are divided into three molecular
subtypes by The Cancer Genome Atlas Research Network: (1)
the alteration in NrF2 pathway, which regulates adaptation
to oxidative stressors including some carcinogens and some
chemotherapy agents; (2) higher rates of mutation of NOTCH1
or ZNF750, more frequent inactivating alterations of KDM6A
and KDM2D, CDK6 amplification, and inactivation of PTEN
or PIK3R1; (3) No evidence for genetic deregulation of the cell
cycle and only a few of TP53 mutations (Cancer Genome Atlas
Research Network, Analysis Working Group, Asan University,
BC Cancer Agency, Brigham and Women’s Hospital, Broad
Institute, et al., 2017). Unfortunately, only a few cancer drivers
are targetable and the druggability of a target is still a research
question. The most approved targeted drugs in clinic are directed
against kinases and some of them have been used to treat ESCC
(Kang et al., 2015).

Many oncogenes and tumor suppressor genes have been
revealed as promising targets for targeted therapy and
immunotherapy. These agents usually inhibit the vascular
endothelial growth factor (VEGF) signaling or receptor tyrosine
kinases (RTK), such as the EGFR, erb-b2 receptor tyrosine
kinase 2 (ERBB2 or HER2), and MET (N-methyl-N0-nitroso-
guanidine human osteosarcoma transforming gene) (Figure 3)
(Ilson and Van Hillegersberg, 2018).

EGFR Inhibition
It is estimated that about 15–20% of advanced gastric and
gastroesophageal junction (GEJ) cancers have overexpression or
amplification of HER2 (Van Cutsem et al., 2015) and 12–41% in
ESCC cases (Gonzaga et al., 2012; Zhan et al., 2012).

Cetuximab, as an anti-EGFR monoclonal chimeric antibody,
is proven useful for head and neck cancers and colorectal
cancer with the wild-type RAS gene. A phase 2 clinical study
showed that cetuximab can be safely combined with standard
chemotherapy and may increase the overall response rate,
median progression-free survival, and median overall survival
in advanced ESCC (Lorenzen et al., 2009). Moreover, another
phase 2 clinical trial showed benefits of the addition of cetuximab
to standard preoperative chemoradiotherapy in locally advanced
ESCC (Brenner et al., 2019). However, it did not show additional
benefit compared to chemotherapy alone for advanced gastric
cancer (Lordick et al., 2013).
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FIGURE 3 | Schematic representation of drug effect and resistance of targeted therapy.

Gefitinib is EGFR tyrosine kinase inhibitor and a phase
3 trial did not show overall survival benefits for previous
treated advanced EC including squamous-cell cancers
(Dutton et al., 2014).

Lapatinib is a dual EGFR and HER2 tyrosine kinase
domain. Some studies showed that the lapatinib combined with
chemotherapy were efficacious for advanced ESCC (Reynolds
et al., 2017; Guo et al., 2018). However, these studies are just
in laboratory and phase 1 studies and it is far from being
verified in patients.

Nimotuzumab is a recombinant humanized monoclonal
antibody. It inhibits the EGFR-dependent intracellular signaling
pathway via binding to the extracellular domain of EGFR (Hirano
and Kato, 2019). Many phase 2 clinical trials and retrospective
studies had showed that in combination of nimotuzumab to
chemotherapy or chemoradiotherapy could achieve effective
benefits for advanced and metastatic ESCC (Saumell et al., 2017;
Jing et al., 2019). Pertuzumab is a humanized monoclonal HER2-
targeted antibody which binds to a different epitope on the HER2
receptor protein than trastuzumab (Shitara et al., 2020). However,
a phase 3 trial (JACOB) showed that adding pertuzumab to
trastuzumab and chemotherapy did not significantly improve
overall survival in patients with previously untreated HER2-
positive metastatic gastric or GEJ cancer (Shitara et al., 2020).

Panitumumab as an anti-EGFR antibody did not promote
survival for first-line chemotherapy for gastroesophageal
adenocarcinomas in a phase 3 trial (REAL3) (Waddell et al.,
2013). Moreover, it did improve survival and substantially
increased toxicity for non-resectable, advanced, or metastatic
ESCC in a phase 3 trial (POWER) (Moehler et al., 2020).

Trastuzumab is a recombinant humanized monoclonal
antibody directed against HER2. In a phase 3 trial (ToG
A), It was approved for the first-line treatment combined
with chemotherapy for the metastatic, gastric, or GEJ
cancers which have HER2 overexpression (Bang et al.,
2010). However, many patients were still progressing

under this regimen (Li and Li, 2016) and there were no
clinical benefits for further trastuzumab utilization while the
disease progressed (Makiyama et al., 2018). Trastuzumab
emtansine (T-DM1) is a microtubule inhibitor, which
conjugate monoclonal antibody agent trastuzumab and
cytotoxic agent emtansine (DM1). However, the clinical
trial showed that it was not superior to taxane as the second-line
therapy for the previous treatment HER2-positive locally
advanced or metastatic gastric or GEJ adenocarcinoma
(Thuss-Patience et al., 2017).

VEGF Inhibition
VEGFR inhibitors are largely used in gastrointestinal
cancer including gastric and GEJ adenocarcinomas
(Rajabi and Mousa, 2017).

Bevacizumab is a monoclonal antibody targeting VEGF-A
which is mediated by two tyrosine kinase receptors, VEGFR-1
and VEGFR-2. Although it is an efficient treatment for several
malignancies in combination with chemotherapy including
colorectal cancer and lung cancer, it was not proven superior in
overall survival time compared to chemotherapy for advanced
gastric or GEJ adenocaecinoma (AVAGAST) (Ohtsu et al., 2011).

Nintedanib is a multikinase inhibitor that potently inhibits
VEGFR1-3, FGFR1-3, and PDGFRa/b. A phase 2 trial
showed that nintedanib did not have significant benefits in
disease progression of first-line chemotherapy or metastatic
esophagogastric adenocarcinoma compared with VEGFR2
inhibition alone and it has no value for the further development
of EC (Won et al., 2019).

Ramucirumab is a fully humanized monoclonal antibody and
is designed to inhibit VEGFR-2 via ligand binding which prevents
VEGF ligands binding to VEGFR-2 epitopes (Spratlin et al.,
2010). A double-blind, randomized phase 3 trial (RAINBOW)
showed that there were significant benefits in ramucirumab
plus paclitaxel group than compared to the paclitaxel group
including the overall survival, progression-free survival, and
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therapy response rate (Wilke et al., 2014). For the patients who
underwent first-line treatment with transtuzumab, paclitaxel plus
ramucirumab is recommended as a second-line therapy regimen
regardless of HER2 expression (Wilke et al., 2014). There are
many other VEFG inhibitors in the clinical trial with no exciting
results for gastric or GEJ adenocarcinoma, such as apatinib
(Li et al., 2016), regorafenib (Pavlakis et al., 2016), lapatinib
(Hecht et al., 2016) et al.

MET Inhibition
MET is a proto-oncogene which encodes a receptor tyrosine
kinase c-MET. Activation of c-MET is ordinarily indispensable
to cell function such as morphogenesis, scattering and motility,
cell proliferation, and protection from apoptosis (Mo and Liu,
2017). Rilotumumab is an inhibitor of the MET ligand hepatocyte
growth factor. However, a phase 3 trial of chemotherapy plus
rilotumumab as the first-line therapy for the advanced MET-
positive gastric or GEJ cancer did not increase the overall survival
time (Catenacci et al., 2017). Moreover, another phase 3 trial
of the MET inhibitor onartuzumab which plus chemotherapy
for HER2-negative and MET-positive advanced gastroesophageal
adenocarcinoma also did not show significantly improved clinical
benefits compared with chemotherapy (Shah et al., 2017).

Despite recent advances in genomic drivers of EC, there
are only few targeted therapies available in clinical practice.
Trastuzumab, ramucirumab, and pembrolizumab are the only
three molecular therapy agents approved by the US Food and
Drug Administration (FDA) for treatment of advanced and/or
metastatic ECs (Fatehi Hassanabad et al., 2020).

RESISTANCE IN TARGETED THERAPY

Although targeted therapy is better tolerated than traditional
chemotherapy, it does produce toxicity based on several main
mechanisms. The common side effects include hypertension,
rash, diarrhea, hypothyroidism, proteinuria, depigmentation,
and hepatotoxicity. Either antibodies or small molecular kinase
inhibitors, the same target may have similar side effects.
VEGFR kinase inhibitors usually cause hypertension and EGFR
antibodies and kinase inhibitors usually cause rash (Liu and
Kurzrock, 2014; Kang et al., 2015).

The intratumoral, intermetastatic, intrametastatic, or
interpatient heterogeneities are related to various combinations
of drivers and pathways. These heterogeneities may explain how
the different patients have different treatment responses and even
resistance under the same treatment and the favorable response
patients initially could develop resistance over time (Kang et al.,
2015). It is considered that the carcinogenesis is a successive new
mutation which is driven by natural selection. Correspondingly,
radiotherapy and targeted therapy may be the artificial selection
which has a potent source to alter clonal dynamics. Therefore,
the antitumor therapy may induce drug resistance (Greaves and
Maley, 2012). In fact, targeted therapy is associated with a high
rate of resistance at the beginning of the targeted therapy used in
clinic (Kang et al., 2015). Patients will always develop resistance
during this treatment (Merz et al., 2020).

Autophagy can contribute to drug resistance because
autophagy contributes to cell homeostasis by eliminating
damaged organelles and its activation can mitigate metabolic,
oxidative, and endoplasmic reticulum stresses (Das et al., 2012).
In the process of targeted therapy resistance, autophagy has
been shown to play an important role in many different cancer
types (Mizushima, 2018). Autophagy is involved in the recycling
of some receptors which finally reduce the efficacy of targeted
therapy and the cells which are deficient in autophagy are more
sensitive to target therapies (Janser et al., 2019). The targeted
therapy can trigger autophagy by several mechanisms such
as activation of Beclin 1 through class III PI3K, induction of
oxidative and endoplasmic reticulum stress, and alteration of
AKT-mTOR pathway (Vera-Ramirez et al., 2018). In vitro,
trastuzumab has been shown to induce autophagy and the
basal autophagy of cell line which present intrinsic or acquired
resistance to trastuzumab are increased (Chen et al., 2016).
Although autophagy inhibitors showed the effect of reverting
the resistance and increasing drug affects in vitro and vivo, the
different targeted therapy blocking different pathways in several
cancer types would activate a similar response to promote drug
resistance (Mele et al., 2020).

Besides autophagy, many other resistance mechanisms
have been identified including alteration of the drug target,
alterations in upstream and downstream effectors resulting
in pathway reactivation and bypass mechanisms (Groenendijk
and Bernards, 2014). The activation of the PI3K/AKT/mTOR
pathway is one of the bypass pathways to targeted therapy
resistance. The increased PI3K signaling can be due to
loss of function through gene mutations or deletion of
NF1 or PTEN, or the activation of a wide range RTKs,
EGFR, FGFR1, PGFR-β etc. (Zuo et al., 2018). Moreover, the
interaction between tumor cells and microenvironment is also
an important factor in drug resistance (Ahmed and Haass, 2018;
Mourah et al., 2020).

After a certain period of trastuzumab treatment, almost
all patients will develop drug resistance even if the primary
resistance is very rare in patients in HER2 overexpression.
The common mechanism of trastuzumab resistance is that
the selection of HER2 will not amplify clones (Piro et al.,
2018; Cavaliere et al., 2019). There are many mechanisms of
primary or acquired resistance to anti-HER2 therapies, including
impaired drug binding to HER2, constitutive activation of
signaling pathways parallel or downstream of HER2, metabolic
reprogramming or reduced immune system activation. However,
only a few of them have been validated in clinical series
(Vernieri et al., 2019).

Fibroblast growth factor receptor (FGFR) pathway activation
was considered to be one of the mechanisms related to various
targeted therapeutic resistance including EGFR TKIs (Luo et al.,
2018). The FGF family has four tyrosine kinase receptors
and is involved in cellular growth and tumor angiogenesis
(Mossahebi-Mohammadi et al., 2020). FGF9 has a unique affinity
to FGFR3 and the overexpression of FGFR3 may be responsible
for transtuzumab resistance (Hecht et al., 1995; Touat et al.,
2015). Bemarituzumab is a humanized monoclonal antibody
specific to the human FGFR2b receptor. It demonstrated
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monotherapy clinical activity in the overexpression of FDFR2b
late-line gastric cancer. However, there is no phase 3 trial to
verify its effectiveness (Catenacci et al., 2019). Dovitinib is
a selective FGFR3 inhibitor. While the trastuzumab-resistant
murine models were treated with it, the tumor burdens were
more reduced and the overall survival rates were longer than
the control group (Piro et al., 2016). Pemigatinib is a selective,
potent, oral inhibitor of FGFR1, 2, and 3. A phase 2 trial
which intended to assess the safety and activity of pemigatinib
in HER2 trastuzumab-resistant gastric or GEJ cancer showed
that trastuzumab-resistance may benefit from the utilization of
pemigatinib (Merz et al., 2020).

Additional mutations in receptor tyrosine kinases, RAS,
and PI3K pathways appear to the mechanism of both intrinsic
and acquired resistance to HER2 inhibitor. For patients
with these co-alterations, there is a lower benefit from
trastuzumab treatment and it has a shorter progression-free
survival (Janjigian et al., 2018). The combination with anti-
angiogenesis trastuzumab and anti-EGFR ramucirumab has a
good experience in durations of response in esophagogastric
cancer. It is considered that the resistance inducing by
angiogenesis and HER2 signaling may be reversed with
the inhibition of the angiogenesis pathway. However, the
bevacizumab combined with cetuximab or panitumumab
received disappointing results in the CAIRO-2 and PACCE
studies (Hecht et al., 2009; Tol et al., 2009). Furthermore, the
combination with HER2 inhibitor and VEGFR inhibitor were
associated with higher rates of side effects, even a detrimental
effect on survival.

In a short, although molecular-targeted therapy is widely used
in other solid tumors such as breast, leukemia, colorectal, lung,
and ovarian cancers (Lee et al., 2018), it has limited benefit in EC
treatment because of intrinsic resistance or acquired resistance.

IMMUNOTHERAPY

Immunotherapy has entered a new era in cancer treatment (Dong
et al., 2018; Peinemann et al., 2019; Zhao and Huang, 2020; Zhu
et al., 2020). A lot of immune modulatory strategies have been
developed in the past few years, including ICIs, adoptive cellular
therapy, cancer vaccines, oncolytic viruses, and so on. Among
these, ICIs have greatly impacted on routine clinical practice
which has achieved unprecedented results in many tumors (Dong
et al., 2018; Ribas and Wolchok, 2018).

Programmed cell death-1 (PD-1) was first identified in
1992 and also called CD279 (Ishida et al., 1992). PD-1 is
a 55-kDa transmembrane protein with 288 amino acids and
a member of the B7-CD28 family of cell surface receptors
including CTLA-4, CD28, BTLA, and ICOS, which is expressed
on activated T cells, B cells, NKT cells, monocytes and
macrophages (Sharpe and Freeman, 2002; Francisco et al., 2010).
While PD-1 is binding to its ligands, the active immune cells
are inhibited. The PD-L1 (CD279 and B7-H1) and PD-L2
(CD273 and B7-DC) are the two recognized ligands of PD-1,
which belong to the B7 family (Sanmamed and Chen, 2014).
Although PD-L1 and PD-L2 is different from the expression

pattern, both of them bind to the same receptor and inhibit
immune response, therefore they do not have any different
roles (Momtaz and Postow, 2014). PD-L1 is constitutively
expressed on the surface of immune cells, professional antigen-
presenting cells (APCs) that are mainly defined by expressing
MHC class 2, such as macrophages, B cells and dendritic
cells (DCs), and costimulatory molecules to CD4+ T cells.
PD-L1 is also expressed on the surface of non-professional
APCs which present antigen to cytotoxic CD8+ T cells
(Francisco et al., 2010).

The PD-1/PD-L1 pathway has a role in promoting
mechanisms of tumor immune evasion. This is the theoretical
basis of the development of monoclonal antibodies targeting
either PD-1 or PD-L1. The block of the binding of PD-
1 and its ligands has the potential to make tumor cells
exposure to the immune regulatory activity of effector T
cells and resume an effective antitumor immune response
(Figure 4) (Sharpe and Freeman, 2002; Francisco et al., 2010;
Pardoll, 2012).

The efficiency of the PD-1/PD-L1 inhibitors is associated
with the PD-L1 expression and/or tumor mutation burden
(TMB) in tumor cells (Lawrence et al., 2013). For EC,
about 14.5–82.8% patients have tumors with PD-L1 expression
and high TMB (Hong and Ding, 2019). The pembrolizumab
and nivolumab are the recommended anti-PD-1 monoclonal
antibodies based on several clinical trials for EC either ESCC or
EAC (Hong and Ding, 2019).

Pembrolizumab is a fully humanized IgG4-k monoclonal
antibody which is potent and highly selective against PD-
1 (Wolchok, 2015). In many clinical trials, pembrolizumab
demonstrated manageable toxicity and durable antitumor activity
in patients with previous standard therapy failed, PD-L1–positive
advanced, recurrent, and metastatic EC (Doi et al., 2018; Fuchs
et al., 2018; Kojima et al., 2019; Shah et al., 2019). Most
of the patient in these trials who achieved overall survival
superiority had an ESCC and PD-L1 combined positive score
(CPS) of more than 10 (Kojima et al., 2019). Based on these
clinical trials, pembrolizumab as a second-line therapy has
been approved by FDA for advanced ESCC patients with PD-
L1 CPS ≥ 10 (Yamamoto and Kato, 2020). Moreover, many
clinical trials had combined pembrolizumab and trastuzumab
(HER2 inhibitor) plus standard first-line chemotherapy for
HER2-positive advanced and metastatic gastroesophageal cancer
and the results were safe and tolerable (Bang et al., 2010;
Tabernero et al., 2019; Janjigian et al., 2020). The benefits
were observed when adding trastuzumab and pertuzumab
to neochemoradiotherapy for resectable HER2-positive EAC
(Stroes et al., 2020).

Nivolumab is a high-affinity, humanized IgG4 monoclonal
PD-1 antibody (Wolchok, 2015). Many clinical trials showed
that nivolumab had benefits in improving the overall survival
of metastatic renal cell carcinoma (Peinemann et al., 2019).
A phase 2 trial (ATTRACTION-01) showed that nivolumab had
significant efficacy and safety for metastatic or recurrent ESCC
(Kudo et al., 2017). The phase 3 trial (ATTRACTION-3) showed
superiority of nivolumab for the second-line treatment of all
ESCC patients regardless of PD-L1 expression (Kato et al., 2019;
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FIGURE 4 | Schematic representation of drug effect and resistance of immune checkpoint inhibitor.

Kojima et al., 2019). Thus, nivolumab has approved by the
FDA as a monotherapy for advanced ESCC patients after
prior standard chemotherapy regardless of PD-L1 expression
(Yamamoto and Kato, 2020).

There are many clinical trials in progress for other anti-PD-
1 antibodies, such as tislelizumab (Xu et al., 2020), atezolizumab
(Bando et al., 2020), durvalumab (Mamdani et al., 2019), and so
on. However, most of them are under phase 1/2 clinical trials and
far from clinical application.

In short, for metastatic or recurrent ESCC patients, ICIs
such as pembrolizumab and nivolumab are standard treatment
for second-line chemotherapy (Kato et al., 2019; Kojima
et al., 2019). However, there is little evidence for the efficacy
and safety of ICIs for metastatic or recurrent EAC patients
(Yamamoto and Kato, 2020).

RESISTANCE IN IMMUNOTHERAPY

There are still many questions and important challenges to
conquer in ICIs application (Akin Telli et al., 2020). Firstly,
although the immunotherapy has desirable antitumor effects,
the inhibition of immune checkpoints may also result in loss of
peripheral tolerance and subsequently arouse immune activation
on non-tumor cells, which finally causes unintended tissue
damage and represents multisystem organ dysfunction. Almost
every organ system could manifest as tissue damage, in which
the dermatologic, gastrointestinal, endocrine, and pulmonary
systems are the most commonly affected (Hryniewicki et al.,
2018). In previous studies, the most common immune-related
adverse events (irAEs) of PD-1 inhibitors (pembrolizumab
and nivolumab) were fatigue, pruritus, rash, and diarrhea.
Furthermore, most of them (more than 95%) are low grade

adverse effects. Secondly, compared with molecular targeted
drugs, the ICI drug is more prone to the occurrence of drug
resistance (Lim and Rizos, 2018). The drug resistance of ICIs are
also divided into intrinsic and acquired resistance (Sharma et al.,
2017). Previous studies showed that most tumors rarely exceed
40% remission rates and most of them were partial response
(Sharma and Allison, 2015). Furthermore, the resistance to anti-
PD-1/PD-L1 therapy was up to 70% of patients and the primary
resistance was up to 60% (O’donnell et al., 2017; Nowicki et al.,
2018). In the ATTRACTION-3 trial, the treatment responses
between nivolumab and chemotherapy groups for ECs were
similar (19% vs. 22%) and the responses to immunotherapy
needed more time to be apparent compared with chemotherapy.
However, the durability of the response in the nivolumab group
was longer than that in chemotherapy groups. Furthermore,
the proportion of patients with progressive disease were higher
in the nivolumab group than that in chemotherapy group.
Based on this, we could think that the immunotherapy drug
nivolumab may be as beneficial as chemotherapy, but the intrinsic
resistance and acquired resistance remain major obstacles to
immunotherapy of EC (Kato et al., 2019).

The mechanism of ICIs resistance has not been fully
elucidated. One cause of it may be related to the heterogeneity
of the tumor process and the essence of it is the tumor
immune escape. Generally, the drug resistance of ICIs is
considered to involve in the interaction of internal and external
factors between tumor cells and immune cells within the
tumor and the interaction may present a dynamic multilevel
change process (Wang and Wu, 2020). The tumor-cell related
factors of resistance are considered as intrinsic mechanisms
while the immune-cell and micro-environment related factors
refer to extrinsic mechanisms of resistance (Pitt et al., 2016).
A variety of intrinsic and extrinsic factors are involved in
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tumor cell evasion from immune activation at the genetic,
enzymatic, and cellular levels, such as the regulation of TME,
intracellular protein mutations, oncogene signal transduction
pathways, epigenetic changes, etc. (Wang and Wu, 2020).
Whether intrinsic or extrinsic factors, the mechanisms of
resistance are concentrated on antigen presentation, cytotoxic
T-cell activation and trafficking, as well as the stimulation of the
immune-inhibitory axis (Haibe et al., 2020).

There are many cancer cell alteration processes related to
intrinsic resistance. One of them is the alteration of antigen
presentation which affects the immune recognition. The surface
of tumor cells often present loss or down-regulation of the
major histocompatibility complex class I molecules (MHC-1),
and this is suggested to be a mechanism of immune escape
of the tumor (Baba et al., 2007). Every tumor type has a
different escape mechanism (Yoo et al., 2019) and various tumors
demonstrate deregulated expression of MHC-1 (Garrido et al.,
2017). The frequency of MHC-1 loss with concurrent PD-
L1 expression was approximately 12.2% in ESCC (Ito et al.,
2016). The alteration of MHC-1 transcription and expression
will impact on anti-PD-1/PD-L1 therapies (García-Aranda and
Redondo, 2019). The cell signaling also affects immune response.
The abnormal expression or dysregulation of protein kinases
is involved in different hallmarks of cancer including survival,
motility, metabolism, angiogenesis, proliferation, resistance
to standard therapies, and immunotherapies and escape of
antitumor immune responses (Gross et al., 2015; Garcia-Aranda
and Redondo, 2017). PD-L1 overexpression can be a major
hinderance for anti-PD-L1 therapy via overexpression tumor
specific T-cells and apart from its immunosuppressive function
(García-Aranda and Redondo, 2019). Besides the role of protein
kinases on the expression of both PD-1 and its ligands, the
dysregulation of protein kinase pathways is also a main cause
of apoptosis resistance against immune response (Garcia-Aranda
et al., 2018). The absence of tumor neoantigen expression
and presentation leads to a lack of recognition by T-cells and
results in the inability of tumors to respond to PD-1/PD-L1
inhibitor therapy (Bai J. et al., 2017), moreover, other alterations
such as apoptosis suppression or DNA repair promoted are
also associated with treatment resistance (Mansoori et al.,
2017). The anti-apoptotic activity of altered protein kinases
is tightly related to tumor resistance against most therapeutic
treatments including immunotherapies (Garcia-Aranda and
Redondo, 2017). Either the alterations of receptor kinases in
their activity, abundance, cellular distribution and/or regulation
can affect the functioning of signal transduction routes and
result in the constitutive activation of downstream kinases like
PI3K/AKT, MAPK, EGFR, or JAK/STAT (Garcia-Aranda and
Redondo, 2019). Furthermore, the alterations also affect different
transcription factors which command cell survival and trigger
PD-L1 expression (Bai J. et al., 2017).

There are many gene expression mutations which affect
immune response (Trujillo et al., 2019). Loss of B2M and
defective IFN-γ signaling are tightly associated with T cell-
resistant phenotype and tumor-intrinsic determinants of
resistance to immunotherapies. The B2M is the subunit necessary
for antigen presentation by MHC-1 and the tumor resistant

anti-CTLA-4 or anti-PD-1 therapy no longer express B2M
(Sade-Feldman et al., 2017). Defective IFN-γ signaling, such as
through inactivating mutations in Janus kinases (JAK1 or JAK2)
or in the interferon-gamma receptor 1 (IFNGR1), has also been
suggested to relate to resistance of anti-PD-1 therapy (Sucker
et al., 2017). WNT signaling has not only been involved in tumor
progress but also in the ability of tumor cells escaping from
different types of cellular stresses, including drug treatments and
host immune response (Martin-Orozco et al., 2019). The tumor
cell-intrinsic activation of the Wnt/β-catenin pathway mediate
T cell exclusion from the tumor microenvironment and it lead
to primary resistance to ICI therapy. Up-regulation of β-catenin
by cancer cells could cause tumor recurrence and result in
secondary resistance to immunotherapy (Spranger et al., 2015).

The DNA damage responses also affect the treatment benefits.
Many studies suggest that DNA repair plays an important role
in driving sensitivity and response to ICIs (Mouw et al., 2017).
Many reports have manifested that a specific DNA damage
exposure or a specific DNA repair pathway deficiency is related
to ICI response. Loss of normal DNA repair fidelity may lead
to an increase in mutational burden and ICI response of tumors
(Rizvi et al., 2015).

The expression of different checkpoints to prevent T-cell
activation leads to secondary resistance. Single antagonistic
PD1/PDL1 pathway has limited function in improving immune
cells and is prone to drug resistance (De Sousa Linhares et al.,
2018). Besides the PD-1, a lot of high expression of immune
inhibitory checkpoints are related to T-cell function including T
cells immune globulin mucin-3(TIM-3), CTLA-4, Lymphocyte
activation gene 3(LAG-3), B and T lymphocytes attenuation
factor (BTLA), T-cell immune globulin and ITIM structure
domain proteins (TIGIT) etc., and these checkpoints also affect
the efficacy of PD-1/PD-L1 antibody (Curdy et al., 2019).

Alteration of T-cell activation would lead to extrinsic
resistance (Shitara and Nishikawa, 2018). CD4+ regulatory T
(Treg) cells is one of the most common immune-suppressive
cells in tumors and a highly immune-suppressive subset of CD4+
T cells that maintain immune homeostasis. It can suppress
antitumor immunity and promote cancer progression (Togashi
and Nishikawa, 2017). In vitro, PD-1 upregulation by Treg cells
increases the suppression of the CD8+ T cell response (Park et al.,
2015). PD-1 expression modulates the activation threshold of T
cells and maintains the balance between regulatory and effector T
cells (Zhang et al., 2016).

Myeloid-derived suppressor cells (MDSC) partly mediated
profound immunosuppression in a number of patients which do
not respond to immunotherapy. The heterogeneous population
of immature myeloid cells can significantly inhibit anti-tumor
activities of T and NK cells and stimulate Treg cells, which
leads to tumor progression (Weber et al., 2018). Activated MDSC
express high levels of PD-L1 that interacts with PD-1 on T cells
and causes their exhaustion (Dieterich et al., 2017). MDSC has
been shown to drive the differentiation of CD4+ T cells into
immunosuppressive Treg cells and reduce the anti-tumor activity
of effector T cells (Pan et al., 2010).

Tumor-associated macrophages (TAM) represents
immune suppressor cells in the solid tumors that restrict
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anti-tumor immune reaction induced by CD8+ T cells (Cassetta
and Kitamura, 2018). While the TAM is abundant in a tumor
microenvironment, TAM is proposed as one of the important
therapeutic targets to promote the efficacy of immunotherapies
utilizing checkpoint antagonists (Mantovani et al., 2017).

Pro-inflammatory cytokines such as Interferon-α,
Interleukin-2, TNF-α, TGF-β et al. can contribute to cancer
immunotherapy, acting on every phase of the cancer immunity
cycle (Chen and Mellman, 2017). The cellular immunotherapies
can be optimized by the incorporation of cytokine genes
(Chmielewski and Abken, 2015). Therefore, cytokines can elevate
antigen priming, increase the number of effector immune cells
in the TME and promote their cytolytic activity. The ability
to expand and reactivate effector NK and T lymphocytes,
promote tumor infiltration, and persist in the TME make
the cytokines important molecules to overcome resistance
(Berraondo et al., 2019).

Although many mechanisms are assumed to be associated
with immunotherapy resistance, it is difficult to get a universal
biomarker for resisting drug resistance (Haibe et al., 2020;
Wang and Wu, 2020). Similarly, the specific mechanisms of
immunotherapy resistance in EC are also far from elucidated
because the immunotherapy agents have not been widely used in
clinical practice. Until now, only pembrolizumab and nivolumab
are approved for second-line therapy for advanced/metastatic
EC by the FDA. Sun et al. (2020) had reported that an
advanced ESCC patient who received nivolumab therapy
developed hyperprogressive disease shortly. They analyzed that
the mechanism of hyperprogressive disease may be associated
with PI3K/AKT signaling pathway, because the PI3K/Akt
signaling pathway was activated in tumor progression patient
(Sun et al., 2020). Wang et al. (2019) had evaluated the expression
of LAG-3, CTLA-4, and the density of CD8+ tumor-infiltrating
lymphocyte in resected ESCC. The results showed that positive
LAG-3 expression was significantly correlated with positive
CTLA-4 expression and poor prognosis in ESCC (Wang W.
et al., 2019). The positive expression of LAG-3 and CTLA-4
may prevent T-cell activation and lead to secondary resistance.
Zheng et al. (2020) reported that CD39 was overexpressed on
NK cells from EC patients and the frequency of CD39+ NK cells
correlated with the poor prognosis. Moreover, IL-6 can induce
CD39 expression and CD39+ NK cells presented an exhausted
phenotype (Zheng et al., 2020). Because the dysfunction of NK
cells could lead to immune escape, the activated IL-6 may increase
CD39 expression and the NK cells exhaustion could cause
immunotherapy resistance. However, these phenomena should
not elucidate the mechanisms of immunotherapy resistance for
EC and the studies of resisting the immunotherapy resistance
are still ongoing.

IN SUMMARY

The pharmaceutical therapies are essential for EC. For the
advanced EC, the neoadjuvant therapy including chemotherapy
plus radiotherapy and/or immunotherapy is effective to achieve
clinical benefit and even pathological complete response. For the
recurrent, unresectable, and metastatic EC, the pharmaceutical
therapy is a limited effective regimen to alleviate the disease and
prolong the PFS and OS.

The regimen of platinum complexes plus fluorinated
pyrimidines or taxanes is still the first-line therapy for
EC. Although the targeted therapies are effective on other
solid tumors such as non-small cell lung cancer, especially
adenocarcinoma, the molecular targeted therapy for EC is not as
effective as expected and only approved as a second-line therapy
by the FDA. Furthermore, the targeted therapeutic effect in EAC
is more effective compared with that in ESCC. Immunotherapy
has entered a new era in cancer treatment. The ICIs are proven
to provide a significant benefit in many malignant tumors
compared to traditional therapy and will become the mainstream
pharmaceutical therapy for the unresectable and progressive
or metastatic EC. Compared to EAC, the ESCC receive more
effective benefits from ICIs.

However, the significant issues of pharmaceutical treatment
are still the dose-limiting side effects and primary or secondary
drug resistance. Despite the fact that the mechanisms of drug
resistance have achieved many profits, the dose-limiting side
effects and drug resistance still restrain the clinical application
and diminish the effectiveness of pharmaceutical treatment.
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