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Abstract: We have prepared the first example of a porphyrin linked to an heptazine photoactive
antenna. The two entities, linked with an alkyl spacer, demonstrate the activity of both active moieties.
While they behave electrochemically independantly, on the other hand the spectroscopy shows the
existence of energy transfer between both partners.
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1. Introduction

Porphyrins are ubiquitous heterocycles, whose implications and utilizations are count-
less, like biomedicine [1,2], sensors [3] or photovoltaics [4,5] (a specific journal is even
dedicated exclusively to phtalocyanins and porphyrins. (“The Journal of Porphyrins and
Phtalocyanins” a peer-referred review, World Scientific Ed., IF 1.8.)). However, their use,
especially in catalysis applications, is usually related to their activation, which can be
electrochemical [6,7], or photochemical [5,8,9] (to cite the most common ones). Among
them, fluorinated porphyrins and derivatives [10] hold a special place, due to their high
oxidation potentials, triggered by the electron-withdrawing effect of the substituted flu-
orines, and among the most popular ones stands tetrakis(pentafluorophenyl)porphyrin
(2H-20F-TPP) due to its ease of synthesis and functionalization [11]. Heptazines, on the
other hand, (Scheme 1) are a fascinating family of high nitrogen aromatic fused tricyclic
heterocycles [12–14]. Because of their benzene-type aromaticity, they are fluorescent and
due to their high nitrogen content, they own a high reduction potential, especially in the
excited state because of their large bandgap. Their high electron deficiency actually situates
them between triazines [15] and tetrazines [16], the two other common classes of analogous
widely studied heterocycles. Indeed, due to their highly oxidizing excited state, heptazine
can act as photocatalysts [17], and trigger irreversible photoinduced electron transfer to a
nearby partner.

We reasoned that coupling an already electron-deficient porphyrin with an heptazine
could photochemically enhance the oxidizing efficiency of the porphyrin, and possibly
promote unusual oxidation states, in the case where a redox metal (e.g., iron) is present in
the porphyrin cavity. Porphyrin dyads have been already described with fullerenes [18,19],
cyclic paraquats [20], ferrocene [21] or TTF [22] partners, and have shown interesting
photophysical properties. We present in this communication the first example of a dyad
involving both a porphyrin and an heptazine ring, along with its electrochemical and
spectroscopic characteristics.
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Figure 1. Synthetic Scheme of the porphyrin-heptazine dyad 1.

The synthetic Scheme is straightforward, and benefits from the possibility to substitute
with analogous success primary amines both on the perfluorinated porphyrin ring and the
heptazine ring, using a mono-protected 1,6-hexane diamine. In a first step, one p-fluorine
on the tetrakispentafluorophenylporphyrin was substituted with N-Boc-hexyl diamine by
reacting the porphyrin with 0.6 equivalent of amine in presence of K2CO3 for 24 h at 100 ◦C.
After chromatographic purification, the monosubstituted porphyrin was isolated in 40%
yield. The Boc group was then removed by treatment with HCl (37%)/dioxane solution.
Finally, the second aromatic substitution was realized by reacting one equivalent of TDPH
with one equivalent of monosubstituted porphyrin in acetonitrile at 60 ◦C for 3 h. After
chromatographic purification, the Dyad 1 was obtained in 40% yield. All spectroscopic
structural characterizations (NMR, HRMS) have been made and are reported in the ESI
section (Figures 2 and S1–S9).
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Figure 2. Reversible CVs of dyad 1 upon scanning in reduction to negative potentials.

We have investigated the spectroscopic and electrochemical behavior of the dyad.
It displays the porphyrins reduction at high potentials (due to the fluorine’s presence)
followed by the partly reversible heptazine reduction at a lower potential (Figure 1).

Potential (a behavior very close to the analogous TDPH precursor) [23]. From the
current intensities, it can be seen that the porphyrin exchanges two electrons successively,
while the heptazine exchanges only one electron at lower potentials. Upon oxidation, an
irreversible peak attributable to the porphyrin can also be observed (See ESI Figure S10). The
CVs of the porphyrin precursors (amino-Boc and free amine) (see ESI Figures S11 and S12)
show as expected exactly the same reduction potentials attributable to the porphyrin, but
of course without the heptazine response.

The spectroscopic characteristics of our dyad are more surprising. The absorption and
fluorescence spectra are displayed on Figure 3 above. The absorption spectrum displays
nicely the heptazine ring absorption around 300 nm, followed by the intense Soret band of
the porphyrin, blue shifted by the influence of fluorine, and the Q-bands afterwards. The
excitation spectrum (Figure 4) is identical to the absorption spectrum, which indicates a
standard photophysical behavior of the partners (e.g., excimer formation), along with a
predominant energy transfer (in case of predominant electron transfer the porphyrin would
be weakly emissive).
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Figure 3. Absorption and fluorescence spectra of Dyad 1 in ethanol (See ESI for detailed exp.
conditions).
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Figure 4. Excitation spectrum of dyad 1 in DCM at 710 nm.

On the other hand, the emission spectrum displays almost only the porphyrin emission
at 720 nm, but with a lower quantum yield (QY) of 0.03. Comparison with the generic
tetrakis-pentafluorophenylporphyrin (2H-20F-TPP) shows an approximate 6% QY, while
the emission wavelength remains practically the same (700 vs. 720 nm) [24,25]. These
combined results show: (1) that the heptazine emission is totally quenched by transfer
processes, and (2) that the decreased emission QY demonstrates that energy transfer is
not the sole process since the very similar tris-(perfluorophenyl)-porphyrin alone displays
a twofold QY decrease. It is likely to suppose that a concurrent electron transfer (SET)
from the heptazine to the porphyrin occurs to some extent, and this is supported by the
comparison of the oxidation potentials of the porphyrin and the heptazine’s excited state.

Actually, promotion of electron vs. energy transfer in Dyad 1 is reasonable, since the
redox potential of 2H-20F-TPP has been measured of +1.52 V, very close to our measure-
ments on Dyad 1, of approx. +1.51 V (+1.25 V vs. Ag/AgCl ref. check ESI Figure S10),
the structural difference between the generic 2H-20F-TPP being minor. On the other hand,
the redox potential in the excited state EHp* of the substituted heptazine can be estimated
(through Rehm-Veller’s approach) of EHp* = −1.3 V + 3.85 V = + 2.55 V (1.3 V being the
measured reduction potential for the heptazine ring, and 3.85 nm estimated value of the
heptazine bandgap, taking the E0-0 at the onset of the spectra at 320 nm.) vs. SCE, which
comes to about 2.8 V vs. NHE (Assuming a 0.24 V difference between the SCE and the NHE).
This high value explains probably the strong competition between electron vs. energy transfer,
despite the fact that roughly half of the porphyrin ring fluorescence is retained. Another
clue of the fact that electron transfer occurs, but to a limited extent, is the comparison of
the emission spectra between two solvents of different polarities and dielectric constants,
dioxane and DCM (ESI Figures S13 and S14). The remaining heptazine fluorescence is
higher in DCM, as a probable consequence of a less efficient PET in this solvent.

For sake of comparison, we have in addition also prepared a molecule with exactly
the isoelectronic heptazine core (featuring one primary amine and two pyrazoles) the
1,2-bis(N-diethylpyrazolyl)-3-[aminomethl-(1-adamandanyl)]-heptazine (DDPAH) (See
Scheme S1 in ESI). We have chosen aminomethyladamantane as the amine, because of the
easier preparation and purification induced by the bulky adamantine, while having no
influence on the other hand on the electronic properties. This heptazine is electroactive
(Figure S14) and fluorescent in the blue-violine domain, as it could be expected (see
spectra in the ESI section, Figure S15). The fact that this heptazine with no porphyrin
is intrinsically fluorescent (as it could be expected from our initially reported results on
analogous compounds [12,23]) validates additionally the energy and charge transfer in the
dyad. The electrochemical response in reduction of DDPAH is as expected around −1.75 V,
at the same position than the last reduction peak of dyad 1.

3. Conclusions

We have been able to prepare for the first time a porphyrin-heptazine dyad and
analyze its spectroscopic and electrochemical properties. This example is in addition
the first example known to date of a bifunctional heptazine bearing photoactive and/or
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electroactive attached moieties. Our preliminary results indeed show that already oxidation
electron transfer is promoted between the substituted heptazine excited state and the 2H-
porphyrin. This should be enhanced in metalated porphyrins, the syntheses of which are
planned in a near future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27196698/s1, Figure S1: DDPAH 1H spectrum (500 MHz,
CDCl3); Figure S2: DDPAH 13C spectrum (125 MHz, CDCl3); Figure S3: 1H NMR Spectrum of
TPPF19NH(CH2)6NHBoc (500 MHz, CDCl3); Figure S4: 1H NMR Spectrum of TPPF19NH(CH2)6NH2
(500 MHz, CDCl3); Figure S5: 19F NMR Spectrum of TPPF19NH(CH2)6NH2 (471 MHz, CDCl3);
Figure S6: HRMS-ESI Spectrum of TPPF19NH(CH2)6NH2; Figure S7: 1H NMR Spectrum of Dyad
1 (500 MHz, CDCl3); Figure S8: 19F NMR Spectrum of Dyad 1 (471 MHz, CDCl3); Figure S9:
HRMS-ESI Spectrum of Dyad 1; Figure S10: CV of dyad 1 over the whole potential range, includ-
ing oxidation; Figure S11: CV in reduction of TPPF19NH(CH2)6NHBoc Ag/10-1M Ag+, checked
against ferrocene); Figure S12: CV in reduction of TPPF19NH(CH2)6NH2 Ag/10-1M Ag+, checked
against ferrocene); Figure S13: Fluorescence emission spectrum of dyad heptazine-porphyrin in DCM
(black) and dioxane (red), upon 300nm excitation.; Figure S14: CV of aminomethyl(1-adamantanyl)-
bis(diethylpyrazolyl)heptazine DDPAH; Figure S15: Absorption spectrum of DDPAH; Scheme S1:
Scheme and Synthesis of DDPAH.
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