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This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion
segmentations we have annotated on 402 computed tomography (CT) scans acquired from patients
with non-small cell lung cancer. The segmentation of these anatomic regions precedes fundamental
tasks in image analysis pipelines such as lung structure segmentation, lesion detection, and radiomics
feature extraction. Bilateral thoracic cavity volumes and pleural effusion volumes were manually seg-
mented on CT scans acquired from The Cancer Imaging Archive “NSCLC Radiomics” data collec-
tion. Four hundred and two thoracic segmentations were first generated automatically by a U-Net
based algorithm trained on chest CTs without cancer, manually corrected by a medical student to
include the complete thoracic cavity (normal, pathologic, and atelectatic lung parenchyma, lung
hilum, pleural effusion, fibrosis, nodules, tumor, and other anatomic anomalies), and revised by a
radiation oncologist or a radiologist. Seventy-eight pleural effusions were manually segmented by a
medical student and revised by a radiologist or radiation oncologist. Interobserver agreement between
the radiation oncologist and radiologist corrections was acceptable. All expert-vetted segmentations
are publicly available in NIfTI format through The Cancer Imaging Archive at https://doi.org/10.
7937/tcia.2020.6c7y-gq39. Tabular data detailing clinical and technical metadata linked to segmenta-
tion cases are also available. Thoracic cavity segmentations will be valuable for developing image
analysis pipelines on pathologic lungs — where current automated algorithms struggle most. In con-
junction with gross tumor volume segmentations already available from “NSCLC Radiomics,” pleu-
ral effusion segmentations may be valuable for investigating radiomics profile differences between
effusion and primary tumor or training algorithms to discriminate between them. © 2020 The
Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of
Physicists in Medicine. [https://doi.org/10.1002/mp.14424]
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1. INTRODUCTION

Automated or semi-automated algorithms aimed at analyzing
chest computed tomography (CT) scans typically require the
creation of a three-dimensional (3D) map of the volume-of-
interest (VOI) as the initial step.1,2 For example, a common
first step for lung tumor detection on CT scans is lung seg-
mentation.3 Effective strategies for identifying healthy lungs
have existed at least since Hu et al. introduced a method for
segmenting healthy lung parenchyma based on gray-level
thresholding.4 Nevertheless, identifying the initial VOI in
pathologic lungs remains an obstacle.5,6 Many pathologic
states — such as pleural effusion, severe fibrosis, or tumor—
can alter the space lung would normally occupy, and in this
circumstance the VOI is not only the lung but the thoracic
cavity. To build image processing pipelines intended to ana-
lyze chest CTs with substantively altered thoracic anatomy,
identifying this VOI is critical.

Preprocessing strategies to identify thoracic VOIs in the
presence of pathology have been described. In 2014, Mansoor
et al. presented a seminal approach that identified CTs with
large volumetric differences between autosegmented lung and
the thoracic cage and refined these lung segmentations using
texture-based features.7 Subsequent studies have approached
VOI identification in myriad ways, such as threshold-based
methodologies,8 deep learning architectures,9–13 anatomic or
shape-prior models,5,14–16 and region-growing methods.17,18

As methodologies to identify thoracic VOIs in pathologic
lungs march forward, data to train and vet them must keep
pace. Hofmanninger et al. cited a paucity of diverse data —
not inferior methodologies — as the principal obstacle in
pathologic lung segmentation.19 Echoing this point, Shaukat
et al. observed that automated lung nodule detection system
optimization is usually limited to just one dataset.20 Many
datasets consist exclusively of diseases typified by mild to
moderate anatomic change — for example, chronic obstruc-
tive pulmonary disorder or interstitial lung disease.10,11 How-
ever, disease processes commonly beset by lung
consolidations, effusions, masses, and other opacities that
dramatically alter the thoracic VOI are radiographically dis-
tinct.

We present PleThora, a dataset of pleural effusion and left
and right thoracic cavity segmentations delineated on 402
CT scans from The Cancer Imaging Archive21 (TCIA)
NSCLC-Radiomics collection.22,23 Many of these cases have
dramatic anatomic changes secondary to cancer. Thoracic
segmentations include lung parenchyma, primary tumor,
atelectasis, adhesions, effusion, and other anatomic variations
when present. On scans where effusion is present, separate
segmentations labeling pleural effusion alone are also pro-
vided. These may serve particular use for correlating effusion
radiomics features with clinical data (available in the
NSCLC-Radiomics spreadsheet, “Radiomics Lung1.clinical-
version3-Oct 2019.csv”) or studying how these features differ
between effusion and primary tumor. Thoracic segmentations
were generated automatically by a U-Net based deep learning
algorithm trained on lungs without cancer, manually

corrected by a medical student, and revised by a radiation
oncologist or a radiologist. Pleural effusion segmentations
were manually delineated by a medical student and revised
by a radiologist. Expert gross tumor volume (GTV) segmen-
tations already provided by the NSCLC-Radiomics collection
informed our segmentations and made possible delineation of
pleural effusion volumes that excluded GTV.

2. ACQUISITION AND VALIDATION METHODS

2.A. Segmentation acquisition

Four hundred twenty-two Digital Imaging and Communi-
cations in Medicine (DICOM) chest CT datasets and 318 cor-
responding “RTSTRUCT” DICOM segmentations (featuring
GTVs) were downloaded from the TCIA NSCLC-Radiomics
collection in January 2019. Four hundred and two CT scans
were successfully converted from DICOM to Neuroimaging
Informatics Technology Initiative (NIfTI) format using a free
executable called “dcm2niix”.24,25 These 402 scans comprise
the dataset upon which our thoracic cavity and pleural effu-
sion segmentations were delineated.

2.A.1. Thoracic cavity segmentation acquisition

After converting each CT dataset to NIfTI format, lungs
were automatically segmented by a publicly available 3D U-
Net lung segmentation algorithm26 that had been trained on a
private dataset of approximately 200 chest CTs acquired from
patients without cancer. Lung segmented reasonably well in
subjects with minimal anatomic variation due to disease, but
poorly in subjects with significant disease. A fourth-year
medical student manually expanded each segmentation to
include the thoracic cavity volume normally occupied by
healthy lung. Among other anatomic anomalies, the expan-
sion included normal, pathologic, and atelectatic lung par-
enchyma, pleural effusion, fibrosis, nodules, tumor, and
compensatory anatomic variants such as enlarged collateral
vessels. It also included major hilar vessels and bronchi that
are not always segmented as part of the lung but are a fre-
quent site of pathologic change. Importantly, effort was made
to include all primary tumors in the segmentation even if this
invaded the mediastinum or extended out of the thoracic
cage. “RTSTRUCT” GTV segmentations from the NSCLC-
Radiomics collection assisted in this determination. Nodal
disease in the mediastinum was not targeted. Each hemitho-
rax, right and left, was segmented as a separate structure but
saved under the same segmentation file.

The medical student’s segmentations passed to at least one
physician reviewer — either a radiologist or a radiation
oncologist — to be vetted. As necessary, reviewers expanded
or contracted the segmentations to include the target thoracic
volumes. The most recent “RTSTRUCT” GTV segmenta-
tions (which were updated by the NSCLC-Radiomics dataset
authors in October 2019) were available to reviewers for refer-
ence as necessary. The thoracic cavity segmentations we
make public are vetted segmentations. The thoracic cavity
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FIG. 1. Thoracic cavity volumes were segmented automatically then iteratively corrected by a medical student and at least one radiologist or radiation oncologist
to include the entire hemithoraces. [Color figure can be viewed at wileyonlinelibrary.com]
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segmentation workflow is illustrated in Fig. 1 with examples
of various lesions that were included in the delineations.

2.A.2. Pleural effusion segmentation acquisition

A fourth-year medical student identified a subset of 78 CT
scans with trace to massive pleural effusions. The medical
student segmented effusions de novo rather than from an
autosegmented prior (unlike the thoracic cavity segmenta-
tions). Spaces where primary tumor overlapped with effusion
were excluded from the segmentation, and NSCLC-Radio-
mics GTV segmentations determined the effusion segmenta-
tion extent (exemplified in Fig. 2). In most subjects, an
effusion in a single hemithorax was segmented. However,

effusions were bilateral in 19 subjects, and in this circum-
stance both sides were segmented and saved under a single
structure label.

The medical student’s pleural effusion segmentations were
vetted by at least two physicians and corrected as necessary.
Like the thoracic cavity segmentations, the pleural effusion
segmentations we make public are vetted by physicians. The
pleural effusion segmentation workflow is illustrated in Fig. 2.

2.B. Computational tools

Manual segmentations were delineated using ITK-SNAP
v.3.6.27 ITK-SNAP provides tools for manual or semi-auto-
mated segmentation delineation including segmentation

GTV segmenta�ons
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Medical Student

inform

Pleural Effusion Segmenta�ons

3D visualiza�on
Med Stud Seg

LUNG1-156 LUNG1-156

LUNG1-156LUNG1-156

CT Scans with Pleural Effusion (manually 
iden�fied; n = 78)

Manual Correc�on by 
Radiologist

LUNG1-156

3D visualiza�on
Rad Seg

LUNG1-156

FIG. 2. Pleural effusion segmentations, excluding gross tumor volume, were delineated by a medical student and subsequently corrected by at least two radiolo-
gists. [Color figure can be viewed at wileyonlinelibrary.com]
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interpolation, 3D segmentation visualization and manipula-
tion, and image contrast adjustment permitting mediastinal
and lung window visualization. However, ITK-SNAP does
not support structure sets in DICOM-RT format and could
not open “RTSTRUCT” files to view GTV segmentations.
Therefore, we used a free DICOM-RT viewer called Dicom-
pyler28 to reference GTV structures while segmenting.

Several additional computational tools transformed CT
scans from DICOM to NIfTI format, autosegmented initial
thoracic volumes, analyzed segmentations, and organized
and visualized metadata. As previously noted, an executable
named “dcm2niix”24 converted CTs from DICOM to NIfTI
format and a 3D U-Net26 automatically generated bilateral
lung segmentations. All data were prepared using custom
Python scripts leveraging common scientific libraries:
NumPy v.1.16.2,29 Nilearn v.0.5.0,30 Pandas v.0.23.4,31 Sur-
face_distance v.0.1,32 Scikit-learn v.0.20.3,33 Matplotlib
v.3.0.1,34 and Seaborn v.0.9.0.35

2.C. Segmentation quality assessment

To assess the quality of segmentations with respect to inter-
observer variability, volumetric (i.e., traditional) Dice similar-
ity coefficients36 (DSC), Cohen’s kappa coefficients,37 surface
Dice similarity coefficients32 (sDSC), 95th percentile Haus-
dorff distances38 (95HD), and symmetric average surface dis-
tances (ASD) were computed between expert reviewer
segmentations. These metrics are discussed in the following
subsections, and lung segmentation interobserver variability
reference values are given where possible. Although method-
ologies to automate CT pleural effusion segmentation39–42 or
decrease qualitative size estimation variability43 have been
described, we found only one limited report of pleural effusion
segmentation interobserver variability39 against which we can
compare our results (despite extensive PubMed searches).

2.C.1. Volumetric Dice similarity coefficient

The DSC measures interobserver agreement and ranges
from 0 to 1, where 0 indicates no agreement and 1 indicates
perfect agreement. In the context of image segmentation, the
DSC relates the overlap between two segmentations to their
total volumes; mathematically, this is twice the shared volume
divided by the sum of their total volumes. No consensus dic-
tates what constitutes a “good” DSC because the DSC is sensi-
tive to the volume of the target structure. The American
Association of Physicists in Medicine (AAPM) Task Group
132 notes that the contouring uncertainty of a structure
can be expected to be a DSC of 0.8–0.9, while cautioning
that “very large or very small structures may have different
expected DSC values for contour uncertainty.”44 For
lung segmentation, DSC interobserver variability between
three medical physicist organizers of the 2017 AAPM Thoracic
Auto-Segmentation Challenge was reported as 0.956 � 0.019
and 0.955 � 0.019 for the left and right lungs, respectively.45

For pleural effusion segmentation, Yao et al.39 reported mean
DSC observer variability between a research fellow, the same

fellow months later, and an image processing technologist to
be about 0.73. Comparisons against this reference value should
be made cautiously because it was calculated for only 12 CT
scans with unspecified pleural effusion volumes.

2.C.2. Cohen’s Kappa coefficient

The Cohen’s kappa (κ) coefficient measures interobserver
reliability for qualitative observations with mutually exclusive
classifications. We computed κ between expert reviewer seg-
mentations by treating each voxel as a qualitative datum. We
transformed the segmentations to numerical arrays where
each array value assumed one of two binary values depending
on whether the reviewer included the voxel as part of the tar-
get structure. κ is similar to the DSC in its computation of
interobserver agreement, but also assesses a likelihood of
chance agreement and penalizes accordingly. Like the DSC,
κ generally ranges between 0 and 1, although a result < 0 is
possible. Results >0.6 are generally considered good and
greater than 0.8 are considered very good,46 although like the
DSC, κ inflates and deflates artificially depending on the tar-
get’s volume.

2.C.3. Surface Dice similarity coefficient

Recognizing the limitations of the traditional DSC with
respect to volume, Nikolov et al.32 introduced a novel way to
compute Dice’s coefficient called the surface DSC. As its
name suggests, the sDSC’s inputs are segmentation surfaces
rather than volumes. A primary advantage of the sDSC over
the traditional DSC is increased robustness to segmentation
size variation. The sDSC is not agnostic to size, but it inflates
less dramatically with size than the volumetric DSC. The
sDSC computation accepts a tolerance parameter whereby
differences between two surfaces can be tolerated as the same
surface. We set this parameter equal to zero in order to cap-
ture all differences between physician segmentations.
Because the sDSC is novel, reference values for this metric
are not yet widely reported. However, Vaassen et al.47 calcu-
lated the sDSC between automatically generated and radio-
therapist-corrected lung segmentations and reported the
majority of values to be greater than 0.85. Reasoning that
inter-physician agreement ought to be at least as good as
autosegmentation-radiotherapist agreement, we suggest 0.85
as an acceptable mean reference value for thoracic cavity seg-
mentations.

2.C.4. Hausdorff distance

In contrast to the DSC, κ, and sDSC, which measure frac-
tional overlap between segmentations, HDs are geometric dis-
tances between segmentation surfaces. Larger HDs signify
worse interobserver agreement. Computing a HD requires
determining the minimum distances from every point on the
surface of segmentation A to every point on the surface of
segmentation B, and the same from B to A, and arranging
them in ascending order. We report the 95HD, which is the
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value at the 95th percentile of the ordered minimum dis-
tances. 95HD interobserver variability reported by the
AAPM Thoracic Auto-Segmentation Challenge was
5.17 � 2.73 and 6.71 � 3.91 for left and right lung segmen-
tations, respectively.45

2.C.5. Average surface distance

The directed ASD from segmentation A to segmentation
B is the average of the minimum distances from every point
in the surface of A to every point in the surface of B. The
directed ASD from B to A is calculated similarly. We report a
symmetric ASD value that averages the two directed ASDs.
Symmetric ASD interobserver variability reported by the
AAPM Thoracic Auto-Segmentation Challenge was

1.51 � 0.67 and 1.87 � 0.87 for left and right lung segmen-
tations, respectively.45

2.C.6. Expert reviewers

Expert reviewers consisted of four radiologists and three
radiation oncologists with varying years of experience (Table
I). All thoracic cavity segmentations were reviewed by at least
one expert, and randomly selected, unique subsets were
reviewed by two. All pleural effusion segmentations were
reviewed by at least two experts and a subset was reviewed by
three. Relationships between reviewers are illustrated in
Fig. 3. Median and minimum values for each spatial similar-
ity metric for each reviewer pair are given in Table II. Pair-
wise Mann-Whitney U tests48 conducted between reviewer
pair distributions suggest that they are significantly different
from one another for all metrics (P < 0.001). The following
paragraphs discuss how interobserver variability in our study
compares with variability described in other studies.

In general, thoracic cavity segmentation pairs enjoyed a
good level of agreement. Gauged by DSC, 95HD, and sym-
metric ASD spatial similarity metrics, thoracic cavity seg-
mentation interobserver variability was similar to reported
interobserver variability for lung segmentation45 and similar
to values achieved by state-of-the-art deep learning architec-
tures trained for lung autosegmentation.19 Spatial similarity
metrics improved with each iteration of corrections. For
example, DSC values calculated between initial automated
segmentations and substantially corrected medical student
segmentations were relatively low (DSCmin = 0.353,

TABLE I. Seven radiologists (Rad) and radiation oncologists (RO) collabo-
rated to review and correct 402 thoracic cavity segmentations and 78 pleural
effusion segmentations delineated by a fourth-year medical student.

Expert reviewer Years of experience

Rad1 4

Rad2 2

Rad3 1

Rad4 3

RO1 4

RO2 11

RO3 5

Rad1

RO3

RO1

Rad2

RO2

Rad3 Rad4

n = 21

Thorax Observers

Effusion Observers

n = 22

n = 15 n = 15

n = 22

n = 78

n = 21

FIG. 3. A schematic of interobserver comparisons, with the number of segmentation cases shared between observer pairs given as n. All 78 pleural effusion seg-
mentations were reviewed and as necessary corrected by two radiologists: Rad3 and Rad4. A subset of 15 pleural effusion segmentations were also reviewed and
corrected by RO1. In contrast, not all 402 thoracic cavity segmentations were reviewed by two physicians. Rather, four subsets of 21 or 22 thoracic cavity segmen-
tations were randomly selected for dual review. All members of a given subset were exclusive to that subset. [Color figure can be viewed at wileyonlinelibrary.c
om]
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DSCmed = 0.958, IQR = 0.041). In contrast, the DSC was
never <0.9 between any pair of physician-corrected contours,
and the median DSC for each interobserver distribution
approximated 0.99 (Fig. 4).

Pleural effusion segmentation interobserver agreement
was also consistent, although the distributions of conformal-
ity metrics and surface distance metrics generally suggest
lower agreement than for thoracic cavity segmentations.
Medians DSCs (Fig. 5) compare favorably with Yao et al.’s39

mean DSC interobserver variability estimate of 0.73, but we
again note that the sample in this study was small and the
pleural effusion volumes unspecified. Knowing the pleural
effusion volume distribution matters because wide variation

in conformality spatial similarity metrics can be partly
explained by the spread of pleural effusion volumes. Surface
distance metrics can also be influenced by pleural effusion
spatial spread (i.e., large distances separating effusion pockets).
In a preprint analytic study that uses PleThora,49 we deter-
mined the median right and left pleural effusion volumes to be
respectively 58.57 cm3 (IQR 30.31–113.7 cm3) and 50.85 cm3

(IQR 25.01–142.5 cm3). These are an order of magnitude
smaller than the mean pleural effusion volumes described in
some pleural effusion autosegmentation methodologic stud-
ies,40 which highlights the unique character of this dataset.

Notwithstanding that interobserver agreement was gener-
ally very good, a few segmentation cases demonstrated

TABLE II. Median and minimum values for Dice similarity coefficient (DSC), surface DSC, κ, 95HD, and symmetric ASD spatial similarity metrics calculated
between paired physician segmentations. The distributions for each observer pair are significantly different from one another for all metrics (paired Mann-Whit-
ney U test48 P < 0.001). However, interobserver variability between pairs of physician-vetted segmentations is generally acceptable. Median DSC, 95HD and
symmetric ASD values for thoracic cavity segmentations are comparable to mean interobserver variability values reported by the 2017 AAPM Thoracic Auto-
Segmentation Challenge for lung segmentations.45 In general, pleural effusion segmentation interobserver agreement is also acceptable but more variable, reflect-
ing both variation in pleural effusion size and inclusion or exclusion of trace pleural fluid.

Metric

Pleural effusions Thoracic cavities

RO1-Rad3 RO1-Rad4 Rad3-Rad4 RO1-RO3 Rad1-RO3 Rad1-Rad2 RO2-Rad2

Conformality metrics (unitless)

DSC Med 0.81 0.85 0.93 0.99 1.00 1.00 1.00

Min 0.10a 0.26 0.20 0.96 0.91a 0.99 0.97

sDSC Med 0.62 0.77 0.87 0.94 0.98 0.98 1.00

Min 0.20a 0.32 0.21 0.73a 0.82 0.94 0.88

Kappa Med 0.81 0.85 0.93 0.99 0.99 0.99 0.99

Min 0.10a 0.26 0.20 0.96 0.90a 0.99 0.97

Surface distance metrics (mm)

95HD Med 24.00 21.65 5.31 1.95 0.00 0.00 0.00

Max 127.83 127.80 161.48a 11.35 55.11a 0.98 24.82

ASD Med 1.82 2.45 0.79 0.25 0.05 0.03 0.00

Max 23.53 22.39 33.49a 1.01 5.78a 0.12 1.68

aSelect cases with extreme spatial similarity metric values are explored visually in Fig. 6.

FIG. 4. Dice similarity coefficient distributions reveal consistently strong
agreement (>0.98) between paired, independently vetted radiologist and radi-
ation oncologist thoracic cavity segmentations. Colored curves are kernel
density estimates of DSC distributions. Note that Figs. 4 and 5 do not share
the same x axis limits; the difference in DSC distributions in Figs. 4 and 5 is
at least partially an artifact of the difference in average volume between tho-
races and effusions. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 5. Dice similarity coefficient (DSC) distributions indicate good agree-
ment (>0.8) between most paired, independently vetted radiologist and radia-
tion oncologist pleural effusion segmentations. Interpretation of this result
should respect that DSC values calculated on trace pleural effusions are sen-
sitive to variation between segmentations on the order of only a few voxels.
As in Fig. 4, colored curves are kernel density estimations of DSC distribu-
tions. [Color figure can be viewed at wileyonlinelibrary.com]
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markedly poorer agreement than others (Fig. 6). RO1 and
Rad3’s pleural effusion segmentations for case LUNG1-005
yielded the worst DSC and κ values of any interobserver
comparison. Visual inspection reveals a large posterior den-
sity that RO1 classified as pleural effusion but Rad3 excluded
as an atelectatic lung segment. In this case, Rad4’s segmenta-
tion arbitrates that the density is not effusion. The segmenta-
tion we made publicly available through TCIA in our first
version of the dataset was only Rad4’s segmentation, but all
reviewer segmentations were made available in the second
version. Rad3 and Rad4’s pleural effusion segmentations for
case LUNG1-253 suffered the highest 95HD value of any
interobserver comparison. Here, 2D and 3D visual inspection
reveals substantial disagreement respecting the superior-infe-
rior and lateral extents of a thin layer of pleural fluid. We did
not prospectively define guidelines for whether trace pleural
fluid should or should not be segmented, which in hindsight
we acknowledge is a limitation of our pleural effusion seg-
mentation methodology. By contrast, the worst discrepancies
between thoracic cavity segmentations are easily resolved by
our segmentation guidelines. Thoracic cavity segmentations
for LUNG1-026 suffered the worst sDSC interobserver vari-
ability, which can be attributed to the secondary physician
reviewer’s erroneous neglect of the full extent of tumor, left
hilum, and right pleural effusion. Similarly, the secondary
reviewer erroneously excluded a left collapsed lung for case
LUNG1-354, which was the thoracic cavity segmentation
case with the worst DSC, κ, 95HD, and symmetric ASD. The
thoracic cavity segmentations we made publicly available for
these cases in the first version of the dataset were the primary
reviewer’s segmentations, but all reviewers’ segmentations
were made available in the second version (after correcting
the aforementioned errors).

2.D. NSCLC-radiomics collection update

The NSCLC-Radiomics collection was updated on 10/23/
2019, featuring new “RTSTRUCT” segmentations for all 422
cases, including revised GTVs in some cases. Our thoracic
cavity segmentations were reviewed by radiologists or radia-
tion oncologists who had access to “RTSTRUCT” files from
the latest collection update. However, these segmentations
were first delineated by a medical student at a time when only
earlier versions of the “RTSTRUCT” files were available. In
contrast, pleural effusion segmentations were all delineated
with input from the latest “RTSTRUCT” files.

3. DATA FORMAT AND USAGE NOTES

3.A. Data and metadata repository

In keeping with findable, accessible, interoperable, re-us-
able (FAIR) data usage principles,50 all PleThora thoracic
cavity and pleural effusion segmentations have been made
available on TCIA at https://doi.org/10.7937/tcia.2020.6c7y-
gq39.51 Thoracic cavity segmentations are in a compressed
NIfTI format, are named for their respective case and

reviewer (e.g., “LUNG1-001_thor_cav_primary_re-
viewer.nii.gz”), and are indexed in folders labeled after their
respective NSCLC-Radiomics collection cases (e.g.,
“LUNG1-001”). Pleural effusion segmentations are likewise
saved in a compressed NIfTI format and named for their
respective case and reviewer (e.g., “LUNG1-001_effusion_-
first_reviewer.nii.gz”). Many thoracic cavity and all pleural
effusion segmentations were reviewed by two or more
experts. In this dataset’s original TCIA publication, only pri-
mary reviewer segmentations were made available. However,
all reviewers’ segmentations — primary, secondary, and ter-
tiary — were made available in a recent dataset update (ver-
sion 2). A spreadsheet entitled “Thorax and Pleural Effusion
Segmentation Metadata” contains clinical and technical meta-
data pertaining to each segmentation or CT scan. It is hosted
in the same repository as the segmentations. We strongly rec-
ommend users merge it with the NSCLC-Radiomics spread-
sheet “Radiomics Lung1.clinical-version3-Oct 2019.csv,”
which provides ten columns of clinical data tied to each case.
We provide Appendix 1 as a data dictionary to clarify the
meaning of our spreadsheet’s column names.

3.B. Baseline for deep learning model performance

To provide a performance baseline for researchers inter-
ested in using our thoracic cavity segmentations for deep
learning model development, we trained and tested two U-
Net models, one based on 2D convolutional layers and one
based on 3D convolutional layers. U-Nets are common Con-
volutional Deep Neural Network architectures and form the
basis of many deep learning algorithms for medical image
segmentation.52–56

CT scans were preprocessed as follows: voxel intensities
were clipped to a range of [−250, 0] Hounsfield units by
reassigning voxels less than −250 to −250 and greater than 0
to 0, voxels were isotropically resampled to 1.7 mm in each
dimension, and scans were cropped from the image center to
256 by 256 by 128 voxels. Segmentations were likewise
resampled and cropped.

The models were trained using 316 of the 402 primary
reviewer segmentations and tested with 86 secondary
reviewer segmentations. The latter served as a test dataset
because secondary and primary reviews were conducted
independently. Nevertheless, because secondary and primary
reviewers corrected the same template segmentation, we felt
that corrected segmentations were likely to inherit similari-
ties from the template that would bias the test dataset toward
the training dataset. Therefore, we chose to exclude the 86
primary reviewer segmentations that corresponded to cases
with a secondary reviewer from the training data. The model
was initially trained end-to-end by fivefold cross validation.
This permitted fine-tuning of the hyperparameters (e.g.,
epochs, learning rate, batch size) without overfitting the
external training set. The whole dataset split and secondary
reviewer segmentations were recently made available
through TCIA in an update (version 2) of the original
dataset.
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To build the 3D U-Net model we used the architecture
described by Çiçek et al.53 For each epoch the train/validation
split was 80% train (252 scans) and 20% validation (64

scans). The batch size was 1 scan, the DSC was used to eval-
uate loss, and the learning rate was set initially to 0.001 and
adapted by the Adam optimization algorithm.57 The DSC

RO1
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Rad 4 
(Arbitrator)

RO1

RO3

LUNG1-005 (RO1-Rad3) LUNG1-026 (RO1-RO3)

Rad3

Rad4 RO3

Rad1

LUNG1-253 (Rad3-Rad4) LUNG1-354 (Rad1-RO3)
3D

3D

3D

3D

Gross tumor 
volume

Pleural Effusions Thoracic Cavi�es

FIG. 6. A visual exploration of physician-corrected segmentation pairs with the least interobserver agreement. Case LUNG1-005 accounts for the worst Dice sim-
ilarity coefficient (DSC), surface DSC, and κ values between any pair of pleural effusion segmentations. RO1 mistook atelectatic lung for effusion, but Rad3 and
Rad4 did not. Case LUNG1-253 accounts for the worst 95HD and symmetric ASD values between any pair of pleural effusion segmentations. Rad3 and Rad4
varied in how much trace pleural fluid they chose to segment. This exposes a weakness in our pleural effusion segmentation methodology because we did not
decide at projection initiation whether or to what extent trace pleural fluid should be part of the segmentation. Case LUNG1-026 accounts for the worst sDSC
value between any pair of thoracic cavity segmentations. RO3 failed to segment the full extent of peri-mediastinal primary gross tumor volume, right effusion,
and left hilum (orange arrows). Case LUNG1-354 accounts for the worst DSC, κ, 95HD, and symmetric ASD values between any pair of thoracic cavity segmen-
tations. RO3 erroneously excluded a collapsed left lung. [Color figure can be viewed at wileyonlinelibrary.com]
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plateaued at 100 epochs. The mean DSC performance on the
test dataset was 0.95 (standard deviation � 0.05) and 0.95
(�0.04) for the left and right lungs, respectively. For refer-
ence, the DSC between the primary and secondary reviewer
segmentations was 0.98 (� 0.11) and 0.98 (� 0.11) for the
left and right lungs, respectively.

To build the 2D U-Net model we used the same architec-
ture as the 3D U-Net but changed all 3D convolution and
deconvolution operations to 2D operations. In this case, the
algorithm was trained on 2D axial slices (i.e., 256 by 256
voxels) rather than whole volumes. Like the 3D model, the
2D U-Net train/validation split was 80% train (32 256 slices)
and 20% validation (8192 slices). The DSC plateaued at 60
epochs. The batch size was 64 slices, the DSC was used to
evaluate loss, and the learning rate was set initially to 0.001
and adapted by the Adam optimization algorithm.57 The
mean DSC performance on the test dataset was 0.94 (� 0.10)
and 0.94 (� 0.10) for the left and right lungs, respectively.

4. DISCUSSION

To our knowledge, PleThora is the first public dataset of
VOIs curated to capture all thoracic cavity pathologic change
in patients with lung cancer, and the first public dataset of
pleural effusion segmentations. The thoracic cavity segmen-
tations are likely to be valuable to scientists and engineers
who develop chest CT image processing pipelines that
require robust methods to identify thoracic VOIs. We antici-
pate these segmentations to be a particularly useful addition
to the corpus of training data for image processing pipelines,
including the ones leveraging deep learning algorithms.
Indeed, this project began as an effort to provide VOIs to
study image feature symmetry between left and right thorax
anatomy as a clinical outcomes predictor, building on previ-
ous work from our group that localized stroke cores by com-
paring and contrasting brain hemisphere information
extracted by “symmetry-sensitive convolutional neural net-
works.”58

Our pleural effusion segmentations are likely to be useful
for investigating two questions surrounding a CT or PET/CT
finding of pleural effusion: (a) the prognostic significance of
pleural effusion in various cancer types,59 and (b) the capac-
ity of CT to discriminate between benign and malignant effu-
sions.60–63 Regarding the first question, Ryu et al.59 showed
that in small cell lung cancer with stage I–III disease, the
presence of even minimal pleural effusion confers an
increased risk of death. Investigating the prognostic relation-
ship of pleural effusion presence in other cancer types would
presumably be facilitated by deep learning pleural effusion
segmentation algorithms, such as might be trained with data-
sets like ours. Regarding the second question, some CT find-
ings (nodular, mediastinal, parietal, and circumferential
pleural thickening) are classically considered to be reasonably
specific but poorly sensitive discriminators of malignant effu-
sion.64 Perhaps investigations into the value of pleural effu-
sion quantitative imaging biomarkers for accomplishing this
task could be fruitful. For example, Yang et al.65 reported that

radiomics features extracted from lungs and pleura contained
information capable of discriminating between patients with
and without NSCLC dry pleural dissemination (AUC: 0.93;
95% CI: 0.891–0.968), which is a contraindication to primary
tumor surgical resection that cannot always be detected by
gross visualization. Our pleural effusion segmentations could
enable other quantitative imaging biomarker studies. Impor-
tantly, our pleural effusion segmentations exclude primary
tumor, as outlined in “RTSTRUCT” files, but users should
not mistake this to mean that the effusions are necessarily
benign. Microscopic tumor and macroscopic tumor below
the threshold of radiologic detection are likely to exist in the
effusions as delineated. It is also important to note that we
failed to establish a guiding threshold for inclusion or exclu-
sion of trace pleural fluid, an inconsistency that is reflected
in several spatial similarity metrics we used to gauge interob-
server variability. This stated, the effusion segmentations are
still likely to be useful and may serve such research initiatives
as correlating effusion parameters with clinical data available
at the NSCLC-Radiomics “Radiomics Lung1.clinical-ver-
sion3-Oct 2019.csv” spreadsheet or investigating differences
in radiomics features between effusion and primary tumor.

We acknowledge the limiting inconsistencies of human-
delineated segmentations, even those from trained radiolo-
gists or radiation oncologists. We also acknowledge intrinsic
limitations in the metrics themselves. The DSC and κ are
both artificially increased in large volumes, and the power of
κ to penalize chance agreement is artificially decreased by
the high number of true negatives in our segmentations (i.e.,
the high number of voxels that neither reviewer segmented as
part of the target). We attempted to buffer this limitation by
calculating and comparing sDSC values, which are less sensi-
tive to variation in size. The 95 HD and symmetric ASD are
not inflated by volume but are only snapshots of segmenta-
tions at their average (ASD) and near their worst (95HD) dif-
ferences. Notwithstanding these limitations, we consider that
the measures of interobserver variability obtained between
radiologist and radiation oncologist reviewers justify accept-
ability of these segmentations for public use.

5. CONCLUSIONS

We describe PleThora, a dataset of 402 expert-vetted tho-
racic cavity segmentations, 78 expert-vetted pleural effusion
segmentations, and corresponding clinical and technical
metadata made available to the public through TCIA at
https://doi.org/10.7937/tcia.2020.6c7y-gq39.51 These seg-
mentations have value for preprocessing steps in image analy-
sis pipelines built for fundamental quantitative imaging tasks,
including but not limited to pathologic lung segmentation,
lesion detection, and radiomics feature extraction.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Appendix S1. Data dictionary to the “Thorax and Pleural
Effusion Segmentation Metadata” spreadsheet.
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	 1.INTRODUCTIONAuto�mated or semi-au�to�mated algo�rithms aimed at ana�lyz�ing chest com�puted tomog�ra�phy (CT) scans typ�i�cally require the cre�ation of a three-di�men�sional (3D) map of the vol�ume-of-in�ter�est (VOI) as the ini�tial step. For exam...

