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A B S T R A C T   

Background: and Purpose: Hemorrhagic transformation (HT) is one of the severe complications in 
acute ischemic stroke, especially for the patients who undergo recanalization treatment. It is 
crucial to screen patients who have high risk of HT before recanalization. However, current 
prediction models based on clinical factors are not ideal for clinical practice. Serum occludin, a 
biomarker for cerebral ischemia-induced blood-brain barrier disruption, has potential for pre-
dicting HT. This study was to investigate whether the combination of serum occludin and clinical 
risk factors improved the efficacy of predicting HT. 
Methods: This was a single-center prospective observational study. Baseline clinical data and 
blood samples of recanalization patients were collected upon admission to our hospital. The level 
of serum occludin was measured using enzyme-linked immunosorbent assay. The diagnosis of HT 
was confirmed by CT scans within 36 h post recanalization. 
Results: A total of 324 patients with recanalization were enrolled and 68 patients presented HT 
occurrence. HT patients had the higher level of baseline occludin than patients without HT (p <
0.001). Multivariate regression analysis showed that serum occludin level, Alberta Stroke Pro-
gram Early CT Scores and endovascular therapy were independent risk factors (p < 0.05) for HT 
after adjusting potential confounders. The combination of serum occludin and clinical risk factors 
significantly improved the accuracy of predicting HT [area under the curve (AUC, 0.821 vs 0.701, 
p < 0.001), and net reclassification improvement (31.1 %), integrated discrimination improve-
ment (21.5 %), p < 0.001] compared to a model employing only clinical risk factors. The modified 
AUC (0.806) of combined model based on 10-fold-cross-validation was still higher than clinical 
risk model (0.701). 
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Conclusion: The combination of serum occludin and clinical risk factors significantly improved the 
prediction efficacy for HT, providing a novel potential prediction model to screen for patients 
with high risk of HT before recanalization in acute ischemic stroke.   

1. Introduction 

Stroke is reported to be the second leading causes of mortality in the world, and ischemic stroke accounts for 62.4 % of all incident 
strokes in 2019 [1]. HT characterized by secondary bleeding in the infarction region is the most dangerous complication in ischemic 
stroke patients, leading to rapid neurological deterioration at the early phase of stroke [2,3]. 

Recanalization treatments have been widely applied to ischemic stroke in clinic, including intravenous thrombolysis and endo-
vascular therapy. However, studies have shown that recanalization treatment significantly increased the occurrence of HT compli-
cations (1.4-fold in intravenous thrombolysis and 6.6-fold in endovascular therapy, compared to non-recanalization treatment), 
mainly due to restored blood leaking across the damaged vessels during ischemia [4–7]. Therefore, it is crucial to screen for patients 
who have high risk of HT before recanalization application. Unfortunately, no ideal method or model has been developed for pre-
dicting HT in the clinic at present. Studies have shown that some clinical factors are associated with HT, such as older age, high 
National Institute of Health Stroke Scale (NIHSS) scores, massive cerebral infarction, low Alberta Stroke Program Early CT Scores 
(ASPECTS), cardiac cerebral embolism, therapy methods, and other factors [8,9]. The prediction models based on these clinical factors 
alone are not ideal for clinical practice [10–13], mainly due to the lack of meaningful objective indicators. 

Blood-brain barrier (BBB) is a physical barrier that existing blood and cerebrospinal fluid, and is composed of endothelial cells, 
tight junction protein, pericyte, astrocyte end-foot and basal lamina [14]. Studies have shown that disruption of the BBB is crucial for 
the generation and development of HT [15,16]. Occludin, a tight junction protein involved in maintaining BBB integrity, was reported 
to degrade into fragments and enter into circulation in response to cerebral ischemia [17]. Our previous studies indicated that the 
concentration of occludin in blood was correlated with the extent of BBB permeability in cerebral ischemic animals and was greatly 
elevated in cerebral ischemic patients [18], suggesting that occludin may be a potential biomarker to predict HT complication in 
cerebral ischemic patients. 

In the present study, we performed a prospective observational study to investigate whether the combination of serum occludin and 
clinical risk factors improved the efficacy for predicting HT after recanalization. 

Fig. 1. The flow chart of patients screening. According to the inclusion criterion, a total of 394 acute ischemic stroke patients were screened. Based 
on clinical and imaging of exclusion criteria, 324 patients were finally included in the study after excluding 70 cases. 
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2. Methods 

2.1. Study design and case enrollment 

This single-center prospective cross-sectional study was conducted between February 2021 and December 2021. Consecutive 
patients were enrolled at the emergency department of Xuanwu Hospital, Capital Medical University. 

Inclusion criteria: 1) acute ischemic stroke patient, 2) age >18 years, 3) time from stroke onset to hospitalization <24 h, 4) received 
recanalization therapy including intravenous thrombolysis, endovascular therapy or bridging therapy, 5) cranial CT scan and blood 
sample collection were completed within 30 min of admission, 6) cranial CT or MRI examination was reviewed within 36 h after 
recanalization therapy. 

Exclusion criteria: 1) intracranial tumor, 2) severe cardiac, liver or kidney dysfunction, coagulation dysfunction, hemorrhagic 
disease, malignant tumors or pregnancy, 3) intracranial artery dissection or vasculitis, 4) patient suspected of having an immune 
system condition or being treated for such a condition, 5) started thrombolysis before arriving at Xuanwu Hospital, 6) blood sample 
showed hemolysis or turbidity, 7) informed consent was not obtained, 8) data case was incomplete, and 9) no cerebral infarction 
observed in diffusion-weighted imaging sequence (negative for cerebral infarction). 

Finally, a total of 324 patients were recruited from 394 cases and completed this study (Fig. 1). 

Table 1 
The comparison of baseline characteristics between HT and Non-HT groups in acute ischemic stroke with recanalization treatment.  

Variables Total patients (n = 324) Non-HT (n = 256) HT (n = 68) p value 
Demographic Data 

Male, n (%) 245 (75.6 %) 193 (75.4 %) 52 (76.5 %) 0.854 
Age (years), mean ± SD 63.85 ± 12.57 63.41 ± 12.39 65.51 ± 13.18 0.219 

Medical history, n (%) 
Hypertension 210 (64.8 %) 164 (64.1 %) 46 (67.6 %) 0.582 
Diabetes 89 (27.5 %) 72 28.1 %) 17 (25.0 %) 0.608 
Coronary heart disease 50 (15.4 %) 34 (13.3 %) 16 (23.5 %) 0.038 
Hyperlipemia 81(25.0 %) 64 (25.0 %) 17 (25.0 %) 1.000 
Atrial fibrillation 57 (17.6 %) 41 (16.0 %) 16 (23.5 %) 0.148 
Stroke 68 (21.0 %) 51 (19.9 %) 17 (25.0 %) 0.361 
Antithrombotic therapy 81 (25.0 %) 57 (22.3 %) 24 (35.3 %) 0.027 
Current smoking 164 (50.6 %) 131 (51.2 %) 33 (48.5 %) 0.698 

Clinical data measured, median (IQR) 
SBP (mmHg) 156 (138–171) 154 (138–169) 159.5 (141–178.75) 0.103 
DBP (mmHg) 84 (75–95) 84 (75.25–94.75) 86.5 (75–98) 0.441 
NIHSS 10 (5–17) 8.5 (4–15) 15 (10–20) <0.001 
mRS 4 (3–4) 4 (3–4) 4 (4–4) 0.004 
ASPECTS 9 (8–10) 9 (8–10) 8 (6.25–10) 0.001 
Onset to sampling (min) 186 (104.50–348.75) 164 (93.25–315.00) 304(172.75–448.75) <0.001 
Onset to therapy (min) 223 (137.5–463.5) 201 (127.5–413.25) 400 (208.75–585.75) <0.001 

Stroke etiologic subtypes, n (%)   0.067 
Large-artery atherosclerosis 210 (64.8 %) 170 (66.4 %) 40 (58.8 %)  
Cardioembolism 76 (23.5 %) 53 (20.7 %) 23 (33.8 %)  
Small-artery occlusion 26 (8.0 %) 24 (9.4 %) 2 (2.9 %)  
Stroke of undetermined cause 12 (3.7 %) 9 (3.5 %) 3 (4.4 %)  

Therapy methods, n (%)   <0.001 
Intravenous thrombolysis 159 (49.1 %) 144 (56.3 %) 15 (22.1 %)  
Endovascular treatment 120 (37.0 %) 80 (31.3 %) 40 (58.8 %)  
Bridgy therapy 45 (13.9 %) 32 (12.5 %) 13 (19.1 %)  

Lesion location, n (%)    0.078 
Anterior circulation 243 (75 %) 185 (72.3 %) 58 (85.3 %)  
Posterior circulation 78 (24.1 %) 68 (26.6) 10 (14.7 %)  
Both 3 (0.9 %) 3 (1.2 %) 0  

Laboratory test, median (IQR) 
Blood glucose (mmol/L) 6.88 (5.82–8.28) 6.70 (5.78–8.10) 7.19 (5.98–8.97) 0.230 
Cholesterol (mmol/L) 4.60 (4.03–5.31) 4.61 (4.11–5.31) 4.44 (3.60–5.19) 0.09 
LDL (mmol/L) 2.73 (2.23–3.33) 2.75 (2.29–3.46) 2.65 (1.82–3.22) 0.065 
WBC ( × 109/L) 7.98 (6.27–9.82) 7.63 (6.07–9.39) 8.94 (7.03–11.35) 0.001 
Platelet ( × 109/L) 207.5 (175.0–250.75) 207.5 (174.00–248.75) 210.5 (178.25–265) 0.424 
APTT (s) 33.6 (31.4–36.98) 33.55(31.23–36.48) 33.7 (31.90–37.48) 0.298 
Fibrinogen (g/L) 3.45 (2.97–3.96) 3.44(2.98–3.91) 3.46 (2.87–4.71) 0.314 
D-dimer (mg/L) 0.30 (0.13–0.78) 0.29 (0.12–0.64) 0.67 (0.28–1.30) <0.001 

The p values were calculated using the χ2 test, two independent-sample t-test and Mann-Whitney U test, as appropriate. SD, standard deviation; IQR, 
interquartile range; SBP, systolic blood pressure; DBP, Diastolic blood pressure; NIHSS, National Institutes of Health Stroke Scale; mRS, modified- 
Rankin-Scale; ASPECTS, Alberta Stroke Program Early CT Score; LDL, Low Density Lipoprotein; WBC, white blood cells; APTT, activated partial 
thromboplastin time. 
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2.2. Data collection 

The clinical and imaging data of patients (Table 1) were collected using an electronic medical system and recorded separately by 
two investigators. Data administrators were responsible for double-checks. The investigators who collect the clinical data were blind to 
the grouping information and the result of serum occludin. 

2.3. Outcome assessment 

Based on the European Cooperative Acute Stroke Study (ECASS II) [19], HT complication was diagnosed if intracranial hemorrhage 
was not observed on the first CT scan (within 30 min of admission), but on the second set of CT/MRI images (within 36 h after 
recanalization therapy). The types of HT were defined as hemorrhagic infarction (HI-1, HI-2) or parenchymal hematoma (PH-1, PH-2), 
based on the presence of space-occupying effects. Patients were considered to show symptomatic HT when the NIHSS score increased 
≥4 within 24 h. Imaging data were double-checked by senior neuroradiology specialists, who were blinded to other clinical data and 
serum occludin results. 

2.4. Serum samples collection 

Blood samples were collected by nurses in the emergency room using 3 mL tubes with no anticoagulant or coagulant within 30 min 
after admission. After standing for 2 h at room temperature, blood samples were centrifugated (4 ◦C, 3000 rpm, 10 min). Then the 
supernatants were collected and stored at − 80 ◦C. 

2.5. Measurement of occludin level in serum using ELISA 

The level of occludin in serum was measured using a commercial enzyme-linked immunosorbent assay (ELISA) kit (LSBio Com-
pany) according to the product instructions. 

2.6. Statistical analysis 

Data with normally distribution were expressed as means ± standard deviation and analyzed using independent samples t-tests. 
Data with non-normally distribution were expressed as medians ± interquartile range and analyzed using Mann-Whitney U tests. Data 
in categorical variables were expressed as frequencies (%) and analyzed using Chi-square tests or Fisher exact tests. The statistically 
significance was set at p < 0.05. 

Univariate and multivariate logistic regression were performed to find risk factors of HT. The potential risk factors in univariate 
analysis (p < 0.05) were included in multivariate logistic regression analysis. A variance inflation factor >10 and tolerance <0.1 were 
employed to check the multicollinearity among variables. 

Receiver operating characteristic (ROC) curves and AUC were analyzed to evaluate the performance of different models. In 
addition to comparing the AUCs of models, net reclassification improvement (NRI) and integrated discrimination improvement (IDI) 
were used to quantitatively evaluate the efficiency of model improvement [20]. Moreover, Moreover, 10-fold cross-validation was 
performed to get an unbiased estimate model for prediction accuracy. DeLong’s test was used to compare the differences between 
AUCs [21]. The goodness-of-fit of models was qualitatively analyzed using Akaike information classification (AIC) and Bayesian in-
formation classification (BIC) [22]. The clinic usefulness of the models was compared using the decision curve analysis (DCA), which is 
a method to calculate a clinical net benefit [23]. 

Table 2 
Blood pressure measurements after recanalization therapy at different time points in HT patients (n = 68).  

Time Points Systolic blood pressure (mean ± SD) Diastolic blood pressure (mean ± SD) 

2h 139.18 ± 21.81 75.47 ± 11.08 
4h 136.09 ± 18.39 73.69 ± 10.56 
6h 137.96 ± 18.65 74.96 ± 10.78 
8h 136.49 ± 17.31 73.49 ± 9.54 
10h 135.71 ± 17.30 73.84 ± 9.90 
12h 133.90 ± 15.98 72.34 ± 9.51 
16h 133.25 ± 16.00 74.30 ± 10.81 
20h 134.06 ± 16.73 74.13 ± 9.82 
24h 135.35 ± 13.60 73.43 ± 8.75 
30h 134.15 ± 14.89 72.12 ± 7.14 
36h 128.91 ± 12.02 71.04 ± 8.25  
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3. Results 

3.1. Patient characteristics 

The baseline characteristics of 324 recruited cases are presented in Table 1. Among them, 159 cases (49.1 %) received intravenous 
thrombolysis, 120 patients (37.0 %) received endovascular treatment and 45 patients (13.9 %) received bridging therapy (intravenous 
thrombolysis plus endovascular treatment). 

According to the previous medical history, 210 patients in the present study had a history of hypertension, accounting for 64.8 % in 
all recruited cases (n = 324). Patients suffering from hypertension disease account for 64.1 % in non-HT patients and 67.6 % in HT 
patients, respectively (Table 1). Based on the blood pressure at admission, there was no significance in blood pressure between HT and 
Non-HT patients (Table 1). For patients with recanalization therapy, blood pressure was measured every 2h within the first 12 h, every 
4h within 12–24 h, and every 6h within 24–36 h. The mean blood pressure after recanalization therapy demonstrated that HT patients 
(n = 68) maintained stable blood pressure within 36h (Table 2). 

Based on imaging data, 68 patients suffered HT complications within 36 h after treatment, accounting for 21 % of total recruited 
cases. The proportion of each subtype were: HI-1 (n = 19, 27.9 %), HI-2 (n = 28, 41.2 %), PH-1 (n = 10, 14.7 %) and PH-2 (n = 11, 
16.1 %). Compared with patients without HT, HT patients were more likely to have a history of coronary heart disease, have received 
antithrombotic therapy, have elevated NIHSS, modified Rankin Scale, onset to sampling or therapy, white blood cell counts and D- 
dimers, but had lower ASPECTS scores. 

3.2. The association of baseline serum occludin and HT in acute ischemic stroke patients 

To investigate the relationship between baseline occludin level and HT occurrence in recanalization patients, baseline serum 
occludin was measured using the ELISA method. The results showed that the level of serum occludin in HT patients was higher than 
that in non-HT patients [median (interquartile range) 0.40 (0.28–0.66) ng/mL vs 0.20 (0.13–0.30) ng/mL, p < 0.001, Fig. 2A]. 

We made further analysis to explore the level of serum occludin in symptomatic or asymptomatic HT patients. Based on the 
definitions of symptomatic HT [19], intracranial HT patients after recanalization were divided into two groups: asymptomatic HT (n =
51); symptomatic HT (n = 17). The results showed that the symptomatic HT patients had a higher serum occludin levels than 
asymptomatic HT patients [0.64 (0.36–1.72) vs 0.39 (0.24–0.63) ng/mL, p < 0.05, Fig. 2B]. 

These results suggested a potential link between baseline occludin level and HT occurrence in recanalization patients. 

Fig. 2. The association between baseline serum occludin levels and HT in acute ischemic stroke patients. Baseline sera were collected in the 
emergency department room within 30 min after admission and the level of serum occludin was measured using ELISA. A. Acute ischemic stroke 
patients with HT occurrence had a higher level of serum occludin than non-HT cases [0.40 (0.28–0.66) ng/mL vs 0.20 (0.13–0.30) ng/mL, p <
0.001]. B. Compared to asymptomatic HT patients, symptomatic HT patients also had a higher serum occludin levels [0.64 (0.36–1.72) ng/mL vs 
0.39 (0.24–0.63) ng/mL, p = 0.029] *p < 0.05, ***p < 0.001, Data was expressed as median (interquartile range), and the p value was calculated 
using Mann-Whitney U test. HT, hemorrhagic transformation; ELISA, enzyme linked immune sorbent assay; asymptomatic HT, as-HT; symptomatic 
HT, s-HT. 
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3.3. Subgroup analysis of baseline serum occludin in acute ischemic stroke patients 

To clarify the relationship between baseline serum occludin and clinical factors, we made the subgroup analysis (Table 3). The 
levels of baseline serum occludin in subgroups showed significant difference, based on baseline NIHSS score, stroke etiological sub-
types and therapy methods. 

3.4. Baseline serum occludin level was an independent risk factor for HT occurrence after recanalization therapy 

We further investigated whether baseline serum occludin level (before recanalization) was a risk factor for HT in recanalization 
patients using univariate and multivariate logistic regression analysis (Fig. 3, Table 4). Univariate logistic analysis showed that 11 
factors were associated with HT occurrence within 36 h after recanalization treatment, including baseline occludin [odds ratio (OR) =
105.530, 95 % CI (22.210–501.421), p < 0.001]. There was no multicollinearity among the possible risk factors due to variance 
inflation factor <10 in the multiple liner regression. Multivariate logistic regression demonstrated that besides the two clinical risk 
factors of endovascular treatment [reference to intravenous thrombolysis, OR = 4.289, 95 % CI (1.479–12.437), p = 0.007] and lower 
ASPECTS on initial CT [OR = 0.834, 95 % CI (0.697–0.999), p = 0.049], serum occludin level was an independent predictor [OR =
108.392, 95 % CI (19.734–595.352) p < 0.001)] for HT occurrence, even after adjusting for other potential confounding factors. These 

Table 3 
Subgroup analysis the baseline serum occludin levels in acute ischemic stroke patients.  

Parameters n Occludin level (ng/mL), median (IQR) p value 

Age   0.208 
Total 324 0.22 (0.16–0.30)  
≤40y 19 0.21 (0.14–0.33)  
41-60y 95 0.24 (0.14–0.39)  
61-80y 184 0.25 (0.18–0.46)  
≥80y 26   

Sex   0.536 
Total 324   
Male 245 0.23 (0.14–0.35)  
Female 79 0.21 (0.14–0.35)  

Hypertension   0.715 
Total 324   
Yes 210 0.23 (0.14–0.37)  
NO 114 0.22 (0.15–0.34)  

Diabetes   0.820 
Total 324   
Yes 235 0.23 (0.15–0.35)  
No 89 0.23 (0.14–0.36)  

Therapy methods    
Total 324  0.013a 

Intravenous thrombolysis 159 0.21 (0.13–0.31)  
Endovascular treatment 120 0.23 (0.15–0.40)  
Bridge therapy 45 0.27 (0.19–0.43)  

Onset to sampling    
Total 324  0.118 
<4.5h 212 0.22 (0.13–0.33)  
4.5–6h 34 0.23 (0.16–0.55)  
>6h 78 0.26 (0.16–0.40)  

Baseline NIHSS score    
Total 324  0.001b 

Mild stroke (1–4) 76 0.20 (0.12–0.29)  
Moderate stroke (5–15) 161 0.24 (0.14–0.34)  
Severe stroke (≥16) 87 0.25 (0.17–0.43)  

Stroke etiological subtypes   0.002c 

Total 324   
Large-artery atherosclerosis 210 0.23 (0.15–0.35)  
Cardiogenic cerebral embolism 76 0.30 (0.18–0.45)  
Small vessel occlusion 26 0.19 (0.10–0.23)  
Stroke of undetermined cause 12 0.18 (0.11–0.25)  

IQR, Interquartile range; NIHSS, National Institutes of Health Stroke Scale. The p values were calculated using the χ2 test, Mann-Whitney U test and 
Kruskal-Wallis test, appropriately. 

a The difference of serum occludin levels among three groups was significant (p = 0.013), while the difference between intravenous thrombolysis 
and bridge therapy was still significant by Bonferroni correction for multiple tests (p = 0.017). 

b The difference of serum occludin levels among four groups was significant (p = 0.001), while the difference between mild stroke and moderate or 
severe stroke respectively was still significant by Bonferroni correction for multiple tests (p = 0.012 and p < 0.001). 

c The difference of serum occludin levels among four groups was significant (p = 0.002), while the difference between cardiogenic cerebral em-
bolism and small vessel occlusion was still significant by Bonferroni correction for multiple tests (p = 0.004). 
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results suggested that baseline occludin may be incorporated into the clinical risk factor model for prediction of HT as an important 
variable. 

3.5. The combination of serum occludin and clinical risk factors improved the predicative efficiency for HT occurrence after recanalization 

To investigate whether the combination of serum occludin and clinical risk factors improved the predictive efficiency for HT 
occurrence after recanalization, three prediction models were constructed: Model I [clinical factors (ASPECTS and endovascular 
treatment)]; Model II: occludin alone; and Model III: clinical factors + occludin. 

The prediction accuracy of the three models was evaluated by using AUCs. The results showed that the AUC of Model III was 

Fig. 3. Forest plot of risk factors for HT. After adjusting for confounding variables, forest plot showed that baseline serum occludin level (OR =
108.392, p < 0.001), endovascular therapy (reference to intravenous thrombolysis, OR = 4.289, p = 0.007) and baseline ASPECTS (OR = 0.834, p =
0.049) were the risk factors for HT in multivariate regression analysis, respectively. OR, odds ratio; ASPECTS, Alberta Stroke Program Early CT 
Score; HT, hemorrhagic transformation. 

Table 4 
Univariate and multivariate logistic to identify the risk factors associated with HT in acute cerebral infarction patients with recanalization treatment.  

Variables Unadjusted Odds Ratio p valuea Adjusted Odds Ratio p valueb (95 % CI) (95 % CI) 

NIHSS 1.062 (1.032–1.093) <0.001 0.993 (0.942–1.047) 0.786 
ASPECTS 0.751 (0.655–0.862) <0.001 0.834 (0.697–0.999) 0.049 
mRS 1.666 (1.192–2.330) 0.003 0.939 (0.573–1.539) 0.802 
Onset to sampling 1.001 (1.001–1.002) 0.005 – – 
Onset to therapyc 1.001 (1.001–1.002) 0.001 1.000 (0.999–1.001) 0.683 
WBC 1.120 (1.037–1.210) 0.004 1.033 (0.927–1.150) 0.558 
LDL 0.735 (0.544–0.992) 0.044 0.835 (0.589–1.185) 0.313 
Coronary heart disease 2.009 (1.032–3.913) 0.040 1.977 (0.823–4.752) 0.128 
Antithrombotic therapy 1.904 (1.068–3.394) 0.029 0.984 (0.440–2.202) 0.969 
Therapy methods  <0.001  0.022 

Intravenous thrombolysis Reference    
Endovascular treatment 4.800 (2.498–9.225) <0.001 4.289 (1.479–12.437) 0.007 
Bridging therapy 3.900 (1.691–8.995) 0.001 1.965 (0.597–6.471) 0.266 

Serum occludin 105.530 (22.21–501.421) <0.001 108.392 (19.734–595.352) <0.001 

NIHSS, National Institutes of Health Stroke Scale; ASPECTS, Alberta Stroke Program Early CT Score; mRS, modified-Rankin-Scale; WBC, white blood 
cells; LDL, Low Density Lipoprotein. 

a The p values were calculated using univariate regression analysis. 
b The p values were calculated using multivariate regression analysis. 
c Onset to sampling and onset to therapy had the multicollinearity (variance inflation factor >10 and Tolerance <0.1), and the latter was included 

into the multivariate logistic regression analysis based on the smaller p value. 

Table 5 
The comparison of AUC differences among different models.  

Variables AUC difference 95 % CI p value  

Lower limit Upper limit 

Model III vs Model II 0.017 − 0.026 0.059 0.441 
Model III vs Model I 0.119 0.067 0.171 <0.001 
Model II vs Model I 0.099 0.018 0.179 0.016 

Model I, clinical risk factors (ASPECTS and endovascular treatment); Model II, occludin alone; Model III, clinical risk factors + occludin. 
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significantly higher than Model I (0.821 vs 0.701, p < 0.001, Table 5 and Fig. 4), while the AUC of Model III showed no significantly 
difference, compared with that of Model II (0.821 vs 0.804, p = 0.441), suggesting that the combination of serum occludin and clinical 
risk factors improved the predictive efficiency for HT occurrence. 

Based on the significant difference of AUCs between Model I and Model III, Improvement rate of combination model (Model III) for 
prediction HT was quantitatively evaluated using NRI and IDI. The statistical analysis results showed that NRI and IDI in Model III were 
significantly increased by 31.1 % (p < 0.001) and 21.5 % (p < 0.001), respectively, when referenced to Model I (Table 6). 

To evaluate the potential stability of Model III, 10-fold cross-validation was further performed to obtain an unbiased estimation for 
Model III (Fig. 5). The adjusted AUC of Model III after calibration (0.806) maintained higher than Model I (0.701). 

To evaluate the goodness-fit of the Model III, AIC and BIC were qualitatively analyzed. Smaller AIC and BIC mean better model. The 
Model III using occludin combined clinical factors (AIC = 249.41, BIC = 268.31) was better than Model I (clinical factors, AIC =
309.94, BIC = 325.07) or Model II (occludin alone, AIC = 266.76, BIC = 274.32). 

Finally, to evaluate the potential clinical usefulness and net benefit of Model III, DCAs of the three models was further analyzed 
(Fig. 6). The Model III (the combination of occludin with clinical factors) was farther way from the slanted dashed line and the 
horizontal black line than Model I or Model II, indicating the Model III had a best clinical benefit among the three models. 

These results indicated that the model using baseline serum occludin combined with clinical risk factors may be effective for 
predicting early HT occurrence in ischemic stroke patients who undergo recanalization therapy. 

4. Discussion 

The present study reported that the combination of baseline occludin in serum with clinical risk factors could improve the efficacy 
for HT prediction in acute cerebral ischemic stroke patients with recanalization treatment, providing a new effective prediction model 
to screen for patients who had a high risk of HT before recanalization administration. 

HT is one of the severe complications of ischemic stroke especially after recanalization, leading to early neurological deterioration 
and poor prognosis [2,3]. Until now, no method has been applied to predict HT in clinical practice. Many clinical risk factors have been 
reported to be associated with HT, including higher NIHSS, lower ASPECTS, massive cerebral infarction, cardiogenic cerebral em-
bolism, treatment methods, and others [8,9]. In addition, multimodal CT and MRI methods have been developed to predict HT, 
including permeable-/perfusion-related parameters [24–26]. However, the traditional prediction models based on these clinical risk 
factors or imaging methods are not ideal (AUC<0.7) for clinical practice [10–13], suggesting that finding novel objective biomarkers 
and including them into the prediction model may be a better way to improve prediction efficacy. 

Studies have shown that BBB disruption during cerebral ischemia is closely associated with HT occurrence [15,16]. As a key protein 
of tight junctions, occludin plays a crucial role in keeping the physical functions of the BBB [27]. Our previous studies showed that 
cerebral ischemia induced degradation of occludin protein into fragments in an animal model of cerebral ischemia [17,18]. The level of 
occludin in the circulation was correlated with the extent of BBB damage, and the present study also found that the high levels of 
baseline serum occludin in HT patients may be responsible for the disruption of BBB integrity. These results indicated that occludin in 
serum may serve as an ideal biomarker for BBB damage, and may improve HT prediction in stroke patients. 

The prediction model in the present study incorporated the level of baseline serum occludin into the traditional model based on 
clinical factors, and the results showed that the calibrated AUC of the new model was significantly elevated compared to the traditional 
model (0.821 vs 0.701), and the new model had a better good-fit test (the smaller value of AIC and BIC) and net benefit in clinical 

Fig. 4. ROC curves of three prediction models. To investigate whether serum occludin improved the predicative efficiency of clinical risk factors 
model for HT occurrence after recanalization, ROC curves of three prediction models were made: Model I [clinical factors (ASPECTS and endo-
vascular treatment)]; Model II: occludin alone; Model III: clinical factors + occludin. The AUC of Model III was significantly higher than Model I 
(0.821 vs 0.701, p < 0.001), suggesting that the combination of serum occludin and clinical risk factors improved the predictive efficiency for HT. 
The p value was calculated using delong test. AUC, area under the curve; HT, hemorrhagic transformation; ROC, receiver operator character-
istic curve. 
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practice. Moreover, the prediction ability between Model II (occludin alone) and Model III (clinical risk factors plus occludin) had no 
significant difference, which is mainly due to the unhomogenized groups and large variations of clinical factors. These results indicated 
that serum occludin, as an objective indicator, had a significant contribution in improving prediction efficacy of traditional model 
(Model I, clinical risk factors). 

Therefore, it is necessary to explore more new prediction models to improve the prediction efficiency of traditional risk factors 
model. Due to the variety of study population characteristics, many stratification factors, and some subjective measurement param-
eters (NIHSS, ASPECTS, mRS) in the traditional factors model, the more objective indicators reflecting BBB injury should be introduced 

Table 6 
Reclassification of HT by adding the values of serum occludin in ischemic stroke patients with recanalization treatment.  

Models NRI IDI  

Estimate (95 % CI) p value Estimate (95 % CI) p value 
Model I Reference – Reference – 
Model III 0.311 (0.195–0.427) <0.001 0.215 (0.146–0.284) <0.001 

Model I, clinical risk factors (ASPECTS and endovascular treatment); Model III, clinical risk factors + occludin. 
NRI, net reclassification improvement; IDI, integrated discrimination improvement. 

Fig. 5. 10-fold Cross-validation of the combination model. To evaluate the potential stability of Model III, 10-fold cross-validation was further 
performed to obtain an unbiased estimation for Model III. The AUC from a 10-fold cross validation on predicting HT, based on Model III (ASPECTS, 
endovascular treatment plus serum occludin levels) in multivariate logistic regression model, was 0.806. The adjusted AUC of Model III after 
calibration (0.806) maintained higher than Model I (0.701). AUC, area under the curve; ASPECTS, Alberta Stroke Program Early CT Score; HT: 
hemorrhagic transformation. 

Fig. 6. Decision curve analyses for the three models. To evaluate the potential clinical usefulness and net benefit of Model III, DCAs of the three 
models was further analyzed. The Model III (the combination of occludin with clinical factors) was farther way from the slanted dashed line and the 
horizontal black line than Model I or Model II, indicating the Model III had a best clinical benefit among the three models. DCA, decision 
curve analyses. 
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into the prediction models to improve the efficiency of prediction [28]. The present study provides a potential feasible way or direction 
to optimize and improve the accuracy of the prediction model by incorporating objective indicators. In addition to occludin, many 
biomarkers related to brain damage in response to cerebral ischemia have been studied, including cellular fibronectin, matrix 
metalloproteinase-9, and S100 calcium-binding protein B [29–31]. Further studies are warranted to screen for additional novel 
objective indicators and to develop combination models with two or more objective indicators. 

To clarify the relationship between baseline serum occludin and clinical factors, we made the subgroup analysis. The levels of 
baseline serum occludin in subgroups showed significant difference, based on baseline NIHSS score, stroke etiological subtypes and 
therapy methods. The possible reason is that patients, who underwent bridge therapy, moderate-severe stroke or cardiogenic cerebral 
embolism, might have a worst BBB disruption at admission. However, the levels of baseline serum occludin did not show significant 
difference in subgroups based on onset to sampling (<4.5h, 4.5–6h, >6h), which is mainly due to the blood samples were not 
continuously collected from the same individuals. Further studies will be carried out to explore the association of onset to sampling and 
serum occludin levels. 

Developing a prediction model of HT should be of great significance for guiding clinical treatment. For the patients who are 
evaluated early after arrival at the emergency room with high risks of HT, doctors can then pay more attention and take measures to 
reduce the risk of HT occurrence, including reducing the dosage of antiplatelet drugs, increasing CT detection after operation, and even 
discontinuing recanalization therapy after weighting the pros and con. 

There are some limitations in the present study. Firstly, the present study was carried out in a single center, and the prediction 
model developed in the present study needs to further verified in multi-center investigations. Secondly, the predictive ability of the 
model for different types of HT was not analyzed due to the limitation of sample size. Thirdly, until now, few literatures showed the 
exact value of half-life of occludin after stroke. According to our previous data in animal and patients, occludin levels in blood 
dramatically increased within 4.5-h ischemia and kept in a high concentration at 4.5–24 h after ischemia [17,18], the exact value of 
half-life of occludin is needed to explore in the future study to help determine its usefulness in predicting HT. 

In summary, this is the first prospective study to the best of our knowledge, which explores the relationship between serum occludin 
levels and HT within 36 h after recanalization treatment. Use of serum occludin levels, as an independent risk factor for HT, signif-
icantly improves the efficiency of clinical risk factors model for prediction HT in acute cerebral ischemic stroke and provides a novel 
prediction model to screen for patients with high risk of HT before recanalization administration. 

5. Conclusion 

Serum occludin combined with clinical risk factors model significantly improved the prediction efficacy for HT occurrence, 
providing a novel potential prediction model to screen for patients with high risk of HT before recanalization in acute cerebral ischemic 
stroke patients. 
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